

\square
pofotet ohyjrous, lugふ sh boyk Jomion n montazu
byomband seantan ruytutuntial I pen orespors

$$
\begin{aligned}
& E_{1}=E_{i=2}=-\frac{E_{i}}{n_{2}^{2}}+\frac{E_{i}}{n_{1}^{2}}=E_{i}\left(l-\frac{1}{4}\right)=\frac{3}{4} E_{i}= \\
& =10.2332 \\
& \frac{m 100^{2}}{2}=E_{1}
\end{aligned}
$$

$$
U_{0}=\sqrt{\frac{2 E_{1}}{m}}
$$

0
A.

a.y lighme ${ }^{\circ}$ ghan bjhbormpob fomme $L \angle R$ abincmbira poymhgloym righunmed Jaybuboe 53000 or Dn_{3} ncylion
org rithl.
ju DOHA .

$$
\begin{aligned}
& \eta=l \cdot \sin \alpha=l \sqrt{1-\frac{l^{2}}{\varphi R^{2}}}
\end{aligned}
$$

 byhan.

$$
r=l \sin \alpha=l \sqrt{1-\frac{l^{2}}{4 R^{2}}}
$$

ๆjしऽ ммеддзоs@obsozzols

Y3 3 (mog) 00 ou
(0)

bjhermon lnvonion g houtomst
(v) wotantannar Lomhe,
then lnobipygon topatymiafo.
N - onaherymo lystal opbephalsb.
mothument smoptite
byhangru Emhdeg oh 2rous remesto.
$\cos \alpha=\frac{l}{2 R} \quad \sin \alpha=\sqrt{1}-\frac{l^{2}}{4 R^{2}}$.
$\cos \beta \beta=\frac{\pi}{R} \cos (9 O-\beta)=\frac{O_{O}^{2}+A O^{2}-A M^{2}}{2 O M \cdot A O}=\frac{2 R^{2}-l^{2}}{2 R^{2}}=\sin \beta$

$$
\vec{T}+\vec{N}+\overrightarrow{m g}=m \vec{a}
$$

$$
\frac{m v^{2}}{2}=m g r
$$

$$
N=T \frac{\cos 2}{\sin 3}
$$

$$
\cos \rho=\frac{\tau}{R}=\frac{l \operatorname{sm\alpha }}{R}=\frac{l}{R} \sqrt{1-\frac{l^{2}}{4 R^{2}}}
$$

$$
T \sin \alpha+N \cos \beta-m g=\frac{m v^{2}}{\%}
$$

$$
v^{2}=28 x r
$$

$$
\begin{aligned}
& T \sin \alpha+T \frac{\cos \alpha \cos \beta}{\sin \beta}=m g=2 m g \\
& T\left(\frac{\sin \alpha \sin \beta+\cos \alpha \cos \beta}{5 m \beta}\right)=3 m g \\
& T\left(\frac{\left.\sqrt{1-\frac{l^{2}}{4 R^{2}}} \cdot\left(1-\frac{l^{2}}{2 R^{2}}\right)+\frac{l}{2 R} \cdot \frac{l \operatorname{4n\alpha } \alpha}{R} \sqrt{l-\frac{l^{2}}{4 R^{2}}}\right)}{h-\frac{l^{2}}{2 R^{2}}}\right)=3 m g . \\
& T \frac{\sqrt{1-\frac{l^{2}}{4 R^{2}}}\left(1-\frac{l^{2}}{2 R^{2}}+\frac{l^{2}}{2 R^{2}}\right)}{l-\frac{l^{2}}{2 R^{2}}}=3 m g \\
& T \frac{2 R \sqrt{4 R^{2}-l^{2}}}{2 R^{2}-l^{2}}=3 m g . \\
& T=\frac{2 R^{2}-l^{2}}{2 R \sqrt{4 R^{2}-l^{2}}} \cdot 3 m g .
\end{aligned}
$$

Øŋls

\square
()

ronbuingil perntionl ramifor $\operatorname{shl}_{30} t_{0} \ln 6 \operatorname{thn}_{n} h$. . 6 y
 to 16 , hine
ay $\operatorname{sim}^{2} \mathrm{Jbm}_{3}$ asme humus olenfing

$$
\lambda_{1}=\frac{\theta_{\xi}}{H_{H 1}} T=\theta_{G} \cdot \frac{1}{f_{0}}
$$

$\sqrt{3}^{6} \mathrm{ma}$ hmegluv
tmohmol

$$
\begin{aligned}
& \text { inthumel joiml bazob, }
\end{aligned}
$$ vumpu

 $\frac{\lambda_{1}}{c}$ cotmitn, bmmen ay Indegoin Imthumal humue Uurt. $\tan _{n} \frac{1}{f_{\text {innmbigho }}}$
$\frac{u_{\sin p}}{f_{\text {inm }}}=\frac{\theta_{\xi}}{f_{0}}$
$\frac{\lambda_{0}}{\text { ugjho }}$

$$
U_{\xi} h=C \mp U
$$

Øŋปงณß

13.04.2016/ оु०8/II/ / 105
t phay on, 3 ,haohl w orygon, wur ongenga ognman - buazum.
gatzon al zimplenzar
3heoral porsyb braub t_{1} ohll, $\operatorname{mon}_{\mathrm{gman}}^{6 \mathrm{~m}}$
 wifonh

$$
t=t_{1}+t_{2}
$$

$f_{\gamma_{0}}=f_{0} \frac{c}{c-g t_{1}}$
hmogly

$$
t_{1}=\frac{\left.C+C \| l-\frac{2 g+1}{c} \right\rvert\,}{g}
$$

2 2n6. $v=g t_{1}>C$.

- Inumd arizanamer I 2env3 $3, \frac{\operatorname{lompaplifi}}{}$

$\frac{g t_{1}^{2}}{c}-2 t_{1}-2 \frac{h}{c}+2 t=0$
$t_{1}=\frac{q^{c}\left(\pm C \sqrt{\alpha-\frac{2 g}{c}\left(t-\frac{h}{c}\right)}\right.}{g .} \quad f_{\partial \rho}=-\frac{1}{0} \sqrt{\sqrt{-\frac{2 g}{c}\left(t-\frac{h}{c}\right)}}$

33うศழ@ №
2

дздロ@s № 13

$$
\begin{aligned}
& f_{\partial \nu \partial}=\int_{0} \frac{C}{C-g t_{1}}=T_{0} \frac{C}{C=C+\frac{f d L-\frac{2 g}{c}\left(-\frac{h}{c}+t\right)}{}} \begin{array}{l}
\sqrt{\alpha-\frac{2 g}{c}\left(t-\frac{h}{c}\right)}
\end{array}
\end{aligned}
$$

(0) $\frac{2+\ln +\pi}{5}$
jHisprinuoum mowing trun b^{\prime}
igftor ro.l $A(2 ; 581)$ ou $B(8 ; 723)$
5hormpeth

$$
\begin{aligned}
& \sqrt{d}-\frac{2.9 .80}{340}\left(2-\frac{h}{360}\right) \quad 3 \text { song cmiken foll } \\
& 723=f_{0} \frac{1}{\sqrt{1-\frac{2.9 .80}{340}\left(8-\frac{k}{340}\right)}} . \\
& \text { D) }
\end{aligned}
$$

