

a১るの＠s №
13．04．2016／oु०\％／II／

839ウழ๐ №
งдм®วธธ № 1

$$
E_{1}+U \pm E_{2}+u=E_{1}^{\prime}+E_{2}^{\prime}+U_{1}+U_{2}
$$

 06 m solhor $9^{6} \log _{\mathrm{g}-\boldsymbol{s}} \frac{3}{4} E_{i}$

$$
z^{j} p^{\prime}\left(3^{n} p\right)^{a}
$$

 $v^{6} \rightarrow \quad u=\frac{-u+V}{1-\frac{u v}{c^{2}}} \quad u+\frac{u^{2} v}{c^{2}}=u+v \quad u-\frac{u^{2} v}{c^{2}}=-u \times v$

$$
d=\sqrt{u^{2} v+u c^{2}+4 c^{2}-v c^{2}}=0
$$

$Q=$
$\frac{M C^{2}}{1-\frac{\mathbb{Q}^{2}}{C^{2}}}-2 M C^{2}$ ．
（2）$=2 m c^{2}\left(\frac{1}{\sqrt{1-\frac{c^{2}}{c^{2}}}}+c^{2}\right)=\frac{3}{4} E_{i}$ p 3^{3} mocheren－hentho．

дऽฉ๐@s № 1.
 μ.

चy-3) " hat zozaner
 3"nh onf os me ท3 (2) $\mu-5$)

$$
B_{y}=\frac{H_{0} \mu+}{6 B}
$$

$$
\int \frac{\int^{-a} \frac{-a x+y}{2}}{\frac{a}{2}} \cdot \frac{\mu_{0} \mu I}{I d L}=F_{y}^{x}
$$

$$
\begin{aligned}
& \frac{d y a f\left(\frac{a}{2}+x+y\right)}{2\left(x+y-\frac{a}{2}\right) \sum_{2}^{a}} \cdot \mu_{0} I^{2}=\mu_{0} \mu^{2 a+} I^{2} d y \cdot \partial \\
& F_{0 x c h 2 T}=\int_{0} \mu_{0} \mu I^{2} d y=\mu \mu_{0}^{\mu} I^{2}(2 a-+\theta \\
& p_{0}^{2 \mu} \int_{0} f d x=A u=\int_{0}^{2 \mu}\left(\mu_{0} \mu^{2} I^{2}(2 a-x) d x=\right. \\
& =\mu_{0} \mu I^{2} 2 a \cdot \varepsilon a-\mu_{0} \mu I \frac{4 a^{2}}{2}=\mu_{0} \mu I^{2} \frac{4 a^{2}}{2} .
\end{aligned}
$$

 меподзпs@olsomiol
cohofepontme 6rhy pnindul oushar sogde stal at 6ohepandel ashhanubgas hadmbres eubkip patcitodore sohtmp L 2ubtrese Apo 6 rish danzrpzontima

606.2-0p6 ha6t hald

506 1.-0 1 : $506.2-0_{1}$.
 LPab oblar P3jpzation 5 万n, 6ntul luzh colye pibz $\overbrace{\text { er opms }}$ $C A O C$ cs 3 Bargepes $2 R^{2}-2 R^{2}(c 0, \gamma)=L^{2}$
 1 ($\cos _{0} 0^{2}$ ${ }^{6}$ phe gtoond Bhyont 36 phe otcente 6 hybnts

$$
3 b_{N}
$$ urpaserses.

J)
A.
-
wodidina O_{1} - BC. y ardithon

 ммедзоs＠оиsoziol

$$
\begin{aligned}
& t-+\operatorname{CO} \gamma=H \\
& \angle O, k H=90^{\circ}-1 .
\end{aligned}
$$

 if Jlafinghater

3）flominn 6は，

$$
\begin{aligned}
& \operatorname{Ang}(K-H)=\frac{\operatorname{An}^{2}}{2} \quad V^{2}=\sqrt{2 g(K-H)} \quad \therefore \quad \frac{v^{2}}{R}=\frac{2 g(1-H)}{r}
\end{aligned}
$$

（u） $\sin \alpha=\frac{k F}{k}=\sqrt{r^{2}-(t-H)^{2}} / K$ re dom zan amposen conps
$\sqrt{(2 g(r-H))^{2}+\frac{r^{2}-(r-H)^{2}}{r}}=\sqrt{\frac{4 g^{2}(r-H)^{2}}{r^{2}}+\frac{r^{3}-(r-H)^{2} r^{2}}{r^{2}}}=$

$$
=\sqrt{\frac{\left(4 g^{2}-r\right)(r-H)^{2}+r^{3}}{r^{2}}}=a \quad \hbar \omega_{\rho_{w}} r=\frac{L^{2}}{2 R}
$$

Øgls

д১̧ロ＠ゝ №
sдm（zsbs №
\square

839ウœ๐ №
3.

8）

$\vec{N} \times$ Mindas $3 p g{ }^{2} 6 l$.

$$
\sin \beta=\frac{r}{2}=\frac{L}{2 R}=\frac{r}{R}=\frac{\frac{L^{2}}{2 R}}{R}=\frac{L^{2}}{2 R^{2}}
$$

 c6inry zontane wind？

piognzдner utrobr \mathbb{N} minal．
$m g \cos \left(2 \alpha^{\circ}-\gamma\right)=7 \cos (\alpha+\beta)=\operatorname{mg} \sigma_{0} \quad(m g+m u) \cos (90-\alpha)=$

$T=\frac{3 m g \frac{L^{2}}{2 R}}{\cos \gamma \cos \beta-\sin \alpha \sin \beta}=\frac{3 m g \frac{L^{2}}{2 R}}{\cos \alpha \cos \beta\left(a+\cos \frac{L^{2}}{2 R^{2}}+a+\sin \frac{L}{2 R}\right)}$.

dsљの＠s №
sдm®ァよ5s № 3
z／zisha，mas．

$$
\begin{aligned}
& T=\frac{3 m g \frac{L^{2}}{2 R}}{(\sin \sin \beta-\cot (\sin \beta)}=\frac{3 m \rho \frac{L^{2}}{2 R}}{\frac{L^{3}}{4 R^{3}}-\sqrt{\left.R^{2}-\left(\frac{L^{2}}{2 R}\right)^{2} \sqrt{2}^{2}-L^{2} \frac{L^{2}}{2 R}\right)^{2}}} \\
& 3 m g \frac{L^{2}}{2 R} \\
& \begin{array}{c}
=\frac{\frac{L^{3}}{4 R^{3}}-\left(\sqrt{\left(R^{4}-L^{2} R+\frac{L^{4}}{4 R^{2}}\right)\left(L^{4}-\frac{L^{4}}{R}+\frac{L^{4}}{4 R^{2}}\right)}\right)=}{\frac{3 m g \frac{L^{2}}{2 R}}{2}=T} .
\end{array} \\
& -\cos \left(a+c \sin \frac{z^{2}}{2 R^{2}}+a+c \sin \frac{L}{2 R}\right)
\end{aligned}
$$

 ммпдзпs@obsom

13.04.2016/ oुก\%/II/

งдm (zsbs № \square 4 \square
 Woblungiven $22 r 6$

$$
\begin{aligned}
& \sqrt{(t t, \text { h) } 2 g}=V \Rightarrow f_{\text {d }}=f_{0} \frac{c}{c-\sqrt{(h-t() ? g}} \\
& t_{2}=\frac{b-H}{c} \Rightarrow t_{4}+t_{2}=t \quad t=\sqrt{\frac{2 H}{g}}+\frac{b-H}{c} \\
& H=\frac{v^{2}}{2 g} \Rightarrow D=v=\sqrt{2 g+1}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V^{2}}{2 c}-V+g t=2 D-g \frac{h}{c}=0 \\
& t_{1}=\sqrt{\frac{2+1}{g}} \\
& \frac{g t^{2}}{2}-H=7 .
\end{aligned}
$$

$$
\begin{aligned}
& 11 \leadsto \text { ashdmen } 33^{2-8,} \\
& 32^{2}+1671-6_{7}
\end{aligned}
$$

d) अandomat

$$
v=c \pm \sqrt{c^{2}-2 f t c+2 g h}
$$

$$
f=t_{0} / \sqrt{1-\frac{2 g t}{c}+\frac{2 g h}{c^{2}}}
$$

$$
\Rightarrow t^{2}=f_{0}^{2}\left(1-\frac{2 g t}{c}+\frac{2 g t}{c^{2}}\right)
$$

p) subrar $t y>334$

 ungar r anzarjiba arobprionen Jumbl,

$$
\begin{array}{ll}
t=2 & f=580 .
\end{array} \quad 800=f_{0} / \sqrt{1-\frac{2 g}{c}+\frac{2 h}{c^{2}} .}
$$

333) Ghenth jhe 36, non0 $6\left(\frac{800}{580}\right)^{2}=\frac{1\left(/ c^{2}-2 g \cdot 10 c+2 h\right)}{1 /\left(c^{2}-2 g \cdot 2 \cdot(+2 h)\right.}=1,9$.

$$
\begin{aligned}
& 115600(1,9-1)-6800(1 \cdot 9)+2.22680=1,8 h . \\
& 44040-12920+4 \cdot 680
\end{aligned}
$$

$\frac{14040-12920+4.680}{1.8}=h \quad h=2133$
 Øூ ммпдзпs@obsoziol
sдm®s
pl Rutzin oे mer 2nououzan $h=21332$ xam

$$
\begin{aligned}
& 800=\frac{f_{0}}{\sqrt{1-\frac{20 g}{c}+\frac{24}{c^{2}}}}=\frac{f_{0}}{\sqrt{0,430,4235+0,00369}}=\frac{f_{0}}{\sqrt{0,460}}= \\
& =\frac{f_{0}}{0,678}-4 f_{0}=800 \cdot 0,678=542,48 \approx 54.92 .
\end{aligned}
$$

jons aturndro p) $301542=$ fo $=542\left(3_{0} \omega\right)$
子) $h=21332$.

 ммпдзоsœobsozols
aszo@s № 1

