
ஜூ ммепдЗоs@obsomiol

$$
\begin{aligned}
& \text { an shoghtspe piscto, any } \\
& \text { Giss } \frac{v}{2} \text { insfonc. }
\end{aligned}
$$

$$
\begin{array}{r}
\frac{m v_{0}^{2}}{2}+E_{i}=-E_{E_{n}} \quad \frac{m_{0} v_{0}^{2}}{2}+E_{i}=-\frac{E_{i}}{h^{2}} \\
v_{0}^{2}=-\frac{2}{m} \cdot E_{i} \frac{1-h^{2}}{h^{2}} \\
v_{1}^{2}=\frac{2 E_{i} \cdot \frac{n^{2}-1}{4^{2}}}{v_{1}=\sqrt{\frac{2 E_{i}}{m} \cdot \frac{h^{2}-1}{h^{2}}}}
\end{array}
$$

SCIENCE FOUNDATION
ๆூ

$$
\begin{aligned}
& \int \frac{b_{e}}{r} \cdot d=\mu_{0} I \Rightarrow Q_{0}=\frac{L}{\mu} \cdot I \\
& \quad D=B \cdot S . \quad B=\frac{L}{\mu \cdot S} \cdot I .
\end{aligned}
$$

 rs $\quad A=E \quad A=B \cdot M=\frac{L}{\mu \cdot 5} \cdot I \cdot I \cdot S=\frac{L I^{2}}{\mu}$

$$
\begin{aligned}
& L^{2}=R^{2}+R^{2}-2 R^{2} \text { cord } \text {. } \\
& \cos h=1-\frac{L^{2}}{2 R^{2}} \quad(R \rightarrow L) \quad \sin =\sqrt{1-\left(1-\frac{L^{2}}{2 R_{2}}\right)^{2}} \\
& r=R \cdot \sin \alpha \\
& r=2 R-1 x=\frac{L^{2}}{2 R^{2} x}
\end{aligned}
$$

$$
r=R \cdot \sqrt{1-\left(1-\frac{L^{2}}{2 R^{2}}\right)^{2}}
$$

$$
\text { j). - } 30 p i b 8
$$

\square
8)

$$
\begin{aligned}
& \text { shopin sha } a=\frac{d V}{d t} \\
& \Delta H^{2}+(\Delta S \cdot \cos \beta)^{2}=\Delta S^{2}
\end{aligned}
$$

P $\mathrm{HCO}, \mathrm{s}_{3} \mathrm{dV}$.

$$
\begin{aligned}
& m g(H+a H)+\frac{m V^{2}}{2}=m y+\frac{m(V+N V)^{2}}{2} \\
& m y d H=m V d V . \quad d V=\frac{g \cdot d H}{V} \\
& d 5
\end{aligned}
$$

$d v^{2}-1 \quad 3383^{2} n$.

$$
\begin{aligned}
& d t=\frac{d S}{V} \\
& d S^{2} \cdot \sin ^{2} \beta=d H^{2} \quad d S=\frac{d H}{\sin \beta} \quad d t=\frac{d H}{\sin \beta \cdot V} \\
& a=\frac{d V}{d t}=\frac{g d H \sin \beta \cdot V}{V \cdot d H}=g \cdot \sin \beta \cdot \\
& \cos \beta=\frac{R-H}{r} \quad \sin \beta=\sqrt{1-\left(\frac{R-H}{r}\right)^{2}} \quad r-n \quad 3 \cdot \quad 3_{3}^{6} \cdot p^{3}=
\end{aligned}
$$

sfo.

$$
a=y \sin \beta \quad a=y \sqrt{1-\left(\frac{R-H}{r}\right)^{2}}
$$

алдп@s № 7
2) 2) 3-pyozan younging

$$
\begin{aligned}
& m y R=m y(R-r)+\frac{m r^{2}}{2} \\
& r^{2}=2 g r . \quad V=\sqrt{2 y r}
\end{aligned}
$$

r hipikgiat bhgohig hipges dathent,

 lighepon zijuant zhantor mgiby.

$$
\cos \alpha=\frac{r}{L} \quad(4,6 \cos \operatorname{sip} 6)
$$

(x). $T-m \cos \cos =m \frac{V^{2}}{r} \cdot \cos h$.

$$
T=m(y+2 y) \cdot \cos 2 .
$$

 poppe yzs. nizaplo ay apol Var, gshentm lajply,

$$
E=f 0 \frac{\vec{c}+\vec{n}}{\vec{t}-\vec{v}}
$$

Ňimennman

 ho V Lahfinn Iupanp).
$t=t_{1}+t_{2}$ ti shl hi-n \quad buml phapling ling
 Dnlomt phn. thá $h_{1}^{\prime}=\frac{g t_{n}^{2}}{h^{2}} \quad t_{2}=\frac{h-h^{\prime}}{C}$

$$
v=g \cdot t_{1} \quad t_{1}=\frac{v}{g} \quad v_{t_{1}}=\sqrt{\frac{2 h}{g}}
$$

$t=t_{1}+t_{2}$

$$
t=\frac{v}{y}+\frac{h-h}{c}=\frac{v}{y}+\frac{h-\frac{g_{1} 2^{2}}{2}}{c}
$$

$$
=\frac{v}{y} \propto \perp \quad t_{n}=\frac{v}{y}
$$

$$
t=\frac{v}{y}+\frac{h-\frac{v^{2}}{x y}}{c} \quad t=\frac{v}{y}+\frac{2 y h-v^{2}}{2 y c}
$$

$$
v^{2}-2 c v+2 y c t-2 y h=0
$$

$$
V=c \pm \sqrt{L^{2}-2 y(c t-2)}
$$

$\theta 6.236 n$) zuhhama, hipzy $\quad V L C . \quad V=c-\sqrt{c^{2}-L y(c t-h)}$

$$
\begin{aligned}
& f=f_{0} \frac{c \mp n}{l \mp v} \quad v=0 . \\
& c-v=\sqrt{c^{2}-2 y c t+2 g h} \\
& f=f_{0} \frac{c}{\sqrt{c^{2}-2 y c t+2 g h}}
\end{aligned}
$$

$$
\begin{aligned}
& f^{2}\left(c^{2}-2 y c t+2 y s\right)=f_{0}^{2} c^{2} \Rightarrow 2 y c t \cdot f^{2}=f^{2}\left(c^{2}+h y h\right)-f_{0}{ }^{2} c^{2} \text {. } \\
& t=-\frac{t_{0}^{2} c^{2}}{2 y c} \cdot \frac{1}{t^{2}}+\frac{c^{2}+2 g h}{2 y c}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{f^{2}}-b_{3} \text {. }
\end{aligned}
$$

ммпəろоऽ@obsozzol

дsдo@s № \quad 「7
13.04.2016/ оु०\%/II/ / $/ 23$

sдm̧sбs №	4	83Ј¢¢๐ №	3

 ммподзпs＠obsozzols

дьдп＠s № 7
sдm®3ธ5 № 4

13．04．2016／g०8／II／／／ 3

339ヶழ๐ №
个
p）．
mugnty of on oņunn.
bul pange 马atore

$$
\begin{aligned}
& t=b \cdot \frac{1}{t^{2}}+a . \\
& b=-\frac{t^{2} c^{2}}{2 y c} \quad a=\frac{c^{2}+2 y y}{2 y c .}
\end{aligned}
$$

$$
f_{0}^{2}=\frac{2 y c \cdot b}{c^{2}} \quad\left(2 \operatorname{mon}^{2} \quad 3^{2} 3+2 a\right) \quad b \approx 3,57 \cdot 10^{6}
$$

$$
\begin{gathered}
2 g h=2 y \cdot c \cdot a-c^{2} \quad h=\cdot \cdot \cdot a-\frac{c^{2}}{2 y} . \\
h \approx 6552 .
\end{gathered}
$$

