
 ммпдзол@obsozzol
\square 21.04.2016/ о०8/IV/ 313
sambsbs № \square

$$
10 \sigma_{y} \operatorname{lin}_{n} \text { ffran } \hat{b}_{1}\left(16,5 \sin b_{0}\right]
$$

\square

 ммепдзоs@otsonzol
samgrsbs № \square 839ウœ๐ №
2.

 меподпऽழоbsozzol
dşo@s №
21.04.2016/ oु०\%/IV/ 313
sдm®zsбs № \square 339ウழ๐ № \square

$$
V_{\partial \mu f}(r)=6 V_{i \neq r}\left(r_{0}\right)+8 V_{5 \eta r}\left(a_{2} \sqrt{3} r_{0}\right)^{3}+6126 V_{5 \pi r}\left(\sqrt{2} r_{0}\right) \rightarrow
$$

$$
=\# \frac{k-q e^{2}}{r_{0}^{3}}\left[-6-\frac{8 \sqrt{3}}{3}+6 \sqrt{2}\right]=\alpha V_{\operatorname{sir}}\left(r_{0}\right)
$$

$$
\alpha+\frac{1.96}{1 / 0}=+2,133520779 \cdot \frac{1+1 e^{x}}{1 / 0}
$$

$$
\alpha \varepsilon^{2} 2,13352072922,13352
$$

2. $V_{j_{n}(r)}(r)=V_{\partial n g}(r)+V_{z^{s g f}}(r)=\frac{\alpha \mid q_{e}^{2}}{r}+\frac{\lambda}{e^{r} / \rho}$

