
 ммп
asるo＠s № 17

$$
\begin{aligned}
& y_{n}=\frac{\mu_{0} y_{n}}{2 \pi h L} \cdot \overline{y_{1} r^{2}}= \\
& =6 \cdot 28 \cdot 10^{-5} \mathrm{~J}
\end{aligned}
$$

 popouhyol $\overline{\text { ac. }}$

$$
\ddot{\alpha}=-\frac{m g l}{I} \alpha
$$

$$
\frac{m g l_{1}}{I_{1}}=\frac{m g\left(h-l_{1}\right)}{I_{2}}=\frac{m g X}{I_{g_{1}}}
$$

$l-2 b h a s$.

 $T=25 \sqrt{\frac{I_{1}}{m g l_{1}}}$

$$
\begin{aligned}
& \rho \quad 2 \rightarrow L \quad h=\frac{R_{0}}{} \quad 2 V_{0}=D_{0} V_{1} \\
& \\
& \quad \frac{V_{1}}{V_{0}}=\frac{2}{1}
\end{aligned}
$$

$$
P V=\sqrt{ } R \tau
$$

$\pi=\max , \quad$ mav $P_{0} V=\max$.
Lerif $T_{1}=z_{2}=\partial \quad 2 P_{0} V_{0}=P_{0} V_{1} \Rightarrow P V$ 2fledpryhan $1 \rightarrow 2$ mesos 3 anad Lous bjhormite

$$
\begin{aligned}
& V_{i_{\max }}=\frac{V_{1}+V_{0}}{2}=\frac{3}{2} V_{0} \\
& T_{\max }=\frac{9}{4} \frac{P_{0} V_{0}}{\sqrt{R}}=\frac{2}{4} \frac{P_{0} V_{0}}{R}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha a=C_{1} \cdot \| \\
& C_{r}=\frac{\delta \alpha}{d \tau} \\
& P d V=\sqrt{R} d T \\
& \delta Q=d A+d U \\
& C_{r}=\frac{d A+d U}{d t}=\frac{P d V+d P V+\frac{3}{2} \gamma R d T}{d T}=\frac{d P}{d T} V+\frac{5}{2} \cdot \sqrt{R} \frac{2}{\hbar}
\end{aligned}
$$

