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Fréchet space of all orbits . . . . . . . . . . . . . . . . . 324
6.4.2 Construction of a linear central spline algorithm for equa-

tions containing QHO operator in the Fréchet–Hilbert spaces
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Introduction

This monograph presents the theoretical foundations of computational mathemat-
ics in Frechet spaces, which are the closest generalization of Banach spaces. A
Frechet space is complete metrizable locally convex space (LCS). The monograph
presents a unified approach to studying of computational processes in Banach and
Frechet spaces: the study of computational processes considered in Frechet space
is based on the study of computational processes in Banach spaces. Vice versa,
for the study of computational processes in Banach spaces, we use the theory of
Frechet spaces. In particular, attempts at a unified approach are presented in the
study of the theories of best approximation, projective processes, spline algorithms,
and homomorphisms, when the case of Banach spaces is part of the general ap-
proach. Many topological linear spaces of continuous, differentiable or holomor-
phic functions which arise in connection with various problems in analysis and its
applications require a countable number of deviation measurements with respect
to seminorms, which produce Frechet spaces. Therefore, it is a rapidly develop-
ing part of functional analysis and has the important applications in mathematical
physics and quantum mechanics.

Mathematically, this is expressed by representing the Frechet space as the pro-
jective limit of the sequence of (local) Banach spaces associated with these semi-
norms, in which these Banach spaces are connected by various types of reflections
(canonical mappings). These reflections give rise to the great diversity of Frechet
spaces, which ultimately determine their topological, geometrical, and quantitative
properties related to numerical computations.

Computational mathematics in Frechet spaces is the theory of countable mea-
surements theory with respect to countable seminorms. In the case of a Banach
space, this measurement is the only one, and it is done by means of the norm. If
we approximate the element of the Frechet space, then it is necessary to calculate
a countable number of approximations with respect to the seminorms, which is
impossible in reality. Therefore, we approximate this element with respect to the
metric obtained by metrizing the topology generated by the sequence of seminorms
in Frechet space. By metrizing the space, it is possible to reduce countable mea-
surements to a single measurement with respect to the quasinorm of the metric.

9
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Therefore, it is natural that the results of these measurements to be essentially re-
lated to each other. In this case, it is desirable that the best approximation (as well
as the ε-approximation) with respect to this metric in the Fréchet space coincides
with the best approximation (ε-approximation) with respect to some seminorm.

The metrics on a Frechet space were constructed by S. Mazur [100], G. Birkhoff
[18], S. Kakutani [76], 2 norm-like metric G. Albinus [3–5], D. Zarnadze [170,197]
and others. These metrics are discussed in Section 2.5. Of the 7 different metrics,
only the metric constructed by D. Zarnadze (see Section 2.5) has the following
properties: 1. If we construct this metric on a Banach space, then its quasinorm co-
incides with the norm of this space, 2. the best approximation in the Frechet space
with respect to this metric coincides with the best approximation with respect to
some initial seminorm, 3. The Minkowski functional of metric balls is similar to
the initial seminorms, 4. The metric preserves the geometry of the Frechet space.
Moreover, the quasinorm of this metric is easy to calculate, since, unlike other met-
rics, it does not require calculating neither the exact upper bound of an infinite set,
nor summing of infinite series.

In order to study the complex tasks of computational mathematics, it is neces-
sary to have a close relationship between the balls of metrics on the Frechet space
and the balls of semi-norms generating the topology. First of all, for unification
study of approximation problems in Banach and Frechet spaces, it is necessary to
have a metric on the Frechet space, which, if constructed on the Banach space,
should coincide with its norm. It is also desirable that the balls of radius r metric
as in a Banach space can be obtained by multiplying a unit ball of some seminorm
from the sequence generating the topology on this radius. Such metric keeps the
geometry of Frechet space. It was G. Albinus who proposed the construction of a
metric maintenance of the geometry of the Frechet space L2

loc(R).
The quasi-norms |x| = d(x, 0) of the mentioned metrics, in contrast to the

norms ∥x∥ = d(x, 0) of a Banach space, are no longer homogeneous and convex
functional. At best, we can expect quasi-norms to be quasi-convex (their spheres
will be absolutely convex). It is clear that on a non-normed Frechet space it is
impossible to construct a metric with homogeneous quasi-norm. It is not known
whether it is possible to construct a locally homogeneous metric (for any element of
space there will be a numerical interval from which the condition of homogeneity
of the quasi-norm for numbers taken from it will be satisfied). However, it should
be noted that in the case of D. Zarnadze’s metric, the quasi-norm is quasi-convex
and for those elements of space for which |x| ≠ 2n−1, n ∈ N, the local homo-
geneity condition of quasi-norm is fulfilled (see corollary of Theorem 2.5.7). More
accurately, a metric with absolutely convex balls is constructed such that R+ rep-
resents the union of right half-open intervals, so that the balls corresponding to any
two numbers from these intervals are similar to each other. Minkowski functional
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of balls of metric are similar of the original seminorms, i.e. are obtained from
them by multiplying by a correspondingly chosen constant. Additionally, this met-
ric is the simplest available metric and a monotone and quasi-convex quasinorm
corresponds to it. These metric keeps the maintenance of the geometry of Frechet
space.

“In the Banach case the basis of zero neighborhoods can be obtained as multi-
ples of the unit ball. Therefore, the geometry of the unit ball is crucial in Banach
space theory. In a Frechet space, however, the relation between different neigh-
borhoods of zero is, in general, more important than in the local Banach spaces.
This is the reason why the properties of the linking maps between the local Banach
spaces are crucial in the theory of Frechet spaces” [21]. As noted above, contrary
to this view, when studying best approximation problems the geometry of the unit
ball of seminorms is also very crucial.

The problem of computing the ε-approximation of the solution operator with
respect to the constructed metric is related to the problem of computing the ε-
approximation with some seminorm. The abstract generalization of the ε-approxi-
mation was also discussed in the monographs ( [158], pp. 25-26, [157], Section
3.2). The properties of the metric allowed us to define spline, central algorithms in
the works [163, 167, 168, 170, 208] in the case when the solution operator, in con-
trast to the classical approach, acts between Fréchet spaces. This became possible
by generalizing the linear problems studied in [158] to the case when not a single
set of problem elements is considered, but their non-decreasing sequence [166].
We metrize the topology arising from this sequence with our metric. The result-
ing quasinorm is a generalized Minkowski functional, which acts as an analogue
of the Minkowski functional of the set of the problem elements [167]. This ap-
proach allowed us to study problems that do not fit into the framework of Banach
spaces and have not been considered before. In particular, classical equations with
unbounded operators (QHO, Schrodinger, Tricomi, Lagrange, Legendre, Laplace-
Beltram and other differential and integral equations) considered in Hilbert spaces
are transferred to the Hilbert space of finite n-orbits and the Fréchet-Hilbert space
of all orbits, where completely new phenomena related to infinite measurements
are described (see Chapters 1, 4-6 of the monograph).

In classic monographs dedicated to Functional analysis and locally convex
spaces, the Frechet spaces occupy an important place. To the theoretical issues
of the theory of Frechet spaces in recent years have been devoted books of C. T. J.
Dodson, G. Galanis, E. Vassiliou [44], D. Vogt [181], A. Kriegl [88], B. Dierolf
[35]. The present monograph is an attempt to analyze the specificity of the above-
mentioned computational processes in order to further their practical application.

Unlike Banach space, a (non-normable) Frechet space does not have absolutely
convex and bounded zero neighborhoods. Furthermore, the strong dual to a Frechet
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space is normable if and only if the initial space is also normable. Strong dual to
Frechet spaces are nonmetrizable (DF) spaces [65]. Therefore, the tasks of metriza-
tion, topological and geometric properties, best approximation theory and con-
struction of algorithms of approximation theory in Frechet spaces became related
to the study of properties of non-metrizable locally convex spaces. This connection
became particularly emphasized in connection with the development of the the-
ory of strict inductive limits of sequences of Banach, Hilbert, and Frechet spaces,
and it is discussed in Chapter 2. The foundations of this theory were investigated
by J. Dieudonne and L. Schwartz’s works regarding the representation of topolo-
gies of nonmetrizable spaces of basic and generalized functions [43]. They posed
problems, most of which were solved by A. Grothendieck, also by S. Dierolf [35]
and D. Zarnadze. Strictly distinguished Frechet spaces were introduced, as the
spaces whose strong dual space can be represented as a strict inductive limit of
sequences of Banach spaces [193]. The term “strictly distinguished LCS” is analo-
gous to A. Grothendieck’s term “distinguished LCS”. It should be especially noted
that the question of investigation of Frechet spaces, the strong dual of which are
strict inductive limits, was mentioned in the list of unsolved problems at the end
of the work [43]. Subsequently, they say that all these problems were solved by
A. Grothendieck [65], who considered (distinguished) Frechet spaces whose strong
dual are the inductive limits of a sequence of Banach spaces. But in [65], the just
named strictly distinguished Frechet spaces (quojections), which are intensively
studied in Sections 2.2–2.4, were not considered.

Later, in studies carried out in the works of European mathematicians, instead
of the term “strictly distinguished” different names: “strictly regular”, “quojec-
tion” were used. In what follows instead of term “strictly regular”, we will use
the term “quojection” for Frechet spaces, which can be represented as a strict pro-
jective limit of a sequence of Banach spaces and whose strong dual space can be
represented as a strict inductive limit of the sequence of Banach spaces. Because
we have used the term (strictly regular) in our earlier works, we sometimes refer to
them in parentheses for clarity. The results in this book will be formulated corre-
sponding to this remark. We also note that based on the results in [14] and [199],
strictly distinguished Fréchet spaces are a wider class than strictly regular Fréchet
spaces, and it coincides with the class of pre-quojections (see Remark 2.3.1).

Quojections (Strictly regular Frechet spaces) appeared in our papers in connec-
tion with the problem posed by S. Mazur ([82], p. 366), to which the final answer
in the case of Banach space was given by R. James [74]: Banach space is reflexive
if and only if every continuous functional attains its supremum on the unit ball. In
approximative form this means that Banach space is reflexive if and only if every
hypersubspace is proximal. Let’s give the necessary definitions:

Let (E, d) be a linear metric space, G be some (non-empty) subset in E and
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x ∈ E. Moreover, under the linear metric space (E, d) we understand the real
or a complex linear space whose dimension is greater than one and on which a
translation-invariant metric d is defined so that linear operations are continuous.
We need to find such an element g0 ∈ G for which the following equality holds
d(x,G) = inf{d(x, g); g ∈ G} = d(x, g0). The quantity d(x,G) is called the best
approximation of the element x through the elements of the set G, or the distance
from the element x to the set G, as well the approximation error of element x by
elements of set G. The element g0 is called the element of the best approximation
for the element x in the set G. A subset G is called proximal if for every x ∈ E
in G there is at least one element of the best approximation. A subset G has the
uniqueness property if for each x ∈ E in G there is at most one element of the
best approximation. A subset G is called Chebyshev if it is proximal and has the
uniqueness property. When solving best approximation problems, as well as any
extremal problem, the following 5 questions arise: existence, uniqueness, estab-
lishment of characteristic properties of the best approximation element, calculation
of the best approximation d(x,G) and construction of an algorithm for finding the
best approximation element. These questions were first posed by P. L. Chebyshev
in the Banach space of continuous function on the segment with the uniform norm.
The theory of best approximation in Banach spaces is presented in the monograph
of I. Singer [148], as well as in the review articles of A. L. Garkavi [62] and V. M.
Tikhomirov [155].

The monograph is in fact a continuation of monograph [158], in which the
problem posed there ( [158], p. 25) is studied with a generalized solution operator
in Frechet spaces with the metric constructed by us. It contains original results
that arose in the study of the problems of best approximation and ε-approximation
in Frechet spaces. The spline and central algorithms taken out in the title of the
monograph indicate the simplest and most accurate (strongly optimal) algorithms
in Frechet spaces.

Approximation theories of continuous functions in Banach space C[a, b] with
Chebyshev norm and in Frechet space on open interval C]a, b[ with compact con-
vergence topology, differ significantly. In particular, despite the fact that the set
of polynomials in both of these spaces is everywhere dense, in the space C]a, b[
there is no analogue of Bernstein’s theorem [5]. The generalization of the main
results of Chebyshev’s theory on space with the metric constructed by D. Zarnadze
is given in the paper [206]. The best approximation of a continuous function on an
open interval with respect to a metric coincides with an equal best approximation
of this continuous function on some segment, except for some values. The best
approximation element has the analogous property (see Examples 3.1.1–3.1.2 in
Section 3.1).

One of the most important results of the theory of best approximations in Ba-
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nach spaces is above mentioned James’ theorem [73, 74], which has been estab-
lished since the early 60s (James’ theorem is a)⇔b), and the rest are its conse-
quences): for a Banach space E the following statements are equivalent: a) The
space E is reflexive. b) Every linear continuous functional x′ ∈ E′ attains its norm
on the unit ball of the space E. c) Every closed hypersubspace (i.e. a closed sub-
space of the codimension 1) of the space E is proximal, d) The space E has the
proximality property, i.e. every closed subspace of E is proximal. e) Restriction
of any linear continuous functional x′ ∈ E′ on each closed subspace attains its
norm on the unit ball of this subspace. f) In the space E = F1 with the unit ball
F there exists an interpolation spline for non-adaptive information of cardinality 1.
g) In the space E = F1 with the unit ball F there exists an interpolation spline for
non-adaptive information of any cardinality.

Jame’s theorem is presented in such a way (Theorem 1.3.1 is really a)⇔e)) that
it becomes necessary and sufficient condition for the existence of an interpolation
spline with non- adaptive information cardinalities 1. The existence of splines
which depend on the existence of the best approximations in subspaces of finite
codimension, makes it possible to construct spline algorithms, which in many cases
turn out to be linear, optimal and even central ones (see Chapter one). Important
for this are the concepts of the Chebyshev center and the Chebyshev radius of a the
set which were introduced by A. L. Garkavi [56, 57].

In the case of Frechet spaces, the problem of generalization of James’s theorem
was considered in works [3–5,53,185,193,198]. It turns out that some propositions
are no longer fair in the case of Frechet spaces. These issues are studied in the
third chapter of the monograph for various metrics in connection with the existence
of splines and spline algorithms. These issues were connected on solvability of
the above mentioned problems of J. Dieudonne and L. Schwartz. In particular,
in the case of proximality of all hypersubspaces of the Frechet space, that is, in
the case of non-adaptive information of cardinality 1, a necessary and sufficient
conditions for the existence of a spline are: the total reflexivity of the Frechet space
and representation of its strong dual space as a strict inductive limit of a sequence
of reflective Banach spaces. In such case Frechet space is a reflexive quojection.
For the case of Frechet spaces is used to obtain necessary and sufficient conditions
of existence spline for non-adaptive information of cardinality 1 (Theorems 3.2.1
and 3.2.2).

Remark 1. As we note above, if we construct our metric on a Banach space, then
its quasinorm will coincide with the norm of a Banach space, and this property
characterizes only it among the existing metrics. This allows us to extend existing
results for Banach spaces to Frechet spaces using this metric, and to extend some
existing norm-related notions for Banach spaces to Frechet spaces using metrics
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without changing the term. In our previous works we used the terms: generalized
spline in Frechet space, generalized spline algorithm in Frechet space, generalized
least squares method in Frechet space, generalized Ritz method in Frechet space,
generalized central algorithm in Frechet space. Due to the known property of the
metric we have constructed, we can mean that we are talking about a spline, spline
algorithm, least squares method, Ritz method, about a central algorithm in Frechet
spaces without the adjective “generalized”.

The case of the proximality of certain classes of subspaces of Frechet spaces
E, as well as the conditions for the existence of splines in the case of non-adaptive
information of finite cardinality, were described in terms of representing them and
their strong dual spaces as strict projective and strict inductive limits of its strong
dual space. As well, in the case of proximality of all subspaces of the Frechet space,
that is, in the case of non-adaptive information of the arbitrary finite cardinality, a
necessary and sufficient conditions are: the quojectiness of Frechet space and of
its any quotient spaces, and representation of its strong dual space and of any of its
subspaces as a strict inductive limit of a sequence of reflexive Banach spaces. This
is the part of general fourth problem of J. Dieudonne and L. Schwartz, negatively
solved by A.Grothendieck. We obtain the representation of such Frechet space as
B × ω, where ω is the space of real or complex sequences RN (CN ) (Corollary 2,
Theorem 3.4.1).

Remark 2. Frechet–Hilbert spaces were introduced [194], as the spaces which can
be represented as a strict projective limit of sequences of Hilbert spaces, and their
strong dual space as a strict inductive limit of the same sequence of Hilbert spaces
[201]. Representations of the topologies of basic and generalized function spaces
are obtained, in which Frechet–Hilbert spaces and its strong dual spaces appear
(see Section 2.6). This term was used in many works, in particular, [7,45,127,131,
171]. But in the work [131] the following is written: “The fundamental system of
seminorms is not at all uniquely determined by the topology; any choice of such a
collection of seminorms is called grading. A graded Frechet space is one equipped
with a fixed choice of grading. Graded subspaces and graded quotient spaces are
equipped with the induced gradings. A seminorm ∥ · ∥ on E is called hilbertian
if there is a semi-inner product (·, ·) on E such that ∥x∥ = (x, x), for all x ∈ E.
A Frechet–Hilbert space is a Frechet space which admits a grading consisting of
hilbertian semi-norms, a graded Frechet–Hilbert space is one equipped with such
a grading”.

According this definition nuclear Frechet spaces and Frechet spaces with con-
tinuous hilbertian norms are graded Frechet-Hilbert spaces. In what follows, we
will use the term “Frechet–Hilbert space” in this sense without the word “graded”.

Frechet spaces, which can be represented as a strict projective limit of a se-
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quence of Hilbert spaces, in this book we call strict Frechet-Hilbert spaces. The
results from paper [201] in this book will be formulated corresponding to this Re-
mark 2.

Chapter 1 provides definitions of central, optimal, spline, and linear algorithms
for a linear problem. These definitions are taken from [158]. Such algorithms in
connection with various tasks were studied in the works of A. Sard, S. M. Nikolskij,
J. F. Traub, H. Wozhnyakowski, G. W. Wasilkowski, N. S. Bakhvalov, S. A. Smo-
lyak, K. Yu. Osipenko, V. V. Ivanov, A. G. Werschultz, C. A. Michelli, E. W. Packel,
T. J. Rivlin, M. A. Kon, R. Tempo and others. Fundamental research on splines
were carried out in the works of N. P. Korneychuk, V. M.Tikhomirov, S. B. Stechkin,
A. A. Zensykbaev, D. Ugulava and others.

In Section 1.1, the definition of central, optimal algorithms for non-adaptive
information of finite cardinality in Banach spaces of worst case error calculation
are defined. Some results from the works of Garkavi [56] and [57] concerning the
concept and existence of a Chebyshev center are given.

In Section 1.2, linear, optimal, spline and central algorithms for solution op-
erators are defined and the results of Smoliak, Packel about existence of linear
optimal algorithm are given. These notions were extended for equation Au = f ,
where A : D(A) ⊆ B → B is operator acting in Banach space. An example con-
firming that the classical method of integrating differentiable functions is a spline
algorithm is given. It is proved that the Ritz algorithm in energetic spaces under
some conditions is spline and central algorithm. It is also proved that the least
squares method is a spline algorithm.

In Section 1.3, The conditions for the existence of splines in the case of infor-
mation of cardinality 1 in Banach spaces are given by James’s theorem and also
by the Bishop–Phelps theorem. The theory of best approximation in subspaces of
finite co-dimension, i.e. finite defect, in classical normed spaces is covered quite
fully in the review article by A. L. Garkavi [62]. The existence of Chebyshev sub-
spaces of a finite defect in the space C(Q) (depending on the topological structure
of Q) was studied by Phelps [122, 123], A. L. Garkavi [61].

In Section 1.4, n-orbit for linear, symmetric, positive definite operator with a
discrete spectrum and dense image A at the point x ∈ H is defined as a finite
sequence orbn(A, x) := (x,Ax, . . . , Anx), n ∈ N0. The space of such elements
is denoted by D(An) and call the space of finite n-orbits. If A is a closed operator,
then D(An) turns into a Hilbert space, where H is an infinite-dimensional (real or
complex) separable Hilbert space, using the inner product

⟨orbn(A, x), orbn(A, y)⟩n := (x, y) + (Ax,Ay) + · · ·+ (Anx,Any), n ∈ N0.

The equation Au = f for the space D(An) takes the form An(orbn(A, u)) =
orbn(A, f), where An : D(An) → D(An) is the operator defined by equality



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 17

An(orbn(A, u)) = orbn(A,Au). We call An as n-orbital operator, which corre-
sponds to the operatorA, andAn(orbn(A, u)) = orbn(A, f) is called the n-orbital
equation in the space D(An). The left inverse Sn : Hn+1 → Hn+1 to the operator
An, i.e. the solution operator of the n-orbital equation is defined by the equality
Sn(orbn(A,Ax)) = orbn(A, x). In this section, a spline algorithm for the approx-
imate solution of the n-orbital equation for non-adaptive information in the space
D(An) for the QHO, Schrodinger operator, for well-known differential operator,
Laplace-Beltrami operator δ, are built.

In Section 1.4, for a separable Hilbert space H and a linear symmetric opera-
tor A : D(A) ⊂ H → H with discrete spectrum and dense image, an n-orbit at
a point x ∈ H is defined as a finite sequence orbn(A, x) := (x,Ax, . . . , Anx),
n ∈ N0. The space of such elements is denoted by D(An) and is called the
space of finite n-orbits. The equation Au = f in the space D(An) takes the
form An orbn(A, u) = orbn(A, f), where An : D(An) ⊂ Hn+1 → Hn+1 is the
operator defined by the equality An(orbn(A, u)) = orbn(A,Au). An is called the
n-orbital operator corresponding to the operator A. In this section, a spline central
algorithm for an approximate solution of the n-orbital equation in the spaceD(An)
is constructed. Applications are given for equations containing QHO, Schrödinger
operators, Laplace-Beltrami δ, etc.

In Section 1.5, the equation Ku = f is studied, where K : H → H is com-
pact, injective, self-adjoint, positive operator. The n-orbit orbn(K

−1, x) :=
(x,K−1x, . . . ,K−nx) (n ∈ N) for the left inverse on the image K(H) opera-
tor K−1 at the point x is considered. The operator K−1 is injective, selfadjoint,
positive and is not continuous. The space D(K−n) is defined analogously and is a
subspace of Hn+1. This equation Ku = f in the space D(K−n) has the follow-
ing form: Kn orbn(K

−1, u) = orbn(K
−1, f), where Kn : D(Kn) ⊂ Hn+1 →

Hn+1 is defined by the equality Kn(u,K
−1u, . . . ,K−nu) = (Ku, u,K−1u, . . . ,

K−n+1u). This equation, generally speaking, is ill-posed, i.e., for this problem the
solution operator Sn = K−1n is unbounded. The operator Kn is symmetric and
positive in the space D(K−n). We call Kn the n-orbital operator corresponding to
the operator K, and Kn(orbn(K

−1, u)) = orbn(K
−1, f) the n-orbital equation.

For an approximate solution of this n-orbital equation in the Hilbert space of finite
n-orbits D(K−n), a spline algorithm is constructed and an application is given for
an approximate solution of the n-orbital equation corresponding to integral equa-
tions of the first kind.

In Section 1.6, the equation Au = f is studied, where A : H → M is an
operator acting from Hilbert space H to Hilbert space M and having a singular
value decomposition (SVD) with respect to the orthogonal sequences ψk and φk.
The operator K = A∗A is self-adjoint, having positive eigenvalues, which cor-
respond to the eigenvectors φk and we use the results of Section 1.5 for solution
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of the equation A∗Au = A∗f in the space D((A∗A)−n). We construct a spline
algorithm for the approximate solution of equation in the space D((A∗A)−n).

At the end of Chapter 1, in Section 1.7, the results of Section 1.6 are used for
Radon transform that admits SVD. The Radon operator R of a function f defined
on a p-dimensional Euclidean space Rp (p ≥ 2) maps integrals of f over all hyper-
planes of Rp. The main task of computed tomography is to reconstruct a function
from its integrals over hypersubspaces.

Chapter 2 (Sections 2.1–2.2) provides basic definitions and facts from the the-
ory of locally convex spaces and the theorem on the characterization of strict in-
ductive limits of sequence of Banach spaces (strict (LB)-spaces) is proved.

In Section 2.3, the definitions and characteristics of those Frechet spaces are
given the strong dual of which are strict (LB)-spaces (according to A. Grothendieck
[65], the Frechet space is distinguished if its strong dual spaces are (LB)-spaces).
In the work of D. N. Zarnadze [193] they were called strictly distinguished Frechet
spaces. In the translations to English of earlier works of D. N. Zarnadze [194–197]
such Frechet spaces are considered whose strong duals are strict inductive limits of
canonical sequences of Banach spaces spanned on the polar of neighborhoods of
zero.

They were called strictly regular Frechet spaces. It was proved that the class of
strictly regular Frechet spaces coincides with a quojection, which was introduced
by S. Bellenot and E. Dubinsky [15], as well with the class to relative completeB0-
spaces introduced by V. Slovikowski and V. Zavodowski [149] and with the class
of Frechet spaces representable in the form of a strict projective limit sequences
of Banach spaces. These spaces have been intensively studied since the early
80s and the term “quojection” became widespread for them. Although, the term
“strictly regular Frechet space” introduced by us and the results we obtained about
these spaces were repeatedly mentioned in works of S. Dierolf [36], S. Dierolf,
V. B. Moscatelli [38], V. B. Moscatelli [111], J. Bonet [20], J. Bonet, J. Taski-
nen [27], J. Bonet, M. Maestre, V. B. Moscatelli, G. Metafune, D. Vogt [25], etc.
Due to what was said in this monograph the term quojection will be used. In the
work [14], E. Behrends, S. Dierolf and P. Harmand (see also V. B. Moscatelli [111])
showed that the strong dual of a Frechet space can be strict (LB)-space even in the
case when Frechet space is not a quojection.

A. Grothendieck [65] proved that the strong dual of a strict (LB)-space is distin-
guished Frechet space. This result of A. Grothendieck is strengthened in Section
2.3, namely, it is proved that strong dual of a strict (LB)-space is quojection. It
follows from this that the strong second dual to Frechet space, the strong dual of
which is strict (LB)-space is a quojection. In the paper [103], the Frechet spaces
whose strong second dual are quojections, were called pre-quojections. In [179],
it was proved that the strong dual of a pre-quojection is a strict (LB)-space, i.e. a
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conversion of our above-mentioned result is obtained. That’s why, unlike [199],
we will use the term “pre-quojection” to denote the Frechet space whose strong
dual is a strict (LB)-space in spite of the fact, that this space coincides the strict
distinguished Frechet space. Various examples of quojection and specifications of
the results obtained are given.

In Section 2.4, we consider strict Frechet–Hilbert spaces, i.e. quojections, rep-
resentable as a strict projective limit sequences of Hilbert spaces. These spaces
appeared in [194] when representing the topology of the space of generalized func-
tions, as well as in the work of E. Kramar [84], when generalizing the concept of
a self-adjoint operator in Frechet spaces (in [84] this space is called the H-Frechet
space). In this section representations of Frechet-Hilbert spaces in the form of a
strict projective limit of the sequence of its complemented subspaces, as well as
representation of its strong dual space in the form of a strict inductive limit of the
same sequence of its complemented subspaces are given.

It is also proved that Frechet–Hilbert spaces are characterized in the class of
Frechet spaces by that every subspace of type Ker p, where p is a continuous semi-
norm that has topological complement. Subspaces and quotient spaces of Frechet–
Hilbert spaces and also their strongly conjugate space are studied. A sufficient
condition is given in order that a closed subspace of the Frechet–Hilbert space
had an orthogonal complement. It is proved that every finite-dimensional (one-
dimensional) subspace of Frechet–Hilbert space has an orthogonal complement if
and only if it is isomorphic to the Hilbert space.

In Section 2.5, a metric with the above properties is constructed on a metrizable
LCS.

In Section 2.6, we study spaces that can be represented as strong inductive limit
of sequence of Frechet spaces. We construct a metrizable locally convex topology
on strong (LF)-space, which is weaker than initial and induces the original topology
on each prelimit space. Various representations of strong topologies are given for
(LF)-spaces and their strongly dual spaces. In particular, representations of the
topology of basic and generalized functions spaces D and D′ are given. In this
case, the space D′ is represented as the inductive limit of an uncountable family
of Frechet-Hilbert spaces. Next, the complete countably normed Sobolev spaces
of infinite order are defined. They are different from the Sobolev spaces of infinite
order, which were introduced by Yu. A. Dubinsky [46]. Embedding Theorems of
these spaces in the finite order Sobolev spaces are proved.

In Section 2.7, we study homomorphisms, i.e. linear, continuous and open
operators between locally convex spaces E and F and their adjoint operators. It
is investigated the stability problem of homomorphisms when changing the topol-
ogy of the spaces E and F . This problem arose in Section 2.3 of Chapter 2 when
researching the issue of existence of splines. Similar problems often arise in appli-
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cations and they have been intensively studied since S.Banach. The most impor-
tant results were obtained in the works of J. Dieudonne [42], J. Dieudonne and L.
Schwartz [43], A. Grothendieck [66], G. Köthe [80,83], F. Browder [29], V. S. Re-
tah [141], V. P. Palamodov [119], K. Floret and V. B. Moscatelli [52], J. Bonet
and J. A. Conejero [22], B. Dierolf [35]. In the papers [40, 204], a generalization
of the well-known theorem of A. Grothendieck on homomorphism is given to the
case of topologies that are not compatible with the dualities of the spaces E and F
(Theorem 2.7.1).

Using this generalized theorem, we obtain necessary and sufficient conditions
for a weak homomorphism to also be a homomorphism, if the spaces E and F
are endowed with the strong topologies, Mackey topologies, topologies of strong
precompact convergence and associated bornological topologies and others. Nec-
essary and sufficient conditions are also obtained for the adjoint (second adjoint)
mapping with respect to the weakly homomorphism to be again a homomorphism,
when dual (bidual) spaces are endowed with different known topologies. There
classes of pairs of locally convex spaces such that weak homomorphisms between
them are homomorphisms in various topologies of these spaces are found. Also,
classes of pairs of locally convex spaces, adjoint (second adjoint) to homomor-
phisms between which are again homomorphisms in various topologies of dual
(second dual) spaces are found there. Applications of these results are given to
known homomorphisms and open mappings. In particular, our results are applied
to obtain the sufficient condition for openness and strong openness of a weakly
open operator with respect to the research of F. Browder [29].

In Chapter 3, linear problem with a sequence of problem elements sets is con-
sidered. Due to the properties of the metric constructed in Section 2.5, in the case
of a constant sequence of problem elements, this problem coincides with the linear
problem from [158].

The study of the question whether these properties hold for Frechet spaces, is
much more closely related to the study of topological and geometric properties of
these spaces. To the generalization of this Theorem in the approximation form the
works of K. Floret and M. Wriedt [53] and M. Wriedt [185] are devoted. Namely, in
[53], it was shown that the famous James’s Theorem is no longer valid for Frechet
spaces. More precisely, an example of a reflexive, but not totally reflexive space
of the Frechet-Montel type was built, in which for any norm-like metric there is
non-proximal closed hypersubspace.

In [198], it was proved that in Frechet spaces from the proximality of all closed
hypersubspaces, generally speaking, the proximality of all non-normed closed sub-
spaces does not follow. In [3] (see also [5] and [4]), it was proved that the Frechet
nuclear space of all number sequences ω = RN (CN ) have the proximality prop-
erty. The proximality of closed hypersubspaces in Frechet spaces with respect
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norm-like metrics has been studied in [53, 185, 193].
In Section 3.1, the definition of a interpolation spline and a spline algorithm

is given. A generalization of James’ theorem for the case of Frechet spaces is
obtained: the exact class of Frechet spaces for which reflexivity is equivalent to the
proximality of all closed hyperspaces is quojectivity (strictly regularity).

In Section 3.2, James’ theorem for Frechet spaces is used to obtain necessary
and sufficient conditions for the existence spline in the case of information of car-
dinality 1 (Theorems 3.2.1 and 3.2.2). In particular, it is proved that for the known
norm-like and (2.5.4) metrics, this is equivalent to the proximality of all closed
hypersubspaces, which in turn is equivalent to their strong proximality. From the
necessary and sufficient conditions we have obtained, it follows that one of such
topological conditions is reflexivity and quojectivity, i.e., that the space strong ad-
joint to a Frechet space be a reflexive strict (LB)-space. The examples of projective
limits sequences of reflexive Banach spaces that are not quojections and therefore
have non-proximal hypersubspaces are given.

In Section 3.3, there is also a generalization of the Bishop–Phelps theorem to
the case of quejections and it is studied the problem of proximality and approximate
compactness of finite-dimensional subspaces in Frechet spaces with respect to the
metric (2.5.4).

In Section 3.4, necessary and sufficient conditions are also given in order that in
Frechet space every non-normed closed subspace would be proximal with respect
to the mentioned metrics. From this we see that the problem of finding of reflexive
quejection having a non-proximal non-normable closed subspace is equivalent to
the finding of a reflexive strong (LB)-space, some quotient space of which is not a
strong (LB)-space, that is, parts of problem 3 posed by Dieudonné and L. Schwartz
in [43], which was solved negatively by A. Grothendieck in [65]. It is proven also
that the Frechet space has the proximality property if and only if it is isomorphic
to the space X × ω, where X is a reflexive Banach space, and ω is the nuclear
space of all real (complex) number sequences RN (CN ). It follows from this that
in the Frechet space X ×ω a spline exists for any non-adaptive information of any
cardinality.

In Section 3.5, conditions for the existence of interpolation splines in the space
of differentiable locally integrable functions in a square are established.

In the Chapter 4 of monograph generalization of the method of least squares
and Ritz method for operator equation in the Frechet–Hilbert spaces is carried out.

The need for such generalizations is due to the fact that many differential and
integral operators known in Hilbert spaces have been extended in spaces of gener-
alized functions [63, 64, 194]. Let us take a closer look at this issue:

In the 50s of the 20th century, L. Schwartz carried out a rigorous mathemati-
cal substantiation of the theory of generalized functions, the foundations of which
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were laid in the works of P. Dirac and S. L. Sobolev. The results presented in this
justification were based on the theory of strict (LF)-spaces previously created by J.
Dieudonne and L. Schwartz. Namely, the space of compactly supported infinitely
differentiable functions D was represented as a strict inductive limit of a sequence
of Frechet spaces, and the space of distributions D′ was defined as its dual space.
It should be especially noted that A. Grothendieck [65] formulated the axioms of
strong dual spaces to Frechet spaces ((DF)-spaces) and found representations of
strong dual spaces to the space of strict (LF)-spaces (see Section 2.6).

One of the main achievements of the theory of generalized functions was that
differential and integral operators were made free from the narrow framework of
Banach and Hilbert spaces, in which they were not continuous, and in the space
of generalized functions these operators became continuous. However, the above-
mentioned spaces of basic and generalized functions turned out to be too com-
plicated for applications because of the non-metrizability of these spaces. In this
regard, we studied the topologies of the spaces D and D′ (see Section 2.6) and
obtained their various representations, in which, on the one hand, it is emphasized
the importance of nuclear and countable Hilbert spaces and their strong dual (LH)-
spaces (Theorems 2.6.1–2.6.5). On the other hand, when representing the topology
of these spaces, important classes of strict Frechet–Hilbert spaces and their strong
dual strict (LH)-spaces appeared (see Section 2.4).

These spaces in many cases play the same role as the spacesD andD′. Namely,
for the continuity of the above operators in many practically important cases, it is
sufficient to consider Frechet spaces and their strong dual spaces (Section 4.3),
in which these operators are continuous. In particular, for an unbounded self-
adjoint operator A with discrete spectrum in a Hilbert space H , we consider the
Frechet space (of test functions) D(A∞) and its strong dual space (of generalized
functions) D(A∞)′β for which the restriction of the operator A to D(A∞) and the
extension of A to D(A∞)′β are continuous (Theorem 4.4.3). The appearance and
importance of studying these spaces was due to the fact that many important spaces
of functions (continuous, infinitely differentiable, analytic) on open domains, mea-
sures on locally compact spaces countable at infinity, regular generalized functions,
as well as spaces with a countable number of restrictions near the boundary or at
infinity (Schwartz spaces, Vladimirov algebras) in their natural topology belong to
the indicated classes of Frechet spaces and their strong dual spaces. After intensive
research by many famous mathematicians, various Frechet spaces of test and their
strongly dual spaces of generalized functions emerged, in which unbounded oper-
ators already become continuous. Consequently, Frechet spaces and their strong
dual spaces turned out to be a natural area for the action of differential and integral
operators and the consideration of the corresponding operator equations.

In this regard, the need naturally arose to develop methods for approximate
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solutions of equations containing such operators in Frechet spaces. At a certain
stage of development of theoretical research in the field of locally convex spaces,
back in the middle of the 20th century, the idea was put forward of the develop-
ment of computational mathematics in non-normed Frechet spaces and the use of
the advantages that non-normed spaces have over Banach spaces [136]. On the
other hand, the construction of approximate methods for solving operator equa-
tions in Frechet spaces was stimulated by practical problems in CT and medicine,
which required solving operator equations in Frechet spaces. Namely, according
to the L. Schwartz Theorem, the well-known Radon transform is a linear operator
between Schwarz spaces, and the task of CT is inversion this operator [114]. The
motivation for the development of computational mathematics in Frechet spaces
was the Schwartz theorem on the actions of the Radon operator in Schwartz spaces.
The problem of computational mathematics requires the construction of a compu-
tational algorithm for the inverse Radon operator.

It should be noted that the simplified Schwartz problem of computerized to-
mography that was decided by A. Cormack [32] in the 60s of the last century and
found application in X-ray diagnostics (see Section 1.7 and Section 5.3). In 1979,
A. Cormack and G. Hounsfield “for the development of computer tomography”
were awarded the Nobel Prize.

In the monograph Z. Presdorff [134] many problems are formulated in terms
of metric spaces like the Schwartz problem of CT, but meaningful results regard-
ing approximate methods using the technique of Frechet spaces were not obtained.
Z. Presdorff [134] Studied approximate methods for solving operator equations in
countable Hilbert spaces by reducing them to a fixed Hilbert space. It consists in
replacing an equation in Frechet spaces with “the same equation” in some fixed
Hilbert space, but these equations are actually different from each other [134]. The
equations we considered in Frechet space (in the projective limit of the sequence
of Banach spaces) are replaced by projection equations in some (prelimit) Banach
spaces from the specified sequence, the numbers of which depend on the dimen-
sion of the approximating subspaces. By increasing the dimension of subspaces,
the space numbers, generally speaking, also increase and thus new computational
processes arise that are not covered by the framework of Banach spaces and have
not been considered until now.

Therefore, since the 60s of the last century, the search for methods for the ap-
proximate solution of the given equations in Frechet space has been intensively
carried out. During this tame it became clear that the development of the theory
of approximation methods in non-normed Frechet spaces should be based on the
development of the best approximation theory. Indeed, the results obtained when
solving problems of best approximations in various Banach function spaces un-
derlie many computational algorithms of the projection method (spline, Ritz, least
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squares) for the approximate solution of well-posed and especially ill-posed prob-
lems of mathematical physics. In this regard, it should be noted that the best ap-
proximate solutions, quasi-solutions, and pseudo-solutions of ill-posed problems
are elements of the best approximations in some subsets. Theorems 1.4.1–1.4.2
show that the theory of spline algorithms with non-adaptive information is nothing
other than the theory of best approximation in subspaces of finite codimension and
is the most important method for constructing central algorithms in Banach and
Hilbert spaces [158].

In this monograph, the results of the theory of best approximation in Frechet
spaces are used to create the foundations of the theory of a spline with non-adaptive
information and a spline algorithm, which under some conditions are central (The-
orems 1.4.1 and 4.4.5). They are also used to generalize known algorithms of
the projection method (Ritz, least squares) and to approximate solution of various
classes of operator equations in Frechet spaces (Theorem 4.3.4). Construction of
the foundations of the theory of a spline algorithm with non-adaptive information in
Frechet spaces, i.e. the study of the best approximations in subspaces of finite co-
dimension in these spaces became possible after generalizing and strengthening the
above-mentioned results of J. Dieudonne, L. Schwartz, and A. Grothendieck about
quojection, whose strong dual is strict inductive limits of a sequence of Hilbert and
Banach spaces. The generalization of spline algorithm and least squares method is
achieved by developing the results of the theory of best approximations in the finite
co-dimensional and finite-dimensional subspaces of the Frechet–Hilbert spaces.

This is precisely what the generalizations made in Chapter 3 concerning linear
problems are devoted to, as well as the extensions of the least squares and Ritz
methods implemented in Chapter 4.

In Section 4.1, method of least squares is extended to equation with an operator
between Frechet–Hilbert spaces. Approximate solutions are obtained by minimiz-
ing the discrepancy relative to the metric, which in the Hilbert space case coincides
with the metric generated by inner product. The uniqueness and convergence of a
sequence approximate solutions to exact solution of equation is proved. A concrete
realization of the obtained results is given in the case of continuously invertible and
so-called tamely invertible operators mapping the Frechet spaces of power series of
finite and infinite types, the Frechet spaces of rapidly decreasing sequences and the
Frechet spaces of analytic functions defined on Stein’s manifold into themselves.

In Section 4.2, a generalization of the Ritz method and the concept of sym-
metric and self-adjoint operators in Frechet–Hilbert space are given. The theory
of symmetric operators in Hilbert spaces is most fully expounded in the mono-
graphs of M. Reed and B. Simon [138, 139], K. Iosida [71], F. Riesz and B. Sz.-
Nagy [143], K. Moren [109], W. Rudin [146]. At the same time, the theories of
bounded and unbounded operators on which the mathematical apparatus of QM is



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 25

based differ significantly from each other. The foundations of this theory were first
outlined in von Neumann’s monograph [182]. On the other hand, the results of this
theory go far beyond the needs of QM and they are widely used in various fields
of mathematics and, in particular, mathematical physics and quantum mechanics.
The development of the theory of generalized functions and, together with it, the
theory of locally convex spaces made it possible to introduce various definitions of
symmetric operators in some locally convex spaces in the works of N. N. Vakhania
and V. I. Tarieladze [174] and E. Kramar [84].

Moreover, in [84] definitions of the adjoint to a continuous operator and a
continuous self-adjoint operator were given in the case of strict Frechet–Hilbert
spaces, and in [85] a theorem on the spectral representation of such a self-adjoint
operator was proved. In this section, an extension of the concept of a self-adjoint
operator without the requirement of continuity is given and an extension to the
Frechet–Hilbert spaces of a number of basic theorems of the theory of self-adjoint
operators is proved. In particular, the latter spaces contain important classes of
countable Hilbert spaces, nuclear Frechet spaces, and strict Frechet–Hilbert spaces.
Also known in the case of Hilbert spaces, Von Neumann’s theorems on sym-
metrical and self-adjoint operators are generalized to the case of the mentioned
Frechet–Hilbert spaces. A generalization is also given to the case of the well-
known Hellinger–Toeplitz theorem [108] on the continuity of a symmetric opera-
tor defined over the entire space. In the case of positive definiteness, an analogue
of the well-known Friedrichs theorem on an extension of such an operator is also
proved.

In this section, the well-known Friedrichs theorem on the extension of a pos-
itive definite operator is generalized to the case of Fréchet–Hilbert spaces. The
following result of von Neumann is well known: if T is a closed linear opera-
tor mapping an everywhere dense subset D(T ) of a Hilbert space H into itself
and having a adjoint mapping T ∗, then the orthogonal complements of the graphs
G(T ) and G(T ∗) are the sets V (G(T ∗)) and V (G(T )), respectively; the operators
TT ∗ , T ∗T , I+TT ∗ and I+T ∗T are also self-adjoint, and the operators I+TT ∗

and I+T ∗T also have continuous inverse operators. A generalization of this theo-
rem is given to the case of Frechet–Hilbert spaces provided that G(T ) has the (H)
property introduced by T. Precupanu [133].

Similar properties in the case of countable Hilbert spaces were studied by D. N.
Zarnadze [190,205], and in the case of locally convex spaces in the works of N. N.
Vakhania and S. A. Chobanyan [31], G. Isak and V. Postolică [72] and in the re-
view work of V. Postolică [132]. Examples of symmetric self-adjoint and positive
definite operators are given. In fact, there are two types of examples: the first in-
cludes symmetric operators defined on the Hilbert space L2(Ω) and extended to the
space L2

loc(Ω). The second includes examples of symmetric operators that are also
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symmetric on some countable Hilbert spaces. We note that continued operators in
many cases become continuous even if they were not continuous before the con-
tinuation. It should be emphasized here that this situation differs from the known
situations in which linear operators become continuous (for example: switching to
a “graph topology”, embedding a Hilbert space in the space of generalized func-
tions, or considering a space with different weights).

At the end of Section 4.2, a sufficient condition is given for the extension of a
symmetric operator defined in a Hilbert space to the strict Frechet–Hilbert space.
An illustration is given of the application of this condition for the extension of the
well-known position operator Tx(t) = tx(t) from a dense subset D(T ) of the
Hilbert space L2(Ω) to the entire space L2

loc(Ω). Similar structures were built in
the works of A. V. Marchenko [98] and Krupa [89].

An extension of the Ritz method is given for equations with positive definite
operators in the Frechet-Hilbert spaces. The energetic Frechet-Hilbert space EA
is defined and its representation is given. Next, the space EA is considered by the
metric (2.5.12) and the definition of the A-density of the sequence of basis func-
tions in the mentioned Frechet-Hilbert spaces is given, similar to what was done
in the monograph by G. I. Marchuk and V. I. Agoshkov [99]. A necessary and
sufficient condition for the A-density of a sequence in the energetic space EA of
the operator A is proved. An approximate solution of the equations Au = f is
sought in the energetic space with respect to a certain energetic norm using the
Ritz method. Obviously, in the case of Hilbert spaces, the above definition coin-
cides with the classical one. We prove the existence of a sequence of approximate
solutions constructed by the Ritz method, converging to a generalized solution of
the equation Au = f . Some estimates are also given for the convergence of a
sequence of approximate solutions to a generalized solution.

In Section 4.3, applications of the obtained results for the approximate solution
of direct problems are given. More precisely, we consider the equation Au = f ,
where A : D(A) ⊂ H → H is an unbounded self-adjoint positive operator in the
complex Hilbert space H . For this operator A the countable Hilbert space D(A∞)
is considered, which arises in connection with the distribution of the sequence of
eigenvalues on the line (Theorems 4.4.2–4.4.3). These space were introduced by
B. S. Mitjagin [108] (see also A. Pietsch [126]) and studied in detail in the works of
H. Triebel [159, 160]. In these works D(A∞) was the whole symbol, where A∞,
if taken separately, meant nothing. D(A∞) is isomorphic to some subspace M of
the space HN and this isomorphism is obtained by the mapping

D(A∞) ∋ x↔ orb(A, x) = (x,Ax,A2x, . . . , Anx, . . . ) ∈M ⊂ HN .

The definition of the operator A∞ : D(A∞) → D(A∞) is given by the
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equality A∞ orb(A, x) = orb(A,Ax) as restriction on D(A∞) of the operator
AN : HN → HN defined on HN by equality AN{xk} = {Axk}, {xk} ∈ HN .

The notation D(A∞) takes on a new meaning and henceforth D(A∞) means
the domain of definition of the operator A∞. The continuity and self-adjointness
of the operator A∞ in the Frechet–Hilbert space D(A∞), as well as the self-
adjointness of the operator AN in the strict Frechet–Hilbert space HN are estab-
lished. It is proved that if a sequence of eigenfunctions of the operator A that is
orthogonal with respect to H is chosen as the basis functions, then the condition of
Theorem 4.4.5 is satisfied for the non-adaptive information generated by the orbits
of this sequence in the space D(A∞).

Therefore, the extended Ritz method in the case of the equation A∞u = f in
the Frechet–Hilbert space D(A∞) turns out to be spline algorithm and is linear
and central. It is proved that the sequence of approximate solutions converges to
the exact solution in the space D(A∞). This result is made concrete in the case
of QHO, for which the space D(A∞) coincides with the Schwartz space S(R).
Next, applications of the obtained results are given for the approximate solution
of equations containing differential operators of the Sturm-Liouville type, QHO,
Legendre operator, Beltrami operator, etc.

Chapter 5 considers the ill-posed equation Ku = f in the Hilbert space H for
a compact self-adjoint operator K with positive eigenvalues. It is assumed that the
conditions of existence and uniqueness are fulfilled, but the stability condition is
not satisfied, i.e. the inverse operator K−1 is not continuous. In [156], for some
ill-posed problems, a metric compact space E is considered, which the operator K
maps onto itself isomorphically. Therefore, such equations in the space E have a
unique stable solution. Similarly, we consider this ill-posed equation in a Frechet
space E, to which the restriction of the operator K is an isomorphism of the space
E onto itself. More precisely, the restriction of K to the Frechet space E, taking
into account the topology, is a self-adjoint operator in E, which isomorphically
maps the space E onto itself. To approximate solution the resulting equation in the
metric Frechet spaceE, we use the Ritz method from Sections 4.2–4.3. A condition
is given under which this method is a spline algorithm. In this case, the local error is
equal to the local radius of information and is therefore minimal [158]. The results
obtained in Section 5.2 were applied in the construction of a spline algorithm for
the approximate solution of an equation with an operator admitting a SVD with
respect to only orthogonal sequences. In Section 5.3, they were used to construct a
spline algorithm for an approximate solution of the computer tomography problem.
Recently, the construction of a spline for the Radon operator in Lizorkin space was
the subject of work [115].

Chapter 6 describes the orbitalization process that we introduced. This then
provides the foundations for a new mathematical model of quantum mechanics,
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which we call orbital quantum mechanics (of finite n-th order as well as infinite
order). In this new theory, the operators expressing observable quantities receive a
new interpretation.

By analogy with Dirac’s “correspondence principle”, QM is a special case of
orbital quantum mechanics of order n, with n = 0. Using the technique of Hilbert
spaces, we obtain laws and theorems of orbital quantum mechanics of order n,
which are generalizations of known results. Orbital quantum mechanics of infinite
order uses the technique of Frechet-Hilbert spaces and is a significant generaliza-
tion in which the Schrödinger equation acquires a new meaning.

Section 6.1 presents the issues of quantization of classical physics and orbiti-
zation of quantum mechanics, i.e. the transition from QM to orbital quantum me-
chanics of n-order and to orbital quantum mechanics of infinite order, which are
presented in the table. Orbital quantum mechanics studies orbits, orbital operators,
orbital spaces and orbital equations for observable physical quantities of QHO, po-
sition and momentum. And also orbital operators corresponding to creation, anni-
hilation and number operators. Each of the operators under consideration generates
n-finite orbits and orbits in the state of quantum Hilbert space. They also generate
n-finite orbital operators that act in the corresponding Hilbert spaces of finite n-
orbits. These operators also generate orbital operators that act in the corresponding
Fréchet-Hilbert spaces of all orbits.

In Section 6.2 we study n-orbits and infinite orbits of the QHO operators H ,
position X and momentum P in the states of the quantum Hilbert space, as well
as n-orbital operators Hn, Xn and Pn corresponding to these operators. The norm
of n-orbital space for position operator is expressed in terms of the mathematical
expectation of the particle position. Some relations between the orbital operators
Hn, Xn and Pn are also established. Generalized canonical commutation relations
between Xn and Pn are proved, which coincide with the classical ones in the case
n = 0. A representation of the expression for the orbital operator XnPn + PnXn

in terms of the Weyl quantization of a certain function is established. The orbits
of the position and momentum operators in the states are studied, the Fréchet-
Hilbert spaces of all orbits D(H∞), D(X∞) and D(P∞) are introduced, as well
as the orbital operators X∞ and P∞ in these spaces, and a generalized canonical
commutation relation is proved. The connections between the orbital operators
H∞, X∞ and P∞ are also established. The Heisenberg uncertainty principle for
orbital operators is proved and the issue of achieving equality in the Heisenberg
inequality is considered.

In Section 6.3 finite orbits of the creation operator C and the annihilation oper-
ator A in the states of the quantum Hilbert space, as well as the n-orbital operator
Cn and An corresponding to these operators in the Hilbert space of finite orbits
are defined. We consider a generalization of the canonical commutation relations
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for the orbital operators Cn and An. Some relations between orbital operators Nn
corresponding to numerical operator N and with the operators Cn and An are also
established. The generalized canonical commutation relations between Cn and An
are proved, which in the case n = 0 coincide with the classical ones. Orbits of
creation and annihilation operators at states, the Frechet-Hilbert spaces of all or-
bits D(C∞) and D(A∞) the orbital operators C∞ and A∞ in these spaces are
studied and generalized canonical commutation relation is proved. The analogous
relationship between orbital operator N∞, C∞ and A∞ is established.

In Section 6.4, for the approximation solution of the equation (6.4.6) a linear
central spline algorithm in the space D(A∞) is constructed. The convergence of
the sequence of approximate solutions to the exact solution is proved. These results
obtained for general operators are applied to the one-dimensional QHO operator
in the Fréchet–Hilbert space of all orbits, which in this case coincides with the
Schwartz space [170].

In Section 6.5, central spline algorithms for calculation of the inverse of multi
dimensional Hamiltonian of QHO on Schwartz space are constructed.

Finally, we can conclude that by solving the problems posed by German mathe-
maticians (G. Albinus, K. Floret, M. Wriedt), using and developing theories (strict
inductive limits, spline and central algorithms, mathematical model of quantum
mechanics) created by European and American scientists (J. Dieudonne,
L. Schwartz, A. Grothendieck, P. Dirac, J. Traub, H. Wozniakowski and G. W.
Vasilkovski), in this monograph the theory of linear, spline, central algorithms
in the Hilbert and Frechet spaces of orbits is developed. These methods have
been applied to equations containing orbital operators corresponding to Radon and
Schrödinger operators in computerized tomography and orbital quantum mechan-
ics.

The monograph uses the following system of references: Theorem 2.3.4 means
the fourth theorem of Section 3 of Chapter 2, and the formula with the number
(1.2.3) means the third formula of the second section of Chapter 1. When compil-
ing the list of references, a general alphabetical order is used.

Obviously the attentive reader will find misprints and mistakes in the English
translation and even errors. Thus we kindly ask to inform us about them – we
would appreciate corrections.
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Professor G. Köthe. We would like to mention with gratitude J. Dieudonné and
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C H A P T E R 1

Linear problems with an absolutely convex set of problem
elements

1.1 Central and optimal algorithms for linear problems in Banach spaces

In this chapter we mainly use terminology and notation from [158]. Let F1 be
a linear space, G a normed space both over the same field of real or complex
numbers R and C, respectively. Let S : F1 → G be a linear operator, and F is
a balanced and convex (absolutely convex) subset of the space F1. According to
[158], elements f from a problem elements set F are called problem elements, S is
called the solution operator, and the elements S(f) – are called solution elements.
Let U(f) – be the computed approximation of S(f). The distance ∥S(f)−U(f)∥
is called absolute error, where ∥ · ∥– is the norm in the space G.

Let ε ≥ 0. We will say that U(f) – is an ε-approximation S(f), if ∥S(f) −
U(f)∥ ≤ ε. Our goal is to calculate a U(f) such that which is the ε-approximation
for all f ∈ F , i.e. sup{∥S(f) − U(f)∥; f ∈ F} ≤ ε. This formulation of the
problem is called the worst case of error calculation.

How can we calculate such an approximation of U(f)? For this we need some
knowledge about the problem elements. Let Λ denote a class of permissible infor-
mation operatorsL. That isL ∈ Λ iffL(f) can be computed for each f fromL. Let
y = I(f) = [L1(f), . . . , Lm(f)], where L1, . . . , Lm ∈ Λ are linear functionals on
F1 (unlike [158], information is denoted by I , sinceN is accepted to denote the set
of natural numbers). Such information in ([158], p. 27) is called non-adaptive. The
number m is called the cardinality of the information I(f) = [L1(f), . . . , Lm(f)].
If y = I(f) is known, then the approximation U(f) calculated using this infor-
mation gives us an element of the space G, which will be an approximation of the
element S(f). Therefore U(f) = φ(I(f)), where φ : I(F1) → G is the mapping,
which is called an algorithm.

For a given I , we want to construct U(f) with a minimum error. In [158] such
a problem, under the above suppositions regarding the space F1, the set F and the

33



34 D. Zarnadze, D. Ugulava

operator S, is defined as a linear problem.
The approximation of U(f) is calculated as φ(I(f)), where I is the informa-

tion operator and φ is the algorithm which maps I(F1) toG . For given information
I , the algorithms φ that are of interest are those that minimize the error

e(U) = sup{∥S(f)− U(f)∥, f ∈ F} = sup{∥S(f)− φ(I(f))∥, f ∈ F}.

Since U depends on φ and I , i.e. U = (φ, I), it is convenient to denote e(U) by
e(φ, I) and this quantity

e(φ, I) = sup{∥S(f)− φ(I(f))∥; f ∈ F}

is called the global error for the algorithm φ that uses information I .
The local error for the algorithm φ is defined as follows: let y = I(f), then the

same element φ(y) approximate all element of the set SI−1(y), where SI−1(y) =
{S(f) ∈ G; f ∈ I−1(y)} and I−1(y) = {f ∈ F ; I(f) = y}. Magnitude

e(φ, I, y) = sup{∥S(f ′)− φ(y)∥; f ′ ∈ I−1(y)}

is called the local error for φ. It’s obvious that

e(φ, I) = sup{e(φ, I, y); y ∈ I(F )}.

For a good approximationU(f) we shall measure the set SI−1(y) by its radius.
The radius of a subset M of a normed space G is number defined by

rad(M) = inf{sup{∥c− g∥; c ∈M}; g ∈ G} .

It is the radius of smallest ball which contains the set M . A point m ∈ G is called
the Chebyshev center of a set M if

rad(M) = inf{sup{∥c− g∥; c ∈M}; g ∈ G} = sup{∥c−m∥; c ∈M} .

The radius of the set SI−1(y) is denoted by r(I, y) and is called the local radius
of information I at point y, i.e.

r(I, y) = rad(SI−1(y)) = inf{sup{∥a− g∥; a ∈ SI−1(y)}; g ∈ G} .

The global radius of information I is defined as the local radius for a worst y, i.e.

r(I) = sup{r(I, y); y ∈ I(F )}.

Let the set SI−1(y) have a Chebyshev center m = m(y) for all y ∈ I(F ). Then
the algorithm φ defined by the equality φc(y) = m(y) is called central.
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In ( [158], p. 50, Theorem 3.2.1) it is proved that the local and global radii of
information I coincide with the exact lower bounds of the set of local and global
errors relative to algorithms using information I , i.e.

r(I, y) = inf{e(φ, I, y); φ ∈ Φ}, y ∈ I(F ), and r(I) = inf{e(φ, I); φ ∈ Φ},

where Φ is the set of all algorithms. The central algorithmφc, if it exists, minimizes
global and local errors for all y.

An algorithm φ∗ is called optimal error algorithm if

e(φ∗, I) = inf{e(φ, I); φ ∈ Φ} .

For the central algorithm we have e(φc, I) = r(I), therefore the central algorithm
is optimal. However, there are optimal algorithms ( [158], p. 49) that are not
central.

Let y = I(f) be computed information. Using y we choose f̃ ∈ F such that f̃
interpolates y, i.e. I(f̃) = y. Then the algorithm φi defined by equality

φi(y) = S(f̃) ,

is called an interpolatory algorithm ([158], p. 51).
In ([158], p. 50), it is written: “In general, it is hard to find a center of a set, and

so it is hard to obtain a central algorithm.” In this monograph, we will construct the
central algorithms for the important equations of functional analysis and quantum
mechanics in the Hilbert and Fréchet–Hilbert spaces.

Let us present some results from the works of Garkavi [56] and [57] concerning
the concept of a Chebyshev center.

Theorem 1.1.1. There is a Banach space in which one can specify three points for
which there is no Chebyshev center.

Theorem 1.1.2. If the space E is conjugate (to some normed space), then every
bounded set M ⊂ E has at least one Chebyshev center.

Theorem 1.1.3. Every normed space E can be isometrically and isomorphically
embedded in some Banach space Ẽ so that for any bounded set M ⊂ E in the
space Ẽ there will be a Chebyshev center ỹ ∈ Ẽ, and sup

x∈M
∥x − ỹ∥

Ẽ
= 1

2 d(M),

where d(M) = sup{∥m1 −m2∥; m1,m2 ∈M} is the diameter of the set M .

For each separable spaceE, as Ẽ we can take the space of bounded measurable
functions f on [0, 1] (which can even be considered functions of at most 1st Baire
class) with norm ∥f∥ = sup{|f(t)|; t ∈ [0, 1]}. If E is nonseparable, then
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as Ẽ we can take the space of bounded functions measurable with respect to any
measure, defined on the unit sphere of the conjugate space E′, equipped with a
weak topology (with a similar uniform norm).

The space E is said to be uniformly convex in every direction if for every
element z ∈ E and every ε > 0 there exists a number δ = δ(z, ε) > 0 such that if

x1, x2 ∈ E, ∥x1∥ = ∥x2∥ = 1, x1 − x2 = λz and ∥x1 + x2∥ ≥ 2− δ,

then |λ| ≤ ε.

Theorem 1.1.4. In order for each bounded set M ⊂ E to have at most one
Chebyshchev center, it is necessary and sufficient that the space E be uniformly
convex in each direction.

Theorem 1.1.5. In order for each compact set M ⊂ E to have at most one
Chebyshchev center, it is necessary and sufficient that the space E be strictly con-
vex.

Studies related to finding Chebyshev center and building central algorithms for
various tasks are carried out in the works [8].

1.2 Spline and linear algorithms. Examples

We can assume that the set F considered in Section 1.1 is generated by the restric-
tion operator T : F1 → X , where (X, ∥ · ∥) is the normed space and F = {f ∈
F1, ∥Tf∥ ≤ 1}. Indeed, the space X coincides with Kerµ⊥

F
, where µF is the

Minkowski functional for the set F , given by the equality

µF (f) =


0, when f = 0,

inf{α; α > 0, αf ∈ F},
∞, when f/α /∈ F, ∀α ̸= 0.

(1.2.1)

In this section, Kerµ⊥
F

means the algebraic complement of the subspace KerµF ,
T : F1 → Kerµ⊥

F
is an algebraic projector, and the norm ∥ · ∥ on X is defined by

the equality ∥Tf∥ = µF (f).
Let I : F1 → Rm and T : F1 → X be two linear operators, where F1 is linear

space and X – normed space, both above the field of complex numbers.
Let y ∈ I(F1). σ = σ(y) is called a spline interpolatory y ( [158], p. 95) if

I(σ) = y and
∥Tσ∥ = min{∥Tz∥; z ∈ F1, I(z) = y} .
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The spline algorithm is defined by the equality

φs(y) = S(σ(y)), y ∈ I(F1) , (1.2.2)

where σ(y) is a spline interpolatory y.
It is known ( [158], p. 97) that according to this definition, the spline algo-

rithm is interpolatory. It is homogeneous, but, generally speaking, it is not linear.
A spline algorithm is uniquely defined if and only if when the set S(P (T (f)))
consists of one point for each f ∈ F , where

P (T (f)) = {h ∈ Ker I; ∥Tf − Th∥ = inf{∥Tf − z∥; z ∈ T (Ker I)}} .

An interpolatory spline exists if and only if P (T (f)) is a non-empty set for all
f ∈ F for which I(f) = y.

The subset G ⊂ E of a normed space (E, ∥ · ∥) is called proximal with respect
to the norm ∥ · ∥ if for all f ∈ E, in G there exists at least one element g∗ ∈ G of
best approximation, i.e., such that

inf{∥f − g∥; g ∈ G} = ∥f − g∗∥.

The subset G is said to have the uniqueness property if for all f ∈ E there exists at
most one element of best approximation. The subset G is called a Chebyshev set
if it is proximal and has a uniqueness property.

Theorem 1.2.1. For the above mapping T , non-adaptive information I and for
each y ∈ I(F1), an interpolatory spline exists if and only if the subspace Ker I is
proximal in F1 with respect to µF .

Proof. Let for the mentioned T and for each y ∈ I(F1) there is an interpolation
spline and f ∈ F1. Let’s assume that I(f) = y0. For such y0 there is a spline,
i.e. an element σ ∈ F1, such that I(σ) = y0 and f − σ ∈ P (Tf) = {h∗ ∈
Ker I; ∥Tf − Th∗∥} = inf{∥Tf − Th∥; h ∈ Ker I}. According to ( [158], p.
57), we have that ∥Tf∥ = µF (f) for each f ∈ F1. Therefore we also have that

f − σ ∈ P (Tf) = {h∗ ∈ Ker I; µF (f − h∗)} = inf{µF (f − h); h ∈ Ker I},

i.e. the subspace Ker I is proximal in F1 with respect to µF .
Now let the subspace Ker I be proximal in F1 with respect to µF and y ∈

I(F1). Let us show that for T and I there is interpolation spline. Consider the
hyperplane I(z) = y. It has the form f + Ker I , where f ∈ F1 and I(f) = y.
By condition, Ker I is proximal in F1 with respect to µF and therefore there exists
h∗ ∈ Ker I such that µF (f − h∗) = inf{µF (f − h);h ∈ Ker I}. From this we
obtain that σ = f − h∗ satisfies equalities I(σ) = y and ∥Tσ∥ = min{∥Tz∥; z ∈
F1, I(z) = y}.
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Here we note that the definition of a spline and its basic properties in normed
spaces are given in [158], P. M. Anselone, P.-I. Laurent [9], P.-I. Laurent [90],
Ugulava [165].

It is natural to use algorithms that are convenient to use. Among these, linear
algorithms with minimal errors stand out.

An algorithmφL is called linear using information I(f) = [L1(f), . . . , Lm(f)]

if it has the form φL(y) =
m∑
i=1

Li(f)qi, where qi ∈ G do not depend on f ( [158],

p. 75).
In the monograph ([158], p. 75), it is proved that linear algorithms with mini-

mal error exist in the following three cases of linear problem:

(i) the range of a solution operator is R,

(ii) the range of a solution operator is suitable extended,

(iii) the range of a restriction operator is a Hilbert space and the image of the
kernel of the information operator is closed.

Namely, the following propositions are proved:

Theorem 1.2.2 (Smolyak [150]). Let S be a real linear functional and F be a
balanced and convex set. Then there exist numbers qi such that

ΦL(I(f)) =
n∑
i=1

Li(f)qi

is an optimal error algorithm and

e(ΦL, I) = r(I) = sup{∥S(h)∥; h ∈ F ∩ ker I}.

If r(I) = +∞, any algorithm is optimal, and in this case in Theorem 1.2.2
arbitrary numbers can be taken as qi. When r = r(I) < +∞, then we can take
qj = − cj

c0
, where c0, c1, . . . , cn are the coefficients of the reference plane to the set

Y = {S(f), L1(f), . . . , Lm(f) : f ∈ F} ⊂ Rm+1 at point (r, 0, . . . , 0) ∈ Rm+1.

Theorem 1.2.3 (Packel [118]). Let a linear solution operator S : F → G be given.
Then there exists a compact Hausdorff space D and the elements qi ∈ B(D),
where B(D) is the space of bounded scalar-valued functions defined on D with
norm ∥g∥ = sup{|g(x)|; x ∈ D}, such that

(1) G is isometrically isomorphic to a subspace B(D);
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(2) ΦL(I(f)) =
m∑
i=1

Li(f)qi is a linear optimal error algorithm for the solution

operator Ŝ : F → B(D), where Ŝ(f) = Ŝ(f) is the isometric image of
S(f) in B(D) and

e(ΦL, I) = sup
{∥∥Ŝ(f)− ΦL(I(f))

∥∥; f ∈ F
}
= r(I)

= sup
{∥∥Ŝ(f)∥∥; h ∈ F ∩ ker I

}
.

According to this theorem, a linear optimal error algorithm exists for an ar-
bitrary linear problem if the range of a solution operator is extended to the space
B(D) with a suitably chosen topological space D.

The local error e(Φ, I, y) = sup{∥S(f) − Φ(y)∥ : f ∈ I−1(y) ∩ F} of the
algorithm Φ might be much greater than the local radius of information r(I, y).
This circumstance explains the interest in studying the magnitude

devφ(I) := sup
y∈I(F )

e(φ, I, y)

r(I, y)
,

which is called the deviation of the algorithm φ (in the case when e(φ, I, y) =
r(I, y) = 0, for convenience, the value of the fraction on the right side is assumed
to be equated to 1). The deviation of any algorithm is at least 1. It is desirable
to have algorithms with low deviation. It is clear that these are central algorithms
whose deviations are equal to 1, but their development and application is often too
difficult, and often they might even not exist. On the other hand, linear algorithms
are easy yo implement and it is natural to try to distinguish among them algorithms
with small deviations. It turns out that spline algorithms are directly related to this
issue.

Theorem 1.2.4 ( [158], p. 97). Let SP (Tf) be a one-point set inX for any f ∈ F
and let the radius of information r(I) be finite. If the spline algorithm is linear,
then the class of linear algorithms that use information I and have finite deviation
consists of one element, namely the spline algorithm. If the spline algorithm is not
linear, then the class of linear algorithms that use information I and have finite
deviation is empty.

From this theorem we can conclude that when constructing a linear algorithm
with finite deviation, we must have a guarantee of the linearity of the spline algo-
rithm. In particular, this occurs in the case whenX is a Hilbert space and T (Ker I)
is closed in X .



40 D. Zarnadze, D. Ugulava

Theorem 1.2.5 ( [158], p. 98). Let X be a Hilbert space, T (Ker I) be closed and
let r(I) <∞. Then for any linear solution operator S, the algorithm

φs(I(f)) =

m∑
i=1

Li(f)Sσi (1.2.3)

is a linear central algorithm, i.e. dev (φs, I) = 1, where σi, i = 1, 2, . . . ,m,
be interpolation spline for yi = [0, . . . , 1i , . . . , 0] ∈ Rm. Moreover, for any
y ∈ I(F1),

e(φs, I, y) = r(I, y) =
√

1− ∥Tσ(y)∥2 · r(I),

Where r(I) = sup{∥S(h)∥/∥Th∥; h ∈ Ker I}.

It is clear that under the conditions of theorem 1.2.5, the algorithm (1.2.3)
coincides with the spline algorithm defined using the formula (1.2.2).

Note the result given in [158] with respect to the closedness of the set T (Ker I).
It is proved in [158] that if F1 is a Banach space, ImT is closed in X and KerT
has finite dimension, then the set T (Ker I) is closed in X .

Let us give an example confirming that the classical method of integration dif-
ferentiable functions is a spline algorithm and, in some cases, a central one.

Example 1. Let us consider the problem of integration of non-periodic functions
from the class F1 = W r

p (0, 1), where r ≥ 1 and p ∈ [1,∞] ( [158], p. 124).
This class consists of functions f : [0, 1] → R, which have absolutely continuous
derivatives f (r−1) of order r − 1, and the derivatives f (r) of order r belong to the
space Lp[0, 1]. Let X = Lp[0, 1] with Lp-norm ∥·∥p and Tf = f (r). It is required

to approximate S(f) =
∫ 1
0 f(t)dt for f from F = {f ∈ F1; ∥Tf∥p ≤ 1}. Let Λ

consists of linear functionals of the formL(f) = f (j)(t) for some t ∈ [0, 1] and j ∈
[0, r − 1], i.e. we have Birkhoff’s information I(f) = [f (j1) (t1), . . . , f

(jm)(tm)],
m ≥ r. For each p ∈ [1,∞]the subspace Ker I is proximal into the space Lp[0, 1]
with respect to the semi-norm µF (f) = ∥Tf∥p (the closedness of T (Ker I) in
the space Lp follows from the embedding theorem). Therefore, by virtue of theo-
rem 1.2.1, there is an interpolation spline σ whose rth derivative has a minimum
∥·∥p−norm. Therefore, to calculate S(f), in the case of Birkhoff information,
calculate

U(f) =

1∫
0

σ(t)dt .

In case p = 2, spline σ is a natural spline of order 2r − 1. Since σ is the
center of symmetry of the set I−1(y) ∩ F ([158], p. 97) and S(σ) is the center of
symmetry of the set S(I−1(y) ∩ F ), in the case of finite global radii, by ( [158],
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p. 50), σ is the Chebyshev center of the set I−1(y) ∩ F in F1 with respect to the
seminorm µF = ∥ · ∥2 and S(σ) is the Chebyshev center for the set S(I−1(y)∩F )
in G = R, i.e.

inf
s∈F1

sup
f∈I−1(y)∩F

∥Tf − Ts∥2 = sup
f∈I−1(y)∩F

∥Tf − Tσ∥2 = rad(I−1(y) ∩ F ),

and

inf
g∈R

sup
f̃∈I−1(y)∩F

|S(f̃)− g| = sup
f̃∈I−1(y)∩F

|S(f̃)− U(f)| = rad(S(I−1(y) ∩ F ).

It should be noted that the existence of spline and spline algorithm depends
only on the proximality of Ker I in F1 with respect to µF and does not depend on
S unless F does not depend on S.

In what follows, we will call the operator S the solution operator for some
equationAu = f if u = Sf . If there is an inverse to the operatorA, then S = A−1.
Further, the central (resp. linear, spline, optimal) algorithm that approximates the
operator S will be called the central (resp. linear, spline, optimal) algorithm for the
equations Au = f .

The following example of the Ritz algorithm in energetic spaces illustrates the
above and is a spline algorithm. The following is a condition for its centrality.

Example 2. Let S be symmetric and positive definite operator in Hilbert space
H with inner product (·, ·) and dense domain D(S), i.e. in the above notation,
H = G. Suppose HS denotes the energetic space of the operator S and F1 the
linear space of elements belonging toHS . Let {φi} is a sequence of basis functions
consisting of eigenfunctions of the operator S. Let us assume that the sequence of
information I(f) = [L1(f), . . . , Lm(f)] includes the functionals Li(f) = [f, φi],
i = 1, 2, . . . ,m, where [·, ·] is the scalar product in HS . Ker I = {f :∈ H :
[f, φi] = 0, i = 1, 2, . . . ,m} and its orthogonal complement is the subspace
Ker I⊥ = span{φ1, . . . , φm}. Let us assume that the set of problem elements F
has the form F = {f ∈ H : [f ] = [f, f ]

1
2 ≤ 1}. As an operator T , consider

the identical operator T : F1 → HS with F1 on HS . The subspace T (Ker I)
is closed in HS . Indeed, let f ∈ Ker I and Tfn → f in HS . This means that
[f, φk] = lim

n→∞
[fn, φk] = 0, k = 1, . . . ,m, i.e. f ∈ Ker I , Tf ∈ T (Ker I) and

T (Ker I) is closed in HS . By virtue of Theorem 1.2.1, to find the spline σ we
must first find the best approximation h∗ of the element f in the subspace Ker I
of the space HS with respect to the norm µF , and then put σ = f − h∗. Since
the space (HS , µF ) is Hilbert, we can directly find the best approximation of the
element f in the subspace Ker I⊥ with respect to µF . But it is well known [1] that
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the coefficients best approximation um =
m∑
i=1

aiφi of element f in the subspace

Ker I⊥ satisfy the system of equations

m∑
i=1

ai[φk, φi] = [f, φk], k = 1, 2, . . . ,m ,

or
m∑
i=1

ai[φk, φi] = (Sf, φk), k = 1, 2, . . . ,m .

In the case when we have the equation Sf = g we get

m∑
i=1

ai[φk, φi] = (g, φk), k = 1, 2, . . . ,m .

This system shows that the σ spline is nothing more than an approximate solu-
tion um, constructed using the Ritz method. It should also be noted that the spline
algorithm

Φs(y) = S(σ(y)), y ∈ I(F1)

is linear.
According to theorem 1.2.5, if r(I) < ∞, then Φs is a central algorithm for

local error as well

e(Φs, I, y) = sup{∥S(f ′)− φ(I(f))∥; f ′ ∈ I−1(y)}

fair presentation

e(Φs, I, y) = r(I, y) = (1− µF (σ(y)))
1/2r(I) ,

where

r(I) = sup

{
∥S(h)∥
µF (T (h))

; h ∈ Ker I

}
= sup

{
∥S(h)∥

(S(h), h)1/2
; h ∈ Ker I

}
. (1.2.4)

Therefore, it is natural to find out when the condition r(I) <∞ is true.

Theorem 1.2.6. Let S be a self-adjoint and positive definite operator in the Hilbert
space H with dense domain of definition of D(S). Then the following inequalities
are valid:

∥S∥1/2Ker I ≤ r(I) ≤ (1/γ)∥S∥Ker I ,
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where
∥S∥Ker I = sup{∥S(h)∥; h ∈ Ker I, ∥h∥ ≤ 1}

and γ is a positive constant that participates in the definition of positive definite-
ness for the operator S.

Proof. From equality (1.2.4) due to the Cauchy–Buniakowski inequality

|(S(h), h)|1/2 ≤ ∥S(h)∥1/2∥h∥1/2

we get the inequality

r(I) = sup

{
∥S(h)∥

(S(h), h))1/2
; h ∈ Ker I

}
≥ sup

{
∥S(h)∥

∥(S(h)∥1/2∥h∥1/2)
; h ∈ Ker I

}
= sup

{
∥S(h)∥1/2

∥h∥1/2
; h ∈ Ker I

}
= ∥S∥1/2Ker I .

On the other hand, from the positive definiteness of the operator S follows that
there exists constant γ such that (S(h), h) ≥ γ∥h∥. Therefore, we will have

r(I) ≤ sup

{
∥S(h)∥
γ∥h∥

; h ∈ Ker I

}
=

= (1/γ) sup{∥S(h)∥; h ∈ Ker I i ∥h∥ ≤ 1} = (1/γ)∥S∥Ker I .

Corollary. If the restriction of the operator S to Ker I is continuous, then r(I) <
∞.

Example 3. The least squares method is a spline algorithm. Consider the equation

Au = f, (1.2.5)

where A is a linear operator acting from a Hilbert space M into the same space N ,
such that there exists its continuous inverse operator A−1. We denote this operator
by S, i.e. S(Ax) = A−1(Ax) is the solution operator of the equation (1.2.5). Let
F1 be a linear space consisting of elements of the range A(M) of the operator A.
Let’s assume that A(M) = N . In F1, consider the set F = {Ax ∈ F1; ∥Ax∥N ≤
1}, where ∥Ax∥N is defined as the Minkowski functional µF of the set F , i.e.
µF (Ax) = ∥Ax∥N = (Ax,Ax)1/2, and (·, ·) is the inner product in N . µF (·) is
a norm on F1 due to the existence and continuity of the operator A−1. The space
F1 with such a norm will be denoted by X = (F1, µF ). Let T : F1 → X be
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an identical operator, and {gi} some linearly independent system in M . Then the
system {Agi} is also linearly independent in N .

Let I(f) = [L1(f), ·, Lm(f)] be some non-adaptive information of cardinality
m, where the linear and continuous on F1 functionals Li(f), are defined as follows
Li(f) = (Af,Agi), i = 1, ·,m.

We have two operators: T : F1 → X and I : F1 → Rm. The kernel of the
second Ker I := {Ax; (Ax,Agi) = 0, i = 1, . . . ,m} is a closed subspace of
codimension m in F1 = A(M), and its orthogonal complement subspace is the set
Ker I⊥ = span{Ag1, . . . , Agm}.

Let y ∈ I(F1). We are looking for an element σ ∈ F1 such that I(σ) = y and
µF (T (σ)) = min{µF (T (Ax)); Ax ∈ F1, I(A(x)) = y}.

The spline σ interpolatory y can be represented as σ = x+h∗, where x is some
element from I−1(y), and h∗ is an element of F1 such that Th∗ is an element of
the best approximation for Tx in the subspace T (Ker I) of X . It is clear that h∗

can be found as the element of the best approximation for Ax in Ker I⊥. From the
theory of Hilbert spaces it is known that h∗ has the form h∗ =

∑m
i=1 aiAgi, where

the coefficients ai, i = 1, . . . ,m are determined from the system of equations

m∑
i=1

ai(Agi, Agk) = (Ax,Agk), k = 1, . . . ,m.

If x = u, then we obtain that

m∑
i=1

ai(Agi, Agk) = (Au,Agk), k = 1, . . . ,m. (1.2.6)

On the other hand, according to the least squares method in spaceX = (A(M), µF ),
coefficients a′i, i = 1, . . . ,m, of the approximate solution um =

∑m
i=1 a

′
iAgi of

equation (1.2.5) are defined from the condition

inf{∥Aum − f∥N ; um ∈ Ker I⊥} = inf{µF (TAum − Tf), um ∈ Ker I⊥}.

It is known (see [1], p. 57) that these coefficients are determined from the system
of equations

m∑
i=1

a′i(Agi, Agk) = (f,Agk), k = 1, . . . ,m. (1.2.7)

It follows from the equality Au = f that the systems (1.2.6) and (1.2.7) coincide.
This means that the least squares method is a spline algorithm for the solution
operator S = A−1, and has the form φs(y) = S(σ(y)).
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1.3 Existence of splines for information of cardinality 1 in Banach spaces.
Theorems of James and Bishop-Phelps

If (F1, ∥ · ∥) is a normed space with the unit ball F , then from Theorem 1.3.1 it
follows that the theory of spline algorithms with non-adaptive information is the
same as the theory of best approximation in subspaces finite codimension of the
normed space F1. In this case, µF (·) = ∥ · ∥ and the operator T will be the identity
operator, i.e. the space X has the form X = (F1, µF (·)).

In the case of subspace of codimension 1, i.e., for hypersubspaces, the most
important results are the theorems of James [73], [74] and Bishop–Phelps [19].

Theorem (James [74]). A Banach space E is reflexive if and only if every linear
continuous functional on E attains its norm on the unit ball.

In approximate form, this theorem states that a Banach space is reflexive if and
only if every closed hypersubspace in it is proximal.

Theorem 1.3.1. Let F1 be a Banach space, F be unit ball of space F1 and set
of admissible functionals Λ = F ∗1 , i.e., is algebraic dual space. For each y ∈ R
and each non-adaptive information I of cardinality m = 1 interpolation spline
exists if and only if the space F1 is reflexive. Moreover, in this case Λ = F ′1, i.e.
set of admisible functionals cannot be wider than the space of linear continuous
functionals and in the reflexive Banach space F1 an interpolation spline exists for
non-adaptive information of any cardinality m ∈ N.

Proof. Let y ∈ R. Consider the hyperplane I(f) = y. In our case it has the form
L(f) = y, where L ∈ F ∗1 . According to theorem 1.2.1 we have that each such
hypersubspace is proximal with respect to µF . From the approximative form of
James’s theorem it follows that the space F1 is reflexive. It follows that this hy-
persubspace is closed, and this is equivalent to the continuity of the functional L,
i.e. L ∈ F ′1. From the reflexivity of the space F1 we also obtain that interpola-
tion spline exists for non-adaptive information I(f) = [L1(f), . . . , Lm(f)], where
Li ∈ F ′1, because by theorem 1.2.1, this is equivalent proximality of the subspace
Ker I in F1 with respect to µF .

There is an example of an incomplete normed and therefore non-reflexive space,
which was built by James, in which every closed hypersubspace is proximal.

Theorem (Bishop-Phelps [19]). In a non-reflexive Banach spaceE, the set of prox-
imal hypersubspaces constitutes an everywhere dense subset in the dual Banach
space.
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We also note the work of S. I. Zukhovitsky [214], where the characterization
of proximal hypersubspaces of the space C(Q) are given.

The theory of best approximation in subspaces of finite codimension, i.e. finite
defect, normed spaces is covered quite fully in the review article by A.L. Garkavi
[62].

A fundamental complication of the problem of studying the approximation
properties of subspaces of finite codimension different from unity is that for hyper-
spaces there are only two hyperplanes “parallel” to it, supporting the unit sphere,
while for such subspaces of non-unit defect there are infinitely many planes.

An important means of studying infinite-dimensional subspaces were dual the-
orems that connected the problem of best approximation with the problem of ex-
tension of linear functionals. The first fairly general theorem of this kind was
indicated by Phelps [123]: in order that every linear functional defined on a sub-
space L ⊂ X of a normed space has a unique extension without raising the norm
to the entire space X , it is necessary and sufficient that the annihilator (polar) of
the subspace L⊥ ⊂ X∗ be a Chebyshev subspace in the space X∗.

The approximation side of this dual theorem concerns to the subspaces of the
dual spaceX∗. For problems of approximation theory, dual theorems are of greater
interest, the approximative content of which relates to subspaces of the original
spaceX . A.L. Garkavi [58] obtained such theorems for the class of factor-reflexive
subspaces, i.e. subspaces whose annihilators are reflexive subspaces in X∗. This
class includes, in particular, subspaces of a finite defect. Garkavi’s theorems char-
acterize factor-reflexive subspaces that have the properties of existence and unique-
ness in terms of extensions of functionals defined on the annihilators of these sub-
spaces. The theorems of Phelps and Garkavi turned out to be useful in the study of
subspaces of a finite defect, since in this case they reduced the infinite-dimensional
approximation problem to a finite-dimensional extremal problem (such as the fi-
nite moment problem). Using dual theorems, Phelps [123] obtained a number of
necessary or sufficient conditions for Chebyshev subspaces of finite dimension and
finite defect. A.L. Garkavi [58] established a criterion for a subspace of a finite
defect that was proximal. It was also shown there that Chebyshev subspaces of the
defect n < ∞ can exist only in a Banach space whose sphere contains at least n
linear independent extremal points.

Approximate properties of subspaces of a finite defect in the space C(Q) were
studied in the works of Phelps [123, 124] and A. L. Garkavi [58, 60]. The final
results were obtained in the last two works, where the characteristic properties of
subspaces having the properties of existence, uniqueness, and both together were
established. Let us present one of the theorems from [61]. In order for the subspace
L ⊂ C(Q) of defect n to be proximal, it is necessary and sufficient that the follow-
ing conditions be satisfied: a) for any measure µ from the annihilatorL⊥ ⊂ C(Q)∗
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there is a pair of closed sets that form a decomposition of its support S(µ) in the
sense of Hahn; b) for any measures µ1, µ2 from L⊥ the set S(µ1)\S(µ2) is closed;
c) the measure µ1 is absolutely continuous with respect to µ2 on S(µ2).

In the work [58] A.L. Garkavi obtained sufficient and some necessary criteria
for Chebyshev subspaces of a finite defect in the space L1(Q,µ).

The existence of Chebyshev subspaces of a finite defect in the space C(Q) (de-
pending on the topological structure of Q) was studied by Phelps [123, 124], A.L.
Garkavi [61]. For the case of a metric compactum, the final result was obtained by
A.L. Garkavi and is as follows: for the existence of Chebyshev subspaces of defect
n > 1 in the space C(Q), it is necessary and sufficient that the compactum Q
coincides with the closure of the set of its isolated points. In this case the condition
of “local disconnection” turned out to be necessary. It is proved that a necessary
and sufficient condition for the existence of Chebyshev subspaces of defect n in the
normed space CL1 ⊂ L(Q,µ) of continuous integrable functions is the presence of
at least n isolated points of the compact Q. In the works of Phelps [123] and A. L.
Garkavi [60] obtained for classical spaces the characteristics of finite-dimensional
subspaces that have the property of uniqueness of minimal extensions of all lin-
ear functionals. The latter work also established a general characteristic of such a
subspace, which consists in the fact that at each non-zero point of the subspace the
norm of the space X must be weakly differentiable with respect to some subspace
complementary to the given one. The analytical form of this criterion is also given.
These results, on the one hand, contain criteria for the uniqueness of a solution to
the L-moment problem, considered by M. G. Krein [86], and on the other hand, by
virtue of duality theorems, they give a characteristic of Chebyshev weakly closed
subspaces in dual spaces.

The problem of best approximation with respect to Minkowski functionals and
its dual problems were studied in detail in the works of A. D. Ioffe and V. M.
Tikhomirov [70] and V. Ubhaya [164].

1.4 Linear central spline algorithm in space D(An)

Let H be a separable real or complex Hilbert space equipped with a norm ∥ · ∥,
that is generated with inner product (·, ·), and A : D(A) ⊂ H → H be a linear,
symmetric, positive definite operator with a discrete spectrum and dense image.
The spectrum of A is called discrete if it consists of a countable set of eigenvalues
with a single limit point at infinity.

Let n ∈ N0 = N ∪ {0} be a fixed nonnegative whole number and consider the
elements of the space H , to which the operator An = A(An−1) can be applied,
whereA0 is the identity operator. The space of such elements is denoted byD(An),
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besides, D(A0) = H . n-orbit of the operator A at the point x ∈ H is a finite
sequence orbn(A, x) := (x,Ax, . . . , Anx), n ∈ N0. For the injective operator
A, each orbit orbn(A, x) is uniquely determined by the element x ∈ H , which
we call the generating element of this orbit. The space D(An) is identified with
the space of n-orbits of the operator A. For simplicity of notation, sometimes the
norm of the element orbn(A, x) ∈ D(An), which is generated by the element
x ∈ H , is denoted by ∥x∥n instead of ∥ orb(A, x)∥n. If some operator B acts on
D(An), instead of B(orbn(A, x)) we will simply write Bx. We hope that such
identification will not lead to misunderstandings. We can turn D(An) into a pre-
Hilbert space using the inner product

⟨orbn(A, x), orbn(A, y)⟩n
:= (x, y) + (Ax,Ay) + · · ·+ (Anx,Any), n ∈ N0, (1.4.1)

that generates the norm

∥x∥n =
(
∥x∥2 + ∥Ax∥2 + · · ·+ ∥Anx∥2

)1/2
, n ∈ N0. (1.4.2)

If A is a closed operator, then D(An) turns into a Hilbert space.
The equation Au = f for the space D(An) takes the form

An(orbn(A, u)) = orbn(A, f), (1.4.3)

where the operator An : D(An) = D(A)n+1 ⊂ Hn+1 → ImAn = (ImA)n+1 ⊂
Hn+1 is defined by the equality

A0(u) = u, An(orbn(A, u)) = orbn(A,Au), n ≥ 1. (1.4.4)

We call An as n-orbital operator, which corresponds to the operator A, and (1.4.3)
is called the n-orbital equation in the space D(An).

As noted above, if n = 0, then D(A0) = H , ⟨x, y⟩1 = (x, y), and we have the
equation Au = f in the space H , i.e. classic case. For n = 1, D(A) is considered
according to the norm ∥x∥2 = (∥x∥2 + ∥Ax∥2)1/2 and if A is a closed operator,
then D(A) by the norm ∥x∥2 is a Hilbert space.

For the approximation solution of the equation (1.4.3), a linear spline central
algorithm in the space D(An) is constructed. The problem of convergence of the
sequence of approximate solutions to the generalized solution is considered.

Let A be a symmetric positive definite operator in H with a dense image. We
assume that A has a complete orthonormal sequence {hk} of eigenvectors, and the
corresponding sequence of eigenvalues λk forms a discrete spectrum. The positive
definiteness ofA implies its injectivity, i.e. the existence on ImA of the left inverse
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operator S of A. To simplify the notation, we sometimes denote the left-hand
side of the equation (1.4.3) by An(u). This equation in coordinates has the form
Ai+1u = Aif (0 ≤ i ≤ n). The operator An defined by (1.4.4) is symmetric and
positive definite in the space D(An). Really, for arbitrary u, v ∈ D(An) we have

⟨Anu, v⟩n = ⟨(Au,A2u, . . . , An+1u), (v,Av, . . . , Anv)⟩n
= (Au, v) + (A2u,Av) + · · ·+ (An+1u,Anv)

= (u,Av) + (Au,A2v) + · · ·+ (Anu,An+1v) = ⟨u,Anv⟩n

and

⟨Anu, u⟩n = (Au, u) + (A2u,Au) + · · ·+ (An+1u,Anu)

≥ C(u, u) + C(Au,Au) + · · ·+ C(Anu,Anu) = C⟨u, u⟩n,

where C > 0 exists according to the definition of positive definiteness of the oper-
ator A.

Let {hk}, k ∈ N0, be an orthonormal basis on H . Next, we have

An(orbn(A, hk)) = orbn(A,Ahk) = λk orbn(A, hk).

This means that orbn(A, hk) is the eigenvector of the operator An, corresponding
to the eigennumber λk. The sequence {orbn(A, hk)} is orthogonal in D(An),
since

⟨orbn(A, hk), orbn(A, hi)⟩n = (hk, hi) + (Ahk, Ahi) + · · ·+ (Anhk, A
nhi)

= (1 + λkλi + · · ·+ λnkλ
n
i )(hk, hi) = 0 if k ̸= i.

Moreover, the sequence {orbn(A, hk)} forms a complete system in the space
D(An).

The left inverse Sn : Hn+1 → Hn+1 to the operator An, i.e. the solution
operator of the equation (1.4.3), is defined by the equality

Sn(orbn(A,Ax)) = orbn(A, x)

and is only positive compact operator on ImAn. Sn is the n-orbital operator cor-
responding to the operator S.

Our goal is to build a spline algorithm for the approximate solution of the n-
orbital equation (1.4.3) in the space D(An). For the construction of approximate
solution U(f), we apply some information about the problem element f . Let y =
I(f), f ∈ D(An), be a nonadaptive information

I(f) =
[
(f, h0)n, (f, h1)n, . . . , (f, hm)n

]
(1.4.5)
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of the cardinality m+ 1.
Let us construct an interpolatory spline y ∈ I(D(An)) in the space D(An) for

the information (1.4.5). To do this, we consider the following spaces: the linear
space F1 consisting of elements of the space D(An); G = D(An) with the norm
(1.4.3). Let T be an identical operator from F1 on X := (D(An), ∥ · ∥n). The set
of problem elements is F = {f ∈ F1; ∥T (f)∥n ≤ 1}. The spline interpolatory
y = I(f) is defined as an element belonging to the space D(An), which is gen-
erated by an element σm ∈ H satisfying the conditions I(orbn(A, σm)) = y and
∥T (orbn(A, σm))∥n = inf{∥T (z)∥n, z ∈ I−1(y)}. According to the results of
Theorem 1.2.1, orbn(A, σm) is the best approximation element of orbn(A, f) ∈
D(An) in the orthogonal complement subspace (Ker I)⊥ ⊂ D(An) with respect
to the Hilbertian norm ∥ · ∥n, and has the form

orbn(A, σm) =
m∑
k=0

(f, hk)n
(hk, hk)n

orbn(A, hk)

=
m∑
k=0

(1 + λ2k + · · ·+ λ2nk )(f, hk)

(1 + λ2k + · · ·+ λ2nk )(hk, hk)
orbn(A, hk)

=
m∑
k=0

(f, hk) orbn(A, hk). (1.4.6)

The coefficient in (1.4.6) does not depend on n. This means that the element
orbn(A, σm)∈D(An) is a spline that simultaneously corresponds to the information
y=[(f, h0)n, . . . , (f, hm)n] as well as to the information y1=[(f, h0), . . . , (f, hm)].
The spline algorithm is defined by the equality φs(y)=Sn orbn(A, σm)(y), where
orbn(A, σm)(y) is a spline interpolatory y.

Taking into account the equality Sn orbn(A, hk) = λ−1k orbn(A, hk), we ob-
tain

orbn(A, um) = Sn orbn(A, σm) = Sn

m∑
k=0

(f, hk) orbn(A, hk)

=
m∑
k=0

λ−1k (f, hk) orbn(A, hk), (1.4.7)

where Sn is the solution operator of the equation (1.4.3). This means that U(f) =
orbn(A, um) = Sn orbn(A, σm) is a spline algorithm for the information (1.4.5),
where Li(f) = (f, hi)n. It is well known [?] that the sequence of the approxima-
tive solutions orbn(A, um) converges to generalized solution orbn(A, u0) of the
equation (1.4.3) in the space D(An).
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Let us prove now that the algorithm (1.4.7) is central. We carry out the proof by
analogy of ([158], p. 97). The spline orbn(A, σm) interpolatory y = I(f) is given
by (1.4.6). We prove that it is the center of the set I−1(y)∩F . Let f ∈ I−1(y)∩F
and f ̸= σm. We have 2σm(y) − f ∈ I−1(y) and ∥T (2σm − f)∥n = ∥T (σm −
h)∥n. Th is the best approximation element for Tf in the subspace T (Ker I) and,
therefore, (Tσm, Th)n = 0. Now, from the latter equality we obtain

∥T (2σm − f)∥n =
√
∥Tσm∥2n + ∥Th∥2n = ∥Tf∥n ≤ 1.

Thus, f and 2σm− f belong to the set I−1(y)∩F and σm = (f + (2σm− f))/2.
This means that σm is the Chebyshev center of the set I−1(y) ∩ F , i.e.

inf{sup{∥c− a∥n, c ∈ I−1(y) ∩ F}; a ∈ D(An)}
= sup{∥c− σm∥n, c ∈ I−1(y) ∩ F}. (1.4.8)

Further, we have that Sn(σm) = orbn(A, um) is the Chebyshev center for
Sn(I

−1(y) ∩ F ) and, according to Theorem 1.2.5, the following equalities are
valid:

e(φs, I, y) = r(I, y) = inf{sup{∥a− g∥n, a ∈ Sn(I
−1(y) ∩ F )}; g ∈ D(An)}

= sup{∥a− um∥n, a ∈ Sn(I
−1(y) ∩ F )}

= (1− ∥σm∥n)1/2rn(I), (1.4.9)

where
rn(I) = sup{∥Sn(h)∥n/∥T (h)∥n, h ∈ Ker I}.

We note that rn(I) < ∞ if and only if the restriction of the operator Sn on
Ker I is continuous. It is easy to see that this is valid for compact positive operator
Sn. Thus, the algorithm (1.4.7) is central for the information (1.4.5). We have
proved that in the above notation the following statement is valid.

Theorem 1.4.1. Let H be a separable Hilbert space, A be a symmetric, positive
definite operator with dense image in H , and the operator A is closed. We will re-
quire that the set T (Ker I) is closed and the radius of information I is finite. Then
the algorithm (1.4.7) is linear central spline algorithm for the approximate solution
of the n-orbital equation (1.4.3) in the space of n-orbits D(An). The sequence of
the approximative solutions {orbn(A, um)} converges to the generalized solution
orbn(A, u0) of the equation (1.4.3) in the space D(An).

The received results we apply for the quantum harmonic oscillator operator
Au(t) = −u′′(t) + t2u(x), t ∈ R, in the Hilbert space of finite orbits D(An).
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First, we consider the equation (1.4.3) in the space D(An), when H = L2(R)
and A is the quantum harmonic oscillator whose domain includes functions u(t)
satisfying the condition tiu(j)(t) ∈ L2(R), i, j ≥ 0, i+ j ≤ 2n, j ≤ 2n− 1 , and,
moreover, are zero at infinity (u(j) denotes the j−th derivative of u). It is easily
verified that A is symmetric.

The eigenfunctions of the operatorA are the Hermite functions (wave functions
of a harmonic oscillator) ([178], p. 115):

hj(t) = (−1)j(j!)−1/22−j/2π−1/4et
2/2 d

je−t
2

dtj
, (1.4.10)

where j ∈ N0. The spectrum of A is discrete and the eigenvalues of the operator
A are λj = 2j + 1, j ∈ N0. The sequence {hj} forms an orthonormal basis of the
space L2(R). The harmonic oscillator A is symmetric and positive definite.

Theorem 1.4.2. Let (1.4.3) be the equation in the space D(An), where An is
the orbital operator corresponding to the quantum harmonic oscillator A in the
space L2(R) and I be the information (1.4.5). Then the algorithm (1.4.7) is linear
central spline algorithm for the approximate solution of the n-orbital equation
(1.4.3) in the space of n-orbits D(An). The sequence of the approximate solutions
{orbn(A, um)} converges to the generalized solution orbn(A, u0) of the equation
(1.4.3) in the space D(An).

Proof. It remains to prove that the space T (Ker I) is closed, but this follows from
the fact that the information functionals are generated from the elements of basis
and are continuous for every n ∈ N.

Remark 1.4.1. The method described above can be applied to the equations con-
taining the Schrödinger operator in spaces of finite orbits. The Schrödinger equa-
tion is the basic equation of quantum mechanics [128] and is usually written as{

− ℏ2

2m

d2

dt2
+ V (t)

}
ψ(t) = Eψ(t),

where ℏ is Planck’s constant, m is the mass of the particle, V (t) is the potential
energy of the particle in the force field at position t, E is total energy, ψ(t) is the
wave function, d2/dt2 is the rate of change of the slope (the curvature) of the wave
function at the position t.

The Schrödinger equation can be written even more compactly by defining of
the so-called hamiltonian H = − ℏ2

2m
d2

dt2
+ V (t). With this definition, the equation

becomes
Hψ = Eψ. (1.4.11)
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In discrete spectrum problem, the eigenfunctions ψj and the respective energies
Ej have to be determined by solving the eigenvalue problem

d2ψj
dt2

+
2m

ℏ2
[Ej − V (t)]ψj = 0,

∞∫
−∞

|ψj |2dt = 1,

ψj → 0 at t→ ±∞. In the case V (t) = mω2t2/2 (ω-frequency of oscillator),

Ej = ℏω(j + 1/2), j ∈ N0.

Normalized eigenfunctions

ψj(t) =
π−1/4

(2j · j!t0)1/2
exp(−ξ2/2)Hj(ξ), ξ = t/t0, t0 =

√
ℏ
mω

,

where Hj are Hermite polynomials. The functions ψj(t) form an orthonormal
basis in L2(R).

The obtained results can easily be extended to the equation (1.4.11), where the
right-hand side is replaced by an arbitrary element f of the orbital space. More
precisely, we can construct a linear spline central algorithm for the orbital equation
Hn orbn(H, ψ) = orbn(H, f) with the orbital operator Hn of hamiltonian in the
Hilbert space of finite orbits D(Hn).

The results obtained can be applied to essentially self-adjoint and positive def-
inite operators Am,k (2k ≤ m) ( [160], 7.4.1) and Tricomi operators Bn,k ( [160],
7.6.3).

We give examples of selfadjoint and positive definite operators in Hilbert spaces
that satisfy the conditions of Theorem 1.4.1. These examples are mainly taken
from [160].

2. Consider the differential operator ([106], Chapter 5, Section 9)

Bu = −1

t

[ d
dt

(
t
du

dt

)
− ν2

t
u
]
, ν = const > 1/2, 0 < t < 1,

in the space H = L2(t; 0, 1) of functions quadratically summable on (0, 1) with
weight t. The domain of definition ofD(B) consists of functions u for which: u(t)
and u′(t) are absolutely integrable on the interval [ε, 1] (0 < ε < 1);

√
tu′(t) is

continuous on [0, 1] and vanishes at t = 0; Bu ∈ H and u(1) = 0. In ( [106],
Chapter 5, Section 9) it was proven that D(B) is dense in H , the operator B is
symmetric and positive definite in H and has a discrete spectrum. The eigenvalues
of operator B are

λk = j2ν,k, k ∈ N, (1.4.12)
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where jν,k is the kth positive root of the Bessel function Jν(t); the corresponding
orthonormal eigenfunctions have the form

φk(t) =

√
2

Jν+1(jν,k)
Jν(jν,kt), k ∈ N. (1.4.13)

The equation Bu = f in the space D(Bn) have the following form

Bn orbn(B, u) = orbn(B, f), (1.4.14)

approximate solutions of which are

orbn(B, um(t)) =

m∑
k=1

λ−1k

1∫
0

sf(s)φk(s)ds orbn(B,φk(t)),

where

orbn(B,φk(t)) =
(
φk(t), Bφk(t), . . . , B

nφk(t)
)

=
(
φk(t), λkφk(t), . . . , λ

n
kφk(t)

)
,

λk and φk are defined according to (1.4.12) and (1.4.13). The sequence
{orbn(B, um)} converges in the spaceD(Bn) to a solution of the equation (1.4.14)
if orbn(B, f)∈D(Bn). For the sequence of approximate solutions {orbn(B, um)}
Theorem 1.4.1 is valid in the space D(Bn) with norm (1.4.2), in which A is re-
placed by B.

3. Laplace-Beltrami operator δ. Let S be the unit sphere in the l-dimensional
Euclidean space Rl, ϑ1, ϑ2, . . . , ϑl−1 spherical coordinates of the point θ ∈ S and
Σ = {t : ρ1 ≤ |t| ≤ ρ2, t ∈ Rl}, where ρ1 and ρ2 are arbitrarily fixed positive
numbers such that ρ1 < 1 < ρ2. Consider a function f that is defined on S and let
f∗(t) = f(t/|t|) be the extension of f to

∑
. We say that a function f belongs to

the class C(2)(
∑

) if all second-order derivatives of f∗ are continuous on
∑

. The
operator δ is defined on C(2)(S) as

δ = −
l−1∑
j=1

1

qj sin
l−j−1 ϑj

∂

∂ϑj

(
sinl−j−1 ϑj

∂

∂ϑj

)
,

where q1 = 1, qj = (sinϑ1 sinϑ2 · · · sinϑj−1)2, j ≥ 2. This operator is sym-
metric in the space H = L2(S) and its eigenfunctions λn = n(n + l − 2),
n ∈ N, have multiplicity kn,l = (2n + l − 2)(l + n − 3)!((l − 2)!n!)−1. The
eigenfunctions that correspond to these eigenvalues λn form the spherical func-
tions Y (k)

n,l (θ), 1 ≤ k ≤ kn,l ( [106], Chapter 13, Section 2). They represent a
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complete orthonormal system in L2(S). Because the eigenvalues are positive, δ
is a positive definite operator and its spectrum is discrete. We order the spherical
functions Y (k)

n,l as follows. It is assumed that l ≥ 2. If 1 ≤ k ≤ k1,l = l, then take

λk = l(l− 1); φk(θ) = Y
(k)
1,l (θ), and if k1,l+ · · ·+ kj,l < k ≤ k1,l+ · · ·+ kj+1,l,

then λk = (j+1)(j+ l− 1); φk(θ) = Y
(k−(k1,l+···+kj,l
j+1,l (θ). If we substitute these

λk and φk into (1.4.7), we obtain the sequence for an approximate solution of the
equation δn orb(δ, u) = orbn(δ, f), where δn is orbital operator corresponding to
δ. For the sequence {orbn(δ, um)}, Theorem 1.4.1 is valid in the space D(δn)
with norm (1.4.2), in which A is replaced by δ, and the sequence {orbn(δ, um)} is
convergent to the generalized solution orbn(δ, u0).

1.5 Linear spline algorithm in space D(K−n)

Let H be an infinite-dimensional (real or complex) separable Hilbert space with
the norm ∥ · ∥ generated with the inner product (·, ·), and let K : H → H
be a compact, injective, selfadjoint, positive operator. In what follows, we de-
note by K−1 the inverse of K on the image K(H). The operator K−1 is not
continuous. By an n-orbit of K−1 at the point x we mean a finite sequence
orbn(K

−1, x) := (x,K−1x, . . . ,K−nx), n ∈ N0. We denote by D(K−n) the
space of points x ∈ H to which the operator K−1 is applied n-times. Each orbit
orbn(K

−1, x) is uniquely determined by the element x ∈ H , which we call the
generating element of this orbit. The space D(K−n) is identified with the space of
n-orbits of the operator K−1. For simplicity, sometimes we will denote by ∥x∥n,
instead of ∥orbn(K−1, x)∥n, the norm of the element orbn(K−1, x) ∈ D(K−n),
which is generated by the element x ∈ H . We hope that this identification will not
lead to misunderstanding. It is obvious that D(K−n) is a subspace of Hn+1.

Denote by {φk} an orthogonal sequence of eigenfunctions of the operator K
with the corresponding decreasing sequence of eigenvalues {λk}, k ∈ N. It is
easy to verify that {φk} is a complete system in H . Then K has the form Ku =∑∞

k=1 λk(φk, φk)
−1 (u, φk)φk, where λk > 0 and λk → 0, if k → ∞.

The left inverse K−1 to the operator K is selfadjoint and has the form

K−1x =

∞∑
k=1

λ−1k (x, φk)(φk, φk)
−1φk .

The sequence λ−1k is unbounded and tends to infinity. Therefore, the selfadjoint
operator K−1 has a discrete spectrum and is positive definite.

We can turn the set D(K−n) into the pre-Hilbert space with the help of the



56 D. Zarnadze, D. Ugulava

following inner product

⟨x, y⟩n = (x, y) + (K−1x,K−1y) + · · ·+ (K−nx,K−ny), n ∈ N0. (1.5.1)

According to (1.5.1), the norm of an element x ∈ D(K−n) has the form

∥x∥n = (∥x∥2 + ∥K−1x∥2 + · · ·+ ∥K−nx∥2)1/2, n ∈ N0. (1.5.2)

It is easy to verify that, since the operator K−1 is closed, D(K−n) is a Hilbert
space.

Let us consider the equation

Ku = f. (1.5.3)

This equation in the space D(K−n)takes the form

Kn(u,K
−1u, . . . ,K−nu) = (f,K−1f, . . . ,K−nf)

or
Kn(orbn(K

−1, u)) = orbn(K
−1, f), (1.5.4)

where the operator Kn : Hn+1 → Hn+1 is defined by the equality

Kn(u,K
−1u, . . . ,K−nu) = (Ku, u,K−1u, . . . ,K−n+1u),

i.e.,
Kn(orbn(K

−1, u)) = orbn(K
−1,Ku).

We call Kn an n-orbital operator corresponding to the operator K and call (1.5.4)
an n-orbital equation.

The operatorKn is symmetric and positive in the spaceD(K−n). For arbitrary
n ∈ N0 in the space D(K−n) we have

⟨Knu, v⟩n =
〈
(Ku, u,K−1u, . . . ,K−n+1u), (v,K−1v, . . . ,K−nv)

〉
n

= (Ku, v) + (u,K−1v) + · · ·+ (K−n+1u,K−nv) = ⟨u,Knv⟩n

and

⟨Knu, u⟩n = (Ku, u) + (u,K−1u) + · · ·+ (K−n+1u,K−nu) ≥ 0,

since all terms are positive.
Let us verify thatK−1n is a symmetric and positive operator in the spaceD(K−n).

The symmetry follows from the equality

⟨K−1n x, y⟩n = (K−1x, y) + (K−2x,K−1y) + · · ·+ (K−n−1x,K−ny)

= ⟨x,K−1n y⟩n.
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Taking into account the positive definiteness of K−1 we get

⟨K−1n x, x⟩n = (K−1x, x) + (K−2x,K−1x) + · · ·+ (K−n−1x,K−nx)

≥ C(x, x) + C(K−1x,K−1x) + · · ·+ C(K−n−1x,K−nx)

= C⟨x, x⟩n.

Therefore,

Knφk = Kn(orbn(K
−1, φk)) = orbn(K

−1,Kφk) = λkorbn(K
−1, φk).

This means that {orbn(K−1, φk)} is an orthogonal sequence of eigenvectors of
Kn in the space D(K−n). Besides, each eigenvector orbn(K−1, φk) corresponds
to the eigennumber λk of the operator Kn. The sequence {orbn(K−1, φk)} is a
complete system in the space D(K−n) and

Kn(orbn(K
−1, u)) =

∞∑
k=1

λk(φk, φk)
−1
n (u, φk)norbn(K

−1, φk).

Furthermore,

⟨u, φk⟩n = (u, φk) + (K−1u,K−1φk) + · · ·+ (K−nu,K−nφk)

= (u, φk) + (u,K−2φk) + · · ·+ (u,K−2nφk)

= (u, φk) + λ−2k (u, φk) + · · ·+ λ−2nk (u, φk)

= (u, φk)(1 + λ−2k + · · ·+ λ−2nk ),

and, therefore,

⟨u, φk⟩n
⟨φk, φk⟩n

=
(1 + λ−2k + · · ·+ λ−2nk )(u, φk)

(1 + λ−2k + · · ·+ λ−2nk )(φk, φk)
=

(u, φk)

(φk, φk)
.

With this ratio, the last decomposition is rewritten as

Kn(orbn(K
−1, u)) =

∞∑
k=1

λk(φk, φk)
−1(u, φk)orbn(K

−1, φk). (1.5.5)

In terms of coordinates this means that

K−i+1u =

∞∑
k=1

λ−i+1
k (φk, φk)

−1(u, φk)φk, 0 ≤ i ≤ n.

Our goal is to construct a spline algorithm for the approximate solution of the
n-orbital equation (1.5.4) in the spaceD(K−n). For the construction of an approx-
imate solutionU(f) we apply the following information about the problem element
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f . Let y = I(f), f ∈ D(K−n), be a nonadaptive information of cardinality m,
i.e.,

y = I(f) = [L1(f), . . . , Lm(f)], (1.5.6)

where Li(f) = (f, φi)n, i = 1, . . . ,m.
Let us construct an interpolatory y ∈ I(D(K−n)) spline in the spaceD(K−n).

For this we consider the following spaces: the linear space F1 consisting of ele-
ments of the space D(K−n), and G = D(K−n) with norm (1.5.2). Let T be the
algebraic projection of F1 onX = Kerµ⊥F , i.e., let T be an identical operator from
F1 on D(K−n) and X = (D(K−n), ∥ · ∥n). The solution operator Sn = K−1n of
equation (1.5.4) is defined by the equality

Sn(orbn(K
−1, x)) = orbn(K

−1,K−1x).

The set of problem elements is F = {f ∈ F1; ∥T (f)∥n ≤ 1}. The spline σm
interpolatory y = I(f) is defined by the equalities

σm(f) = y and ∥T (σm)∥n = inf{∥T (z)∥n, z ∈ D(K−n), I(z) = y)}.

As we noted above, the spline orbn(K
−1, σm) is the best approximation ele-

ment of orbn(K−1, f) ∈ D(K−n) in the orthogonal complement subspace

Ker I⊥ = span{orbn(K−1, φ1), . . . , orbn(K
−1, φm)} ⊂ D(K−n)

with respect to the norm ∥ · ∥n. Therefore, the spline orbn(K−1, σm) interpolatory
y ∈ I(D(K−n)) in the space D(K−n) has the form

orbn(K
−1, σm) =

m∑
k=1

(f, φk)n
(φk, φk)n

orbn(K
−1, φk)

=

m∑
k=1

(f, φk)

(φk, φk)
orbn(K

−1, φk). (1.5.7)

The coefficient in (1.5.7) does not depend on n. This means that the element σm ∈
D(An) constructed according to equality (1.5.7) is a spline that simultaneously
corresponds to the information y = [(f, h0)n, . . . , (f, hm)n], as well as to the
information y = [(f, h0), . . . , (f, hm)].

Using the equality K−1n φk = λ−1k orbn(K
−1, φk), we obtain

orbn(K
−1, um)=Snorbn(K

−1, σm)=
m∑
k=1

(f, φk)

λk(φk, φk)
orbn(K

−1, φk). (1.5.8)
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This means that
orbn(K

−1, um) = Snorbn(K
−1, σm)

is a spline algorithm for information (1.5.6), where Li(f) = (f, φi)n. It is well
known that if equation (1.5.4) admits a generalized solution orbn(K

−1, u0) ∈
D(K−n), then the sequence of approximate solutions {orbn(K−1, um)} converges
to orbn(K

−1, u0) in the space D(K−n).
We have proved that in the above notation the following statement is valid.

Theorem 1.5.1. Let H be a Hilbert space and let K be a compact, injective self-
adjoint, positive operator in H . We require that the set T (Ker I) is closed. Then
algorithm (1.5.8) is a linear spline algorithm for the approximate solution of the n-
orbital equation (1.5.4) in the space of n-orbits D(K−n). Besides, if in the space
D(K−n) there exists a generalized solution orbn(K

−1, u0), then the sequence
of approximative solutions {orbn(K−1, um)} converges to orbn(K

−1, u0) in the
space D(K−n).

Note that the condition in Theorem 1.5.1 on the closedness of the set T (Ker I)
is satisfied for the case of information of the form (1.5.6). This follows from the
fact that the information functionals are generated by the elements of a basis and
are continuous for any n ∈ N.

Remark 1.5.1. According to Theorem 1.2.5, if the radii of information is finite,
i.e., r(I) < ∞, then the spline algorithm is central in the worst-case setting. We
are interested in finding algorithms having a finite error for ill-posed problems by
using incomplete information (1.5.6). The error is being measured in the worst-
case, average-case or probabilistic-case setting (see [158], Chapters 6 and 8, for a
detailed discussion of the last settings). Algorithms having finite error for a given
setting exist if and only if the solution operator S is bounded in that setting. This
holds for both the worst-case and average-case setting. In the worst-case setting,
this means that there is no algorithm for solving an ill-posed problem whose error
is finite, because the solution operator S is unbounded. In the average-case setting,
this means that the finite-error algorithms exist if and only if the solution operator is
bounded on the average. It was also shown that if the measure is Gaussian and the
linear operator S is measurable, then a linear problem is unsolvable on the average
if and only if it is ill-posed on the average. It was proved that linear ill-posed
problems are solvable on the average for all Gaussian measures. This suggested
the following question: is every linear problem well-posed on the average for any
Gaussian measure? This question was answered in the affirmative independently
in [79, 172]. To prove this, both the notion of zero-mean Gaussian measure and
the covariance operator from [175] were essentially used. This is an instance of
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a general property, as stated in the following theorem from [79]: linear ill-posed
problems are solvable on the average for all Gaussian measures.

The problem of existence of average-case optimal algorithms for the solution
operator was considered in [79] (see also [152], Proposition 4.1). The problem of
existence of worst-case optimal algorithms for the solution operator in the Hilbert
space of finite n-orbits and in the Fréchet space of all orbits was considered in
[170].

We now give several examples of self-adjoint and positive definite operators in
a Hilbert space for which the operator K satisfies the conditions of Theorem 1.5.1.
Consider the self-adjoint and positive operator K in L2(−∞,∞) that has the form

K(u) =

∞∑
k=1

(2k + 1)−1(u, φk)φk.

For this operatorK, in the spaceD(K−n) consider the corresponding orbital equa-
tion Kn orbn(K

−1, u) = orbn(K
−1, f). For a spline σm interpolatory y, the

spline algorithm has the form

orbn(K
−1, um) = Sn orbn(K

−1, σm) =
m∑
k=1

(2k + 1)(f, φk) orbn(K
−1, φk),

where Sn = K−1n is the solution operator. According to Theorem 1.5.1, this algo-
rithm is linear and spline in the space D(K−n).

2. Integral equations of the first kind.
2.1. Consider the following equation of the first kind (Examples 2.1–2.3 dis-

cussed below are compiled in accordance with Examples 2.1, 2.6 and 2.11 of the
second chapter of the third part of [77])

K(u) =

b∫
a

K(s, t)u(s)ds = f(t), (1.5.9)

Where

K(s, t) =

{
(s− a)(t− b)(a− b)−1, a ≤ s ≤ t ≤ b,

(t− a)(s− b)(a− b)−1, a ≤ t ≤ s ≤ b.

It is well known that K(s, t) is the Green function for the symmetric and posi-
tive definite operator A = −d2/dt2 in the Hilbert space L2[a, b] with boundary
conditions u(a) = u(b) = 0. D(A) is a set of functions having absolutely contin-
uous first-order derivatives and quadratically summable second-order derivatives
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on [a,b]. D(An) consists of functions that have on [a,b] absolutely continuous
derivatives of order 2n − 1 and quadratically summable derivatives of order 2n.
This space coincides with the Sobolev space W 2n[a, b] of order 2n. The eigen-
values and their corresponding eigenfunctions for A are λk = k2π2/(b − a)2 and

φk(t) =
√

2
b−a sin

πk(t−a)
b−a , k ∈ N. Approximate solution of the equation Ku = f

in space D(K−n) =W 2n[a, b] has the following form

orbn(K
−1, um(t)) =

m∑
k=1

2k2π2

(b− a)3

b∫
a

f(s) sin
πk(s− a)

b− a
ds

× orbn

(
K−1, sin

πk(t− a)

b− a

)
.

The sequence {orbn(K−1, um)} converges in the spaceD(K−n) to the solution of
the equation (1.5.9). For this sequence, the above reasoning applies and according
to Theorem 1.5.1, this spline algorithm is linear.

2.2. Consider the integral equation of the first kind (1.5.9), where

K(s, t) =

{
(es + e2a−s)(et + e2b−t)2−1(e2b − e2a)−1, a ≤ s ≤ t ≤ b,

(et + e2a−t)(es + e2b−s)2−1(e2b − e2a)−1, a ≤ t ≤ s ≤ b.

It is well known that K(s, t) is the Green function for the symmetric and positive
operator Au = −d2u/dt2 + u in the Hilbert space L2[a, b] with the boundary con-
dition u′(a) = u′(b) = 0. D(A) is the set of functions having absolutely continu-
ous first-order derivatives and quadratically summable second-order derivatives on
[a,b]. D(An) consists of functions that have on [a,b] absolutely continuous deriva-
tives of order 2n − 1 and quadratically summable derivatives of order 2n. This
space coincides with the Sobolev space W 2n[a, b] of order 2n. The eigenvalues
and their corresponding eigenfunctions for A are λk = 1 + k2π2/(b − a)2 and

orbn(K
−1, φk(t)) =

√
2
b−a cos

πk(t−a)
b−a , k ∈ N. The approximate solution of the

equation (1.5.9) has the following form

orbn(K
−1, um(t)) =

m∑
k=1

(
1 +

k2π2

(b− a)2

) 2

b− a

b∫
a

f(s) cos
πk(s− a)

b− a
ds

× orbn

(
K−1, cos

πk(t− a)

b− a

)
.

The sequence {orbn(K−1, um)} converges in the spaceD(K−n) to the solution of
the equation (1.5.9). For this sequence, the above reasoning applies and according
to Theorem 1.5.1, this spline algorithm is linear.
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2.3. Consider the integral equation (1.5.9), where a = −∞, b = +∞ and

K(s, t) =

{
−π−1/2I(−∞, s)I(t,∞) exp s2+t2

2 , s ≤ t,

−π−1/2I(s,∞)I(−∞, t) exp s2+t2

2 , s ≥ t,

where I(u, v) =
∫ v
u e
−t2dt. It is well known that K(s, t) is the Green function for

symmetric and positive degenerate hypergeometric operator Au(t) = −d2u/dt2+
(t2 + 1)u in the Hilbert space L2[a, b] with the boundary condition u(−∞) =
u(∞) = 0. D(A) consists of functions that have absolutely continuous derivatives
of the first order and quadratically summable derivatives of order 2n on ]−∞,∞[.
The eigenvalues and their corresponding eigenfunctions for K are λk = 2k and
φk(t), k ∈ N. Using the functions φk we construct the following approximate
solution for the equation (1.5.9)

orbn(K
−1, um(t)) = 2

m∑
k=1

k

∞∫
−∞

f(s)φk(s)ds orbn(K
−1, φk(t)).

The sequence {orbn(K−1, um)} converges in the spaceD(K−n) to the solution of
the equation (1.5.9). For this sequence, the above reasoning applies and according
to Theorem 1.5.1, this spline algorithm is linear.

1.6 A linear spline algorithm in the space D((A∗A)−n) for the operator A
admitting singular value decomposition (SVD)

Let H and M be the Hilbert spaces and let {φk} and {ψk} be the orthonormal
systems in H and M , respectively. For simplicity, for the inner product in H and
M , we apply the same notation (·, ·).

Further, let A be an operator acting from H to M and having an SVD with
respect to the orthonormal systems {φk} and {ψk} (see [113], Ch. IV, Sect. 1), i.e.,

Au =
∞∑
k=1

λk(u, φk)ψk , u ∈ H, λk > 0. (1.6.1)

If the operator A has an SVD, it is also said that {φk, ψk, λk}, k ∈ N, represents a
singular system forA. The numbers λk are called singular numbers of the operator
A. Although, in the definition of singular decomposition (1.6.1), the systems {φk}
and {ψk} are required to be orthonormal. This decomposition can also be applied
for the cases of orthogonal systems too. Indeed, in this case, the decomposition for
Au can again be written in the form

Au =
∞∑
k=1

λk(u, φk)ψk =
∞∑
k=1

λk∥φk∥ · ∥ψk∥
(
u,

φk
∥φk∥

) ψk
∥ψk∥

. (1.6.2)
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In (1.6.2), the role of a singular system will be played the triple{ φk
∥φk∥

,
ψk
∥ψk∥

, λk∥φk∥ · ∥ψk∥
}
.

In this case we will say that the operator A admits an SVD (1.6.2) with respect
to the orthogonal sequences {φk} and {ψk} and the triple {φk, ψk, λk}, k ∈ N,
represents an orthogonal singular system for A. In general, such operators are not
compact, selfadjoint and ImA ̸=M . The operator equation

Au = f, (1.6.3)

in general, is ill-posed and we seek a generalized solution of (1.6.3) in the sense of
Moore-Penrose (see [113, Ch. IV]). This means that if f ∈ ImA+ImA⊥, we seek
a generalized solution that satisfies the equation

A∗Au = A∗f. (1.6.4)

This solution belongs to the set (KerA)⊥ = ImA∗, where A∗ : M → H is the
adjoint to the operator A operator in the sense of Hilbert spaces. It follows from
(1.6.1) that

A∗f =
∞∑
k=1

λk(f, ψk)φk. (1.6.5)

The operator A∗A : H → H has the form

A∗Au =
∞∑
k=1

λ2k(u, φk)(ψk, ψk)φk, u ∈ H. (1.6.6)

From (1.6.2) (1.6.5) and (1.6.6) we obtain

Aφk = λk(φk, φk)ψk, A
∗ψk = λk(ψk, ψk)φk,

A∗Aφk = λ2k(φk, φk)(ψk, ψk)φk.
(1.6.7)

According to [113], we obtain that if A possesses an SVD (1.6.2), then the unique
solution u† of (1.6.3), in the Moore–Penrose sense, is given by the formula

u† =
∞∑
k=1

λ−1k (∥φk∥ · ∥ψk∥)−2(f, ψk)φk . (1.6.8)

The operator A∗A is symmetric and positive. The positiveness follows from the
formula

(A∗Au, u) = (Au,Au) ≥ 0.
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Also suppose thatA is an injective operator. It is clear from the equality KerA⊥ =
ImA∗ that under the above conditions, the equality ImA∗A = H is valid. This
means that the operator A∗A is selfadjoint, having positive eigenvalues
λ2k(φk, φk)(ψk, ψk), which correspond to the eigenelements φk.

If the systems {φk} and {ψk} in (1.6.1) are orthonormal and λk → 0, then the
operator A is compact (see [41], Chapter 1, Section 2). From this it follows that if
these systems are only orthogonal and

lim
k→∞

λk∥φk∥ · ∥ψk∥ = 0 ,

then A is compact. Then A∗A is also compact and we can apply the results of
Section 1.5 for the operator K := A∗A : H → H . According to formulas (1.5.8)
and (1.6.6), an approximate solution um of (1.6.4) has the form

um =

m∑
k=1

λ−2k ∥φk∥−4∥ψk∥−2(A∗f, φk)φk

=

m∑
k=1

λ−2k ∥φk∥−4∥ψk∥−2(f,Aφk)φk

=

m∑
k=1

λ−1k (∥ψk∥∥φk∥)−2(f, ψk)φk . (1.6.9)

This means that the approximate solution um of equation (1.6.4) coincides with
the m-th partial sum of the generalized solution in the sense of Moore–Penrose
represented by (1.6.8). Thus (1.6.9) is the truncated SVD for the regularization
method (see [96], Theorem 1.2)

Tγf =
∞∑
k=1

Fγ(λk)(∥ψk∥ · ∥φk∥)−2(f, ψk)φk

with the filter

Fγ(λk) =

{
λ−1k if k ≤ 1

γ ,

0 if k > 1
γ .

In other words, if we take γ = 1
m , then for such a filter we have Tγf = T1/mf =∑

k≤m λ
−1
k (∥ψk∥ · ∥φk∥)−2(f, ψk)φk = um.

We consider equation (1.6.4) in the spaceD((A∗A)−n). Let us apply Theorem
1.5.1 for the case K = A∗A, where A admits an SVD (1.6.2). The norm (1.5.2),
which is generated by the inner products (1.5.1), for K = A∗A has the form

⟨x, y⟩n = (x, y) +
(
(A∗A)−1x, (A∗A)−1y

)
+ · · ·+

(
(A∗A)−nx, (A∗A)−ny

)
, n ∈ N0,
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and

∥x∥n =
(
∥x∥2 + ∥(A∗A)−1x∥2 + · · ·+ ∥(A∗A)−nx∥2

)1/2
, n ∈ N0. (1.6.10)

The space D((A∗A)−n) is isomorphic to the space of n-orbits orbn((A∗A)−1, x)
of the operator (A∗A)−1. This isomorphism is obtained by the mapping

D((A∗A)−n) ∋ x→ orbn((A
∗A)−1, x)

=
(
x, (A∗A)−1x, . . . , (A∗A)−nx

)
. (1.6.11)

In the sequel, following our previous agreements, sometimes instead of the
norm ∥orbn((A∗A)−1, x)∥n of the element orbn((A∗A)−1, x)∈D((A∗A)−n) ge-
nerated by x ∈ H we simply write ∥x∥n. If some operatorB acts onD((A∗A)−n),
instead of B(orbn((A

∗A)−1, x)) we will simply write Bx.
Equation (1.6.4) in the space D((A∗A)−n) actually has the form

(A∗A)n(orbn((A
∗A)−1, u)) = orbn((A

∗A)−1, A∗f), (1.6.12)

where

(A∗A)n(orbn((A
∗A)−1, u)) = (A∗Au, u, . . . , (A∗A)−n+1u)

is an n-orbital operator for A∗A and

orbn((A
∗A)−1, A∗f) = (A∗f, (A∗A)−1A∗f, . . . , (A∗A)−nA∗f).

The decomposition of the element orbn((A∗A)−1, u) with respect to the sys-
tem orbn((A

∗A)−1, φk) in the space D((A∗A)−n) has the form

orbn((A
∗A)−1, u) =

∞∑
k=1

(u, φk)n(φk, φk)
−1
n orbn((A

∗A)−1, φk)

=
∞∑
k=1

(u, φk)(φk, φk)
−1orbn((A

∗A)−1, φk).

Therefore, according to (1.6.7), the orbital operator (A∗A)n has the form

(A∗A)n orbn((A
∗A)−1, u)

=

∞∑
k=1

(u, φk)(φk, φk)
−1(A∗A)norbn((A

∗A)−1, φk)

=

∞∑
k=1

λ2k(u, φk)(ψk, ψk)orbn((A
∗A)−1, φk). (1.6.13)
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This representation is an analogy of (1.5.5). The latter equality in coordinates is
written as

(A∗A)−i+1u =

∞∑
k=1

(λ2k(φk, φk)(ψk, ψk))
−i+1(u, φk)(φk, φk)

−1φk, 0 ≤ i ≤ n.

In the case of i = 0, we obtain equality (1.6.6).
For the inverse Sn = (A∗A)−1n to the operator (A∗A)n on the range of (A∗A)n,

we have

(A∗A)−1n
(
x, (A∗A)−1x, . . . , (A∗A)−nx

)
=
(
(A∗A)−1x, (A∗A)−2x, . . . , (A∗A)−n−1x

)
and

Sn(orbn((A
∗A)−1, x)) = orbn((A

∗A)−1, (A∗A)−1x).

It will be noted that Sn is the n-orbital operator corresponding to the operator
(A∗A)−1.

1.6.1 Construction of a spline and a spline algorithm in the space of n-orbits
D((A∗A)−n)

Our goal is to construct an algorithm for the approximate solution of equation
(1.6.4) in the spaceD((A∗A)−n). For the construction of the approximate solution
U(f) we apply some information about the right-hand side A∗f of the n-orbital
equation (1.6.12). Below we will use the notation of Section 1.1. Let us construct
the spline interpolatory y ∈ I(D((A∗A)−n)) in the space D((A∗A)−n), where I
is nonadaptive information of cardinality m and

y = I(A∗f) =
[
(A∗f, φ1), . . . , (A

∗f, φm)
]
.

Let F1 be a linear space consisting of elements of the space D((A∗A)−n), let
G = X = D((A∗A)−n) with norm (1.6.10), and let T be an identical operator
acting from F1 to X . Let the set of problem elements be

F = {f ∈ D((A∗A)−n); ∥Tf∥n ≤ 1},

where

∥Tf∥n =
(
∥f∥2 + ∥(A∗A)−1f∥2 + · · ·+ ∥(A∗A)−nf∥2

)1/2
,

and let the solution operator be Sn = (A∗A)−1n . The spline σm interpolatory
y = I(A∗f) in the space D((A∗A)−n) is defined by the equalities I(σm) = y and

∥T (σm)∥n = inf{∥T (z)∥n : z ∈ D(K−n), I(z) = y}.
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Applying (1.5.7) we obtain that the spline σm in the space D((A∗A)−n) has the
form

orbn((A
∗A)−1, σm) =

m∑
i=1

(A∗f, φi)

(φi, φi)
orbn((A

∗A)−1, φi)

=
m∑
i=1

(f,Aφi)

(φi, φi)
orbn((A

∗A)−1, φi)

=
m∑
i=1

λi(f, ψi)orbn((A
∗A)−1, φi). (1.6.14)

The spline σm is the best approximation element of A∗f ∈ D((A∗A)−n) in the
orthogonal complement subspace Ker I⊥ ⊂ D((A∗A)−n) with respect to the norm
(1.6.10), and the coefficients in (1.6.14) do not depend on n. This means that
the element σm ∈ D((A∗A)−n) constructed according to equality (1.6.14) is a
spline that simultaneously corresponds to the information y = [(A∗f, φ1)n, . . . ,
(A∗f, φm)n] and to the information y1 = [(A∗f, φ1), . . . , (A

∗f, φm)]. It is easy
to see that

Sn(orbn(A
∗A)−1, φi) = λ−2i (φi, φi)

−1(ψi, ψi)
−1orbn((A

∗A)−1, φi).

Also, according to (1.6.9) and (1.6.14), we have

orbn((A
∗A)−1, um) =

m∑
i=1

λ−1i (∥φi∥ · ∥ψi∥)−2(f, ψi)orbn((A∗A)−1, φi)

=
m∑
i=1

λi(f, ψi)Sn(φi) = Sn

( m∑
i=1

λi(f, ψi)φi

)
= Sn(σm). (1.6.15)

Consider the problem of convergence of the sequence {orbn((A∗A)−1, um)}
defined by (1.6.9) to the element u†defined by (1.6.8), when A∗f ∈ D((A∗A)−n).
By our assumption,A is an injective operator. Therefore, the operatorA∗A is such,
too. From this and the symmetry of the operator (A∗A)−1, with the help of (1.6.7)
and (1.6.9), we can write um in the following way:

um =

m∑
k=1

∥φk∥−2(f,Aφk)(A∗A)−1φk =
m∑
k=1

∥φk∥−2(A∗f, φk)(A∗A)−1φk

=

m∑
k=1

(
(A∗A)−1A∗f,

φk
∥φk∥

) φk
∥φk∥

.
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Hence

(A∗A)−(s−1)um =

m∑
k=1

(
(A∗A)−1A∗f,

φk
∥φk∥

)
(A∗A)−(s−1)

φk
∥φk∥

=
m∑
k=1

(
(A∗A)−sA∗f,

φk
∥φk∥

) φk
∥φk∥

(1.6.16)

for any 1 ≤ s ≤ n. The right-hand side of (1.6.16) is the m-th partial sum of the
Fourier series of the element (A∗A)−sA∗f with respect to the orthonormal system
φk/∥φk∥. Since A∗A is a compact self-adjoint operator, its eigenelements φk, ac-
cording to the Hilbert-Schmidt theorem, constitute a dense set inH . Therefore, the
sequence {(A∗A)−(s−1)um} defined by (1.6.16) converges inH to (A∗A)−sA∗f =
(A∗A)−su† for all 1 ≤ s ≤ n, i.e., the sequence {orbn((A∗A)−1, um)} conoverges
to orbn((A

∗A)−1, u†) in the space D((A∗A)−n+1).
The foregoing and Theorem 1.5.1 imply the following theorem.

Theorem 1.6.1. Let H and M be Hilbert spaces, let A : H → M be a com-
pact operator, and let {φk, ψk, λk}, k ∈ N, form an orthogonal singular sys-
tem for A. Then algorithm (1.6.15) is a linear spline in the space D((A∗A)−n).
Moreover, if A∗f ∈ D((A∗A)−n), then the sequence of the approximate solutions
{orbn((A∗A)−1, um)} converges to orbn((A

∗A)−1, u†) in the space
D((A∗A)−n+1).

Proof. From the compactness of the operator A it follows that A∗A is a compact,
selfadjoint and positive operator. This implies that all conditions of Theorem 1.5.1
for the operator K = A∗A in the space D((A∗A)−n) are satisfied.

1.7 A linear spline algorithm of computerized tomography (CT) in the space
D((R∗R)−n)

The main problem of computerized tomography consists in the reconstruction of
the function by its integral over hyperplanes. The map R, which to the function
f defined on the p-dimensional Euclidean space Rp corresponds the integrals of f
along all hyperplanes, is called the Radon operator.

We use the standard parametrization of a hyperplane by a normal unit vector ω
and its distance s from the origin as follows. The Radon operator R maps a density
function u to its integrals over all hyperplanes and is defined by the formula

Ru(ω, s) =

∫
(t,ω)=s

u(t)dt =

∫
ω⊥

u(sω + t)dt, (1.7.1)
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where ω ∈ Sp−1 = {x ∈ Rp : |x| = 1} (p > 1) and u belongs to the Schwartz
space S(Rp) of rapidly decreasing in Rp functions. According to the well-known
Schwartz theorem ( [113], Section II.1), R is the injective operator acting from
S(Rp) to the Schwartz space S(Z), where Z is the cylinder Z = Sp−1×R. More-
over, R is a topological monomorphism with the closed countable codimensional
range [69].

The Radon operator, which is defined by (1.7.1) only for the functions belong-
ing to the Schwartz space S(Rp), admits a continuous extension to some weighted
L2-space. Let Wν(x) = (1 − |x|2)ν−p/2 be the weight function, defined on the
unit ball Ωp = {x ∈ Rp : |x| ≤ 1}, where |x| is the Euclidean norm of x ∈ Rp.
Let wν(s) = (1 − s2)ν−1/2, s ∈ [−1, 1], be the weight function defined on the
cylinder Z. It is shown in ([41], p. 12) that R is a continuous operator acting from
the space H = L2(Ω

p,W−1ν ) into the space M = L2(Z,w
−1
ν ) which is endowed

with the usual norm. If ν > p
2 − 1, the operator R acting in these spaces admits a

SVD with respect to products of Gegenbauer and spherical harmonics, which was
obtained by A. Louis [95].

Beforehand, we introduce some notation:

• P
(α,β)
r is the Jacobi polynomial of degree r and indices α, β.

• Cνr is the Gegenbauer polynomial of degree r and index ν.

• Γ is the second-kind Euler integral.

• By
{Ylk, k = 1, . . . , N(p, l)}

we denote the orthonormal basis of spherical functions defined on Sp−1,
where

l = 0, 1, . . . , N(p, l) =
(2l + p− 2)(p+ l − 3)!

l!(p− 2)!
, p ≥ 2;

• We set

vνrlk(x) =Wν(x)|x|lP (ν−p/2,l+p/2−1)
(r−l)/2 (2|x|2 − 1)Ylk(x/|x|); (1.7.2)

uνrlk(ω, s) = drlwν(s)C
ν
r (s)Ylk(ω),

where

drl = πp/2−122ν−1
Γ((r − l)/2 + ν − p/2 + 1)Γ(r + 1)Γ(ν)

Γ((r − l)/2 + 1)Γ(r + 2ν)
. (1.7.3)



70 D. Zarnadze, D. Ugulava

• We set

λ2rlk =
22νΓ((r + l)/2 + ν)Γ((r − l)/2+ν − p/2 + 1)Γ(r + 1)

π1−pΓ((r + l + p)/2)Γ((r − l)/2 + 1)Γ(r + 2ν)
= λ2rl. (1.7.4)

We note that in notation (1.7.2)–(1.7.4), P (α,β)
0 ≡ 1, Cλ0 ≡ 1 and Y0k ≡ 1.

Proposition 1.7.1 ( [41], Proposition 1.3.2). The system {vνrlk, uνrlk, λrl}, r ≥ 0,
0 ≤ l ≤ r, k = 1, . . . , N(p, l), where vνrlk, urlk and λrl are defined by (1.7.2)–
(1.7.4), is an orthogonal singular system for the Radon operator R acting from
L2(Ω

p,W−1ν ) to L2(Z,w
−1
ν ). In other words,

Ru(ω, s) =
∞∑
r=0

∑
l≤r

′
λrl

N(p,l)∑
k=1

(u, vνrlk)L2(Ωp,W−1
ν ) · u

ν
rlk(ω, s)

where Σ′ means that the summability takes place only for even r + l.

It should be noted that the systems {uνrlk} and {vνrlk} are orthogonal, but not
orthonormal ([41], p. 13). To obtain decomposition with respect to the orthonormal
systems, we rewrite the decomposition from Proposition 1.7.1 as follows:

Ru(ω, s) =

∞∑
r=0

∑
l≤r

′
λrl

N(p,l)∑
k=1

∥vνrlk∥ · ∥uνrlk∥
(
u,

vνrlk
∥vνrlk∥

)
L2(Ωp,W−1

ν )
·
uνrlk(ω, s)

∥uνrlk∥
.

From here and with the help of (1.6.7) we obtain that the solution in the sense of
Moore-Penrose u† of the equation Ru = f , where R : H → M , is given by the
formula

u† =
∞∑
r=0

∑
l≤r

′
λ−1rl

N(p,l)∑
k=1

(∥uνrlk∥ · ∥vνrlk∥)−2(f, uνrlk)L2(Z,w
−1
ν )v

ν
rlk(x),

x ∈ Ωp. (1.7.5)

Proposition 1.7.2 ( [168]). If {vνrlk, uνrlk} and λrl, l ≤ r, 1 ≤ k ≤ N(p, l), are
represented by (1.7.2)–(1.7.4), then

lim
r→∞

λrl∥uνrlk∥ · ∥vνrlk∥ = 0.

For approximation inversion of the Radon operator R, i.e., for the computer-
ized tomography problem, we construct a linear spline algorithm for the equation
R∗Ru = R∗f in the Hilbert space D((R∗R)−n) with the norm

∥x∥n = (∥x∥2 + ∥(R∗R)−1x∥2 + · · ·+ ∥(R∗R)−nx∥2)1/2. (1.7.6)
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According to (1.6.12), this n-orbital equation takes the form

(R∗R)n(orbn((R
∗R)−1, u)) = (orbn((R

∗R)−1,R∗f)), (1.7.7)

where
(R∗R)n(orbn((R

∗R)−1, u)) = orbn((R
∗R)−1,R∗Ru)

is an n-orbital operator for R∗R and

(orbn((R
∗R)−1,R∗f)) = {R∗f, (R∗R)−1R∗f, . . . , (R∗R)−nR∗f}.

According to (1.6.13), for (1.7.7) we have the representation

(R∗R)n(orbn((R
∗R)−1, u))

=
∞∑
r=0

∑
l≤r

′
λ2rl

N(p,l)∑
k=1

(uνrlk, u
ν
rlk)(u, v

ν
rlk)orbn((R

∗R)−1, vνrlk). (1.7.8)

The m-th truncated singular value decomposition (TSVD) corresponding to the
solution of (1.7.5) has the form

orbn((R
∗R)−1, um)

=

m∑
r=0

∑
l≤r

′
λ−1rl

N(p,l)∑
k=1

(∥uνrlk∥ · ∥vνrlk∥)−2(f, uνrlk)L2(Z,w
−1
ν )orbn((R

∗R)−1, vνrlk),

x ∈ Ωp, (1.7.9)

where Σ′ means that the summability takes place only for even r + l.
Below we will use the notation of Section 1.6. Let us construct the spline inter-

polatory y ∈ I(D((R∗R)−n)) in the space D((R∗R)−n), where I is nonadaptive
information of cardinality m+ 1, i.e.,

y = I(R∗f) = [(R∗f, uν001)n, . . . , (R
∗f, uνmmN(p,m))n].

Let F1 be the linear space consisting of elements of the space D((R∗R)−n), let
G = X = D((R∗R)−n) with norm (1.7.6), and let T be the identical operator
acting from F1 to X . Let the set problem element be

F = {f ∈ D((R∗R)−n); ∥T (f)∥n ≤ 1},

where

∥T (f)∥n = (∥f∥2 + ∥(R∗R)−1f∥2 + · · ·+ ∥(R∗R)−nf∥2)1/2.
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The solution operator Sn = (R∗R)−1n , where (R∗R)n is defined by (1.7.8). The
spline σm interpolatory y = I(f) in the space D((R∗R)−n) is defined by the
equalities I(σm) = y and

∥T (σm)∥n = inf{∥T (R∗z)∥n; z ∈ D((R∗R)−n), I(z) = y}.

Applying (1.5.7) and (1.6.13), we can obtain the spline σm in the space
D((R∗R)−n), but we obtain σm from the equality um = Sn(σm) = φs(σm).
According to (1.6.15) we have

orbn((R
∗R)−1, σm(y)) = S−1n (um) = (R∗R)num

= (R∗R)n

m∑
r=0

∑
l≤r

′
λ−1rl

N(p,l)∑
k=1

(∥uνrlk∥ · ∥vνrlk∥)−2(f, uνrlk)L2(Z,w
−1
ν )v

ν
rlk(x)

=

m∑
r=0

∑
l≤r

′
λrl

N(p,l)∑
k=1

(f, uνrlk)L2(Z,w
−1
ν )orbn((R

∗R)−1, vνrlk(x)), x ∈ Ωp.

If we collect the results of this section and apply Theorem 1.6.1, we obtain the
following theorem.

Theorem 1.7.1. Let {vνrlk, uνrlk, λrl}, l ≤ r, 1 ≤ k ≤ N(p, l), be an orthogonal
singular system for the Radon operator R, which acts from L2(Ω

p,W−1ν ), ν >
p
2 − 1, to the space L2(Z,w

−1
ν ). Then the algorithm

orbn((R
∗R)−1, um) = Sn(σm) = φs(I(R∗f)),

where orbn((R
∗R)−1, um) is defined according to (1.7.9), is a linear spline for

the solution operator Sn = (R∗R)−1n and nonadaptive information

I(R∗f) = [(R∗f, uν001)n, . . . , (R
∗f, uνmmN(p,m))n].

Moreover, if R∗f ∈ D((R∗R)−n), then the sequence of approximative solutions
{orbn((R∗R)−1, um)} converges to the solution of equation (1.7.7) (in the sense
of Moore–Penrose) in the space D((R∗R)−n+1).

Let us go back to equation (1.7.7). After applying the SVD for the Radon
transform, we construct an approximate solution in the form of the TSVD (1.7.9).
Let us write the solution obtained by this method in the form um = Sγ , γ = 1

m .
According to the well-known result of A. Louis ( [96], Theorem 3), we can say that
this method can be written as an approximative inverse with mollifier

eγ(x, y) =

m∑
r=0

∑
l≤r

′
N(p,l)∑
k=1

∥vνrlk∥−2vνrlk(x) · vνrlk(y), γ =
1

m
, x ∈ Ωp, y ∈ Z.



C H A P T E R 2

New results in the theory of locally convex spaces

2.1 Different topologies of uniform convergence on locally convex spaces

Below we will use the following most generally accepted designations and terms,
mainly borrowed from [50, 82, 83, 144, 147].

Let (E,T) be a linear space over a field R or C and T be the topology on E.
The space (E,T) is called a linear topological space, if E is linear space and linear
operations are continuous in the topology T. (E,T) is said to be LCS if there is
an absolutely convex (convex and balanced) basis of neighborhoods of the zero
U0(E) in E.

The locally convex topology T of the space (E,T) is generated by a family
of seminorms. It is enough to take the Minkowski functionals for neighborhoods
Uα ∈ U0(E), whose positive multiples form a basis at zero. Note that if M is a
bounded and absolutely convex set of LCS E, and µM is the Minkowski functional
of set M , then µM is a norm on the space EM = spanM ⊂ E. If M is an
absolutely convex and absorbing set in E, then µM is seminorm on E. Moreover,
if M is a neighborhood of zero in E, then µM is a continuous seminorm on E. In
this chapter, Minkowski functionals for neighborhoods Uα are denoted by µUα

or
via pUα

(·), or via pα(·). Families {Uα} and {pα} are called generating families,
respectively, of neighborhoods and semi-norms for the T topology. It is known
that every element of a generating family of seminorms is a continuous function
in the T topology. Also, the T topology is Hausdorff or separated if and only if
for every non-zero x ∈ E and for every family of seminorms P = {pα; α ∈ A},
generating T, there is a seminorm p ∈ P such that p(x) > 0. A subset B of LCS
(E,T) with a basis of neighborhoods of zero U0(E) is called bounded, if for each
neighborhood U ∈ U0(E) there exists λ ∈ R+ such that λB ⊂ U (R+ denotes
the set of positive real numbers). The family of bounded sets B(E) in E is called
fundamental if every bounded set of the space E is contained in some set of B(E).

73
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Theorem 2.1.1 ( [81], p. 205). An LCS (E,T) is metrizable if and only if it is
separated and has a countable basis of neighbourhoods of zero {Vn}. Topology of
metrizable space can be given by a translation-invariant metric.

It should be noted that if the sequence of the mentioned neighbourhoods {Vn}
is non-increasing, then the sequence of the corresponding Minkowski functionals
{pn(·)} is non-decreasing. Complete, metrizable, locally convex spaces are called
Fréchet spaces.

Let E and F be a pair of linear spaces and ⟨·, ·⟩ bilinear form on E × F satis-
fying the axioms:

(S1) if ⟨x0, y⟩ = 0 for all y ∈ F , then x0 = 0,
(S2) if ⟨x, y0⟩ = 0 for all x ∈ E, then y0 = 0.
The triple (E,F, ⟨·, ·⟩) is called a dual system or duality and is denoted by the

symbol ⟨E,F ⟩. It is obvious that ⟨E,E′⟩ and ⟨E,E∗⟩ are dual systems, where
E′ is the space of all continuous linear functionals on E and E∗ is the space of
all linear functionals on E. From the symmetry of ⟨E,F ⟩ regarding E and F , any
sentence regardingE can also be expressed relative to F by a simple variable fields
E and F . Let ⟨E,F ⟩ be dual. For each M ⊂ E a set defined

M0 = {y ∈ F ; |⟨x, y⟩| ≤ 1 for all x ∈M}

is called the polar of the setM in F . Sometimes instead ofM0 we will writeM0F .
If M is a subspace in E, then its polar is weakly closed (σ(F,E)-closed) subspace
in F , denoted by M⊥ and called annulator for subspace M .

Let (E,T) be an LCS. A set M ⊂ E′ is said to be equicontinuous if there
exists a T-neighborhood V of zero in E such that M ⊂ V 0. It should be noted
that polars taken with respect to the system ⟨E,E′⟩ of any fundamental families of
equicontinuous sets in E′ form basis of neighborhoods of zero in E, i.e. topology
T is topology uniform convergence on a family of equicontinuous sets of the dual
space E′.

Let ⟨E,F ⟩ be dual system and M be a saturated family of σ(F,E)-bounded
subsets of F . The family M is called saturated if the following three conditions are
satisfied: 1) If M ∈ M, so does every subset of M ; 2) If M ∈ M, so does every
scalar multiple M ; 3) If M1 and M2 belong to M, so does their weakly closed
absolutely convex cover Γ(M1,M2).

If M = δ is a family of all finite subsets of F , then the topology of a TM-
uniform convergence on sets of M coincides with the weak topology σ(E,F ).
If M is the family of all σ(F,E)-bounded subsets of F , then the corresponding
TM is the topology of the uniform convergence on sets from M is called strong
topology on E with respect to the duality of ⟨E,F ⟩ and is denoted by β(E,F ).
A locally convex topology T on E is called compatible with duality ⟨E,F ⟩, if dual
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to (E,T) coincides with F . The locally convex topology T on E is compatible
with duality ⟨E,F ⟩ if and only if T is the topology of uniform convergence for
some saturated family M, covering F and formed σ(F,E)-relative compact sub-
sets of F . Since weakly bounded subsets in F may not be relatively compact in the
topology σ(F,E), then the strong topology β(E,F ), is not compatible with dual-
ity ⟨E,F ⟩. Further, there is the strongest locally convex topology on E compatible
with ⟨E,F ⟩, and namely, the topology of uniform convergence on all σ(F,E)-
compact, absolutely convex subsets of F . This topology onE is called the Mackey
topology with respect to ⟨E,F ⟩ and is denoted τ(E,F ). An LCS (E,T) is called
a Mackey space if its topology is τ(E,E′). A closed absorbent and absolutely
convex subset in an LCS is called barrel. An LCS (E,T) is called barrelled if ev-
ery barrel is neighborhood of zero. Fréchet spaces are barrelled spaces. There are
however incomplete normed nonbarrelled spaces.

An LCS E is called bornological, if every absolutely convex subset absorb-
ing all bounded sets in E is a neighborhood of zero. In other words, bornological
space is such an LCS on which every seminorm bounded on bounded sets is con-
tinuous. Metrizable locally convex spaces are bornological. Note also that if E is
an LCS that is barreled or Bornological, then E is a Mackey space. The topology
of barrelled LCS coincides with the strong topology β(E,E′).

Let E be an LCS. Topologies β(E,E′) and β(E,′E) are called strong topolo-
gies on E and E′, respectively. The space (E′, β(E′E)) is called the strong dual
space to E. In [82], to denote strong topologies on E and E′ the following nota-
tions are used: Tb(E′) and Tb(E). Next, through Eσ and Eβ also denote the space
E with topologies σ(E,E′) and β(E,E′) respectively, and E′σ and E′β denote
space E′ with topologies σ(E′, E) and β(E,′E), respectively. Through Tc(E)
denotes the topology on E′ of uniform convergence on precompact sets from E.
The topology on E of strong precompact convergence on precompact sets of space
(E′, β(E′E)) is denoted by Tc(E

′). Dual to the space E′β is called the second dual
to an LCS E and is denoted by the symbol E′′. On the second dual space E′′, the
topology can be introduced in various ways. If on E′′ is defined the topology of
uniform convergence on strongly bounded subsets of the space E′, i.e. on bounded
sets of the space E′β , then E′′ is called the strong second dual space to E. It is
denoted by the symbol (E′′, β(E′′,E′)) or (E′β)

′
β . In [82] the strong second dual

space is denoted by the symbol E′′[Tb(E′, E′′)]. If on E′′ the topology of uniform
convergence is given to a family of all equicontinuous subsets of the space E′,
then this topology is called natural topology and is denoted by Tn(E

′). An LCS
E is barrelled space if and only if every weakly bounded set of its dual space is
equicontinuous, i.e. when the equality Tn(E

′) = β(E′′, E′) is true. An LCS E
is called quasi-barrelled if every bounded set of its strong dual space is equicon-
tinuous. An LCS is called semi-reflexive if E = E′′. An LCS (E,T) is called
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reflexive if it is semi-reflexive and T = β(E′′, E′). An LCS is called totally re-
flexive if it is reflexive together with its quotient space. An LCS is called a Montel
or, in short, (M)-space, if it is separated and every bounded set in it is relatively
compact. A Fréchet space of type (M) is called a Fréchet-Montel space or (FM)-
space. Strong dual to space of type (M) is again a space of type (M). An LCS
E is called distinguished if every bounded set B1 of the space (E′′, β(E′′, E′)) is
contained in bipolar of some bounded set B ⊂ E, i.e. B1 ⊂ B0E′0E′′

. It is well
known ([82], p. 306) that the distinguishedness of an LCS is equivalent to the bar-
relledness of the strong dual space E′β . An LCS (E,T) is called quasi-normable if
for each equicontinuous set M ⊂ E′ there is a neighborhood V of zero in E such
that the topology induced in M by the strong topology of the space E′β coincides
with the topology of uniform convergence on V . If E is quasi-barrelled, then this
means that the strong dual E′β satisfies the strict Mackey convergence condition.
The LCS E satisfies the strict Mackey convergence condition, if for each bounded
set C ⊂ E there exists a closed absolutely convex bounded set B ⊃ C such that
the topology induced in C from E, coincides with the topology induced from the
normed space EB defined below.

Let E be an LCS and B ̸= 0 be absolutely convex and bounded subset in E,
then EB =

⋃
n∈N

nB is a (not necessarily closed) subspace of E. The Minkowski

functional pB of a set B in EB is the norm. The normed space (EB, pB) will be
further denoted by EB . It is easy to see that the identity mapping IB : EB → E
(called the canonical embedding) is continuous. Moreover, if B is complete in E,
then EB is a Banach space. Let now B and C are absolutely convex and bounded
sets of LCSE such that 0 ̸= B ⊂ C. ThenEB ⊂ EC and the canonical embedding
IBC : EB → EC is continuous. Obviously that the relations IB = IC ◦ IBC
hold. Due to properties of bounded sets for the family {EB; B ∈ B(E)} pair
({EB}, {IBC}) forms an inductive family. According to ( [82], Theorem 2, p.
381, and Theorem 11, p. 219), if the space (E,T) is bornological, then the space
(E,T) can be represented as an inductive limit of inductive pair ({EB}, {IBC});
B,C ∈ B(E)). This fact is denoted as (E,T) = lim

→
IBC(EB).

Let T : E → G be a continuous map of the LCS E to the space G. Adjoint
(transposed) mapping T ′ : G′ → E′ is defined using equality

⟨Tx, g′⟩ = ⟨x, T ′g′⟩,

which is assumed to be valid for all x ∈ E and g′ ∈ G′.
Let us give examples of adjoint to some simple mappings. Let E be a Fréchet

space, H its subspace, and I : H → E an embedding of H into E. Let R be
a mapping that corresponds to each x′ ∈ E′ its restriction x′0 ∈ H ′. From the
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relations
⟨x′0, y⟩ = ⟨Rx′, y⟩ = ⟨x′, Iy⟩,

valid for all y ∈ H and x′ ∈ E′, it follows that R is the adjoint of I , i.e. R = I ′.
Now let H be a closed subspace of E. If u′ is a linear continuous functional

on E/H , then by the equality ⟨u, x⟩ = ⟨u′, x̂⟩, x̂ ∈ E/H , x ∈ x̂ the linear
functional u on E is defined. If u = Iu′ is an embedding of (E/H)′ into E′ and
K : E → E/H is a canonical homomorphism, then the equalities

⟨u′, x̂⟩ = ⟨u′,Kx⟩ = ⟨Iu′, x⟩

show that I is the adjoint of K, i.e. I = K ′. In particular, the adjoint of Kn :
E → E/Ker pn is K ′n = In : (E/Ker pn)

′ = Ker p⊥n → E′. The restriction of
K ′n to (En, p̂n)

′ is a mapping on E′U0
n

, where Un = {x ∈ E; pn(x) ≤ 1}. Let
us show that π′nm : E′n → E′m is an identical embedding. Indeed, let u′ ∈ E′n =
(E/Ker pn, p̂n)

′, then the equality ⟨u′,Knx⟩ = ⟨K ′nu′, x⟩ defines on E′U0
n
⊂ E′ a

linear continuous functional. From equalities

⟨u′,Knx⟩ = ⟨u′, πnmKmx⟩ = ⟨π′nmu′,Kmx⟩

it follows that π′nmu
′ is the identical image of the above-mentioned functional u′

from E′n to E′m.
Section 2.7 also is devoted to the studies of the topological adjoint mapping of

arbitrary homomorphisms.
Using adjoint mappings, we construct an important example of an inductive

pair.
Let (E,T) be an LCS with basis of zero’s neighborhoods U0(E) = {Uα; α ∈

A}. For each Uα ∈ U0(E) denote by E′U0
α

Banach space with unit ball U0
α, where

U0
α are polars Uα to E′. Let again pα(·) be the Minkowski functional for Uα,

kα : E → E/Ker pα be canonical mapping and Eα = (E/Ker pα.p̂α). It is well
known ( [82], p. 276) that E′U0

α
is isomorphic to the Banach space E′α and this

isomorphism is realized by mapping k′α, which is conjugate to kα and defined on
E′α by equality

⟨k′αx′, y⟩ = ⟨x′, kαy⟩ for all x′ ∈ E′α and y ∈ E .

Let IU0
αU

0
β
: E′U0

α
→ E′

U0
β
(U0

α ⊂ U0
β) be identical embedding. Let us now

show that the mapping IU0
αU

0
β
(U0

α ⊂ U0
β) coincides with the mapping π′αβ which

is conjugate to the extension of canonical mapping παβ : Eβ → Eα (β ≥ α).
As noted above, every linear continuous functional F ∈ E′α = (E/Ker pα, p̂α)

′
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by the equality ⟨F, kαx⟩ = ⟨k′αF, x⟩ defines a linear continuous functional on E.
From equalities

⟨k′αF, x⟩ = ⟨F, kαx⟩ = ⟨F, παβkβx⟩ = ⟨π′αβF, kβx⟩ = ⟨k′βπ′αβF, x⟩

it follows that π′αβF is the identical image of the mentioned functional in E′
u0β

.

From this we obtain that for the family {E′u0α ; α ∈ A}, a pair

({E′u0α}α∈A, {Iu0αu0β}α≤β) or ({E′α}α∈A, {π′αβ}α≤β)

is inductive.
An LCS (E,T) is called strictly distinguished [199] if the space E′β =

s · lim
→
π′αβ(E

′
α) (sometimes identity mappings are omitted in the notation). It is

obvious that a strictly distinguished LCS (E,T) is distinguished, since the space
E′β is barreled, as the inductive limit of the sequence of Banach spaces.

Let now (E,T) be a Fréchet space. The strong dual of a metrizable space is
a (DF )-space. Moreover, according to A. Grothendieck [65], an LCS F is called
a (DF )-space if F has fundamental sequence of bounded sets and each strongly
bounded set that is a countable union of equicontinuous sets in F ′, is equicontinu-
ous. The class of (DF )-spaces includes all normable spaces and all quasi-barreled
spaces that have a fundamental sequence of bounded sets. Details (DF )-spaces
are discussed in ([65], see also [147]). It is well known [65] that the distinguished-
ness of the Fréchet space is equivalent to the barrelledness or bornologicality of a
strong dual space E′β that is the inductive limit of a sequence of Banach spaces.
We define a strictly regular Fréchet space as follows: the Fréchet space (E,T) is
called strictly regular, if in E there is a basis of neighborhoods of zero {Vn} such
that E′β = s · lim

→
IV 0

nV
0
m
(E′V 0

n
) or E′β = s · lim

→
E′V 0

n
, i.e. the strong dual space E′β

of the Fréchet space E is the strict inductive limit of the canonical sequence of Ba-
nach spaces {EV 0

n
}. These Fréchet spaces occupy an important place in this book.

In particular, the well-known in Banach spaces theorems of James and Bishop-
Phelps allow natural extension for such spaces. On the other side, these theorems
and their extensions are actually conditions for the existence of spline and spline
algorithms in Fréchet space discussed in Chapter III (see Sections 1.3 and 3.2). It
should also be noted that in the 80s of the 20th century these spaces became the
subject of intensive research in connection with various tasks. Therefore, we begin
the study of strict inductive limits and strictly regular Fréchet spaces, which were
subsequently called quojections.
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2.2 Definitions and some properties of strict projective and inductive limits

Projective topologies. Let us fix a linear space E, a family of separated locally
convex spaces {(Eα,Tα); α ∈ A} and linear mappings fα : E → (Eα,Tα) such
that for each x ̸= 0 there is at least one index α ∈ A, for which fα(x) ̸= 0.
Separated LCS (E,T) is called a locally convex kernel of the spaces (Eα,Tα),
and as T is called the topology of the kernel with respect to the mappings fα, if
T is the weakest locally convex topology on E, for which the mappings fα are
continuous. This fact is denoted as (E,T) = Kf−1α (Eα,Tα) ( [82], p. 295). T-
neighborhoods in E are f−1α inverse images of Tα-neighborhoods of Uα and their
finite intersections form a basis of T-neighborhoods. In ([147], p. 68) the topology
T is called a projective topology with respect to family {(Eα,Tα, fα); α ∈ A}. It
is obvious that the topology T is the upper bound (in the lattice of topologies on
E) for families of topologies {f−1α (Tα); α ∈ A}.

Let us give the most important examples of projective topologies.
Products. Let {(Eα,Tα); α ∈ A} be a family of locally convex spaces.

Topology of the product T on space E =
∏
α∈A

Eα is the projective topology on

E relative to the projections πα : E → Eα.
Subspaces. Let G be a subspace of LCS (E,T). Topology induced by T on G

is a projective topology with respect to the canonical embedding I : G → E. It is
denoted by T ∩G (in [82] it is denoted via

⌢
T).

LetG be a subspace of the LCSE and p(·) be a continuous seminorm onE. We
will denote by pG restriction of the seminorm p onG. Let’s say thatG is a normable
subspace with respect to the seminorm p if the set {x ∈ E; p(x) ≤ 1} ∩ G is a
bounded neighborhood in the T ∩ G topology. If pG is norm on G and (G, pG) is
complete, then G is called Banach subspace of the space E.

Weak topologies. Let E be a linear space and F be a non-empty subset of its
algebraic dual space E∗, i.e. the set of all linear functionals on E. Kernel topology
(projective topology) onE with respect to the family {(Ef , f); f ∈ F}, whereEf
is the image of E under the mapping f , is called the weak topology generated by
F , and is denoted by σ(E,F ). It is well known that E will be an LCS in topology
σ(E,F ) if and only if F separates the points of E. In particular, if (E,T) is an
LCS, then its dual space E′ separates the points of E. The topology σ(E,E′)
is called weak topology of the space E. On the other hand, if E is considered
as a subspace of E′∗, then on E′ we can define topology σ(E′, E) and the space
(E′, σ(E′, E)) is LCS called the weak dual of (E,T).

Let A be a set of indices directed by a relation (reflexive, transitive, antisym-
metric) “≤”. Let {(Eα,Tα); α ∈ A} be a family of locally convex spaces, παβ
with (α ≤ β) denote a continuous linear map (Eβ,Tβ) into (Eα,Tα) such that
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παα is identity mapping and παβ · πβγ = παγ (α ≤ β ≤ γ). Then the pair
({Eα}α∈A, {παβ}α≤β) is called projective family.

Let E be the subspace of the product
∏
α∈A

Eα, whose elements x = {xα}

satisfy the relation xα = παβxβ for all α ≤ β. The space (E,T) is called the pro-
jective limit of projective family ({Eα}α∈A, {παβ}α≤β) with respect to the map-
pings παβ(α, β ∈ A, α ≤ β) and is denoted by (E,T) = lim

←
παβ(Eβ) (some-

times the notation (E,T) = proj(Eα,Tα) is also used). From the above implies
that the topology T of the space E is projective topology with respect to the fam-
ily {(Eα, Tα, π̂α); α ∈ A}, where π̂α is the restriction on E of the projection
πα :

∏
β∈A

Eβ → Eα. Projective limit (E,T) is called reduced if π̂α(E) is every-

where dense in Eα for every α ∈ A. The projective limit is called strict if the
mappings π̂α : E → Eα are surjective and open. Moreover, the linear mapping T
of LCS E into LCS F is called open if for every open subset U ⊂ E the image
T (U) is an open subset of T (E) (in the topology induced F ). Linear, continuous
and open mapping T : E → F is called a topological homomorphism (or simply
a homomorphism when this does not cause confusion). Examples of topological
homomorphisms are the canonical (quotient) mapping K : E → E/M , where M
is a closed subspace of space E and the natural embedding I : G→ E, where G is
a subspace ofE. If a homomorphism is injective, then it is called a monomorphism
(isomorphism in). Topological homomorphisms and their adjoint maps are studied
intensively in Section 2.7.

Theorem 2.2.1 ([147], p. 71). Any complete LCS (E,T) is isomorphic to the
projective limit of a family of Banach spaces.

Indeed, let {Uα; α ∈ A} be a generating family of absolutely convex neighbor-
hoods of zero for the topology T, pα(·) be Minkowski functional for Uα, Ker pα =
p−1α (0), Kα :E→E/Ker pα be canonical mapping, p̂α(Kαx)=pα(x) be norm on
quotient space E/Ker pα associated with the seminorm pα, Eα = (E/K̃erpα, p̂α)
is completion of the normed space (E/Ker pα, p̂α) and παβ : (E/Ker pβ, p̂β)→
(E/Ker pα, p̂α) is canonical mapping corresponding to each class of the equiv-
alence Kβ(x) the class Kα(x) for Uβ ⊂ Uα (α ≤ β). This correspondence
Kβ(x) → Kα(x) is continuous, since p̂α(Kαx) ≤ p̂β(Kβx) and therefore has
a continuous continuation παβ : Eβ → Eα. In this case, the equalities are valid
παβ ·Kβ = Kα at Uβ ⊂ Uα (α ≤ β). This means that (E,T) = lim

←
παβ(Eβ).

An LCS is called nuclear if for every α there is a β ≥ α such that the mapping
παβ is nuclear, i.e. having the form

παβKβx =
∑

cj⟨Kβx, f
′
j⟩yj ,
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where {f ′j} is an equicontinuous sequence of continuous linear functionals of
E′β = (E/Ker pβ, p̂β) and {cj} is a sequence of non-negative numbers such that
∞∑
j=1

cj <∞.

A Fréchet space is called countable-normed [63] if its topology is generated
by a sequence of compatible norms. This means that the mappings π̂nm (m ≥ n)
can be chosen to be injective. A Fréchet space is called countably-Hilbert if it is
countable-normed and its norms are generated by inner products. An example of
a nuclear Fréchet space with continuous norm that is not countably-Hilbert was
constructed in [51].

Corollary. Any Fréchet space (E,T) with a generating non-decreasing sequence
of seminorms {pn} is isomorphic to the projective limit of a sequence of Banach
spaces En = (E/K̃erpn, p̂n) with respect to mappings πnm : Em → En (n ≤ m)
and Kn : E → En.

We will use these notations for Fréchet spaces (E,T) without any further ex-
planation. According to [15], a Fréchet space (E,T) is called a quojection if it is
isomorphic to the projective limit of a sequence of Banach spaces with respect to
surjective mappings. It means, that the mappings πnm (n ≤ m) and Kn are ho-
momorphisms. Therefore, the quojection is a strict projective limit of the sequence
of Banach spaces {En} and this fact is denoted via (E,T) = s · lim

←
πnm(Em).

Quojections are studied in the following Section 2.3.
An LCS (E,T) is called a Schwartz space or a space of type (S), if for each

neighborhood U in E there is a neighborhood V completely bounded with respect
to U , i.e. for every ε > 0 there is a finite set Mε such that V ⊂Mε + εU .

Fréchet spaces of type (S) are studied in sufficient detail in [65].
Let {Eα; α ∈ A} be a directed system of subspaces of LCS E (α ≤ β,

if Eα ⊂ Eβ) and E =
⋃
α∈A

Eα. Besides, on each Eα (α ∈ A), it is given

a topology Tα such that for α ≤ β the topology induced from Tβ on Eα is
weaker than topology Tα. Let us denote by Iα a canonical embedding of Eα
into E and by Iαβ a canonical embedding of Eα in Eβ (α ≤ β). Let Iαβ ·
Iβγ = Iαγ for α ≤ β ≤ γ. In this case, the couple {(Eα, Iα)α∈A; (Iαβ)α≤β}
is called inductive system. The space (E,T) is called the inductive limit of induc-
tive system {(Eα, Iα)α∈A; (Iαβ)α≤β} and T-topology of the inductive limit with
respect to the system Iαβ , if T is the finest locally convex topology for which
the mappings Iα are continuous and (E,T) is Hausdorff space. This is denoted
by (E,T) = lim

→
Iαβ(Eα) or so (E,T) = lim

→
Eα (The designation is also used

(E,T) = ind
→

(Eα,Tα)). Inductive system {(E,Tα)α∈A, (Iαβ)α≤β} is said to be
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strict if Tβ induces Tα on every Eα for α ≤ β, i.e. the mappings Iαβ (α ≤ β)
are topological monomorphisms. Inductive limit is called strict if (E,T) is the
limit of strict inductive system. This is denoted by (E,T) = s · lim

→
Iαβ(Eα) or

(E,T) = s · lim
→
Eα.

Inductive limit of increasing sequence of Fréchet spaces (respectively Banach
spaces, respectively Hilbert spaces ) is called a (LF )-space (respectively (LB)-
space, respectively (LH)-space). Strict inductive limit of increasing strict induc-
tive sequence of Fréchet spaces (respectively Banach spaces, respectively Hilbert
spaces) is called a strict (LF )-space (strict (LB)-space, strict (LH)-space). Let
us give examples of inductive topologies.

Quotient space. Let (E,T) be an LCS, G be a subspace and K be a canonical
mapping from E on quotient space E/G, i.e. such a mapping which to every-
one x ∈ E puts in correspondence its equivalence class x̂ = x + G. Quotient
topology is defined as the strongest separated topology on E/G in which K is
continuous. It is well known that this topology is separated if and only if G is
closed. Hence, in the case of closedness of G the quotient topology is inductive
topology with respect to the family {(E,T),K}. If {pα(·), α ∈ A} forms a gen-
erating family of seminorms on E for topologies T, then the system of seminorms
p̂α(x̂) = inf{pα(x + g); g ∈ G} generates quotient topology T/G on E/G.
In [82] quotient topology of topology T is denoted by T̂.

Locally convex direct sums. Let {(Eα,Tα); α ∈ A} be family of linear
spaces, then the algebraic direct sum ⊕α∈AEα is defined as a subspace

∏
α∈A

Eα

whose elements x = {xα} have no more than a finite number of nonzero pro-
jections xα = πα(x). Let us denote by Iα the canonical embedding Eα →
⊕β∈AEβ . Locally convex direct sum of family of locally convex spaces {(Eα,Tα);
α ∈ A} is defined as ⊕α∈AEα in inductive topology with respect to the family
{(Eα,Tα, Iα); α ∈ A} and is denoted by (E,T) = ⊕α∈A(Eα,Tα).

Proposition 2.2.2. Let (E,T) be a strict inductive limit of an increasing sequence
of complete locally convex spaces {(En,Tn)}. Then the following statements are
equivalent:

a) (E,T) is a strict (LB)-space, i.e. (E,T) = s · lim
→

(En,Tn), where (En,Tn)

are Banach spaces with the norm ∥ · ∥n.
b) There is an absolutely convex T-neighborhood U=

⋃
n∈N

Un in (E,T), where

Un = U ∩ En is bounded absolutely convex neighborhood in (En,Tn).
c) On (E,T) there is a continuous norm ∥·∥, inducing on eachEn the topology

Tn which is generated by the norm ∥ · ∥n.

Proof. a) ⇒ b). According to the condition, there are bounded absolutely convex
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T1-neighborhood U1 and T2-neighborhood W such that W ∩ E1 ⊂ U1. Consider
the T2-neighborhood U2 = Γ(U1 ∪ W ), i.e. absolutely convex hull of the set
U1 ∪ W and prove that U2 ∩ E1 = U1. It is obvious that U1 ⊂ U2 ∩ E1. Let
x ∈ U2 ∩ E1, then x = αx1 + βx2, where x1 ∈ U1, x2 ∈ W and |α| + |β| ≤ 1.
From relation βx2 = x − αx1 ∈ E1 it follows that either β = 0 or x2 ∈ E1.
In both cases we have that x ∈ U1, i.e. U2 ∩ E1 ⊂ U1. By induction we can
construct an increasing sequence of absolutely convex bounded Tn-neighborhoods
Un such that for each n ∈ N we will have Un+1 ∩En = Un. It is obvious that then
T-neighborhood U =

⋃
n∈N

Un for each n ∈ N satisfies the equality U ∩ En = Un.

b) ⇒ a). By condition, in (E,T) there exists an absolutely convex neighbor-
hood U =

⋃
n∈N

Un, where Un = U ∩ En is bounded absolutely convex neighbor-

hood in LCS (En,Tn). By virtue of the well-known theorem of A. N. Kolmogorov,
locally convex spaces (En,Tn) are normable and, by assumption, are Banach
spaces. On the other hand, we haveUn = U∩En = Un+1∩En = (U∩En+1)∩En,
i.e. the topology of the space En coincides with induced topology from En+1 to
En. Hence, (E,T) = s · lim

→
(En,Tn).

The equivalence of b) ⇔ c) is easily proved if we notice that the Minkowski
functional pU (·) of a neighborhoodU is continuous norm onE satisfying condition
of statement c) and vice versa.

Corollary 1. Let (E,T) = s · lim
→

(En, ∥ · ∥n) is a strict (LB)-space. In E there

is a basis of T-neighborhoods of zero U0(E) such that for each neighborhood
U ∈ U0(E) its Minkowski functional ∥ · ∥U is a norm on E inducing on every En
norm topology ∥ · ∥n. Normed space (E, ∥ · ∥U ) is not complete; En are complete
subspaces of (E, ∥ · ∥U ) for each n ∈ N and U ∈ U0(E).

The space (E,T) is a locally convex kernel of the family of normed spaces
{(E, ∥ · ∥U ); U ∈ U0(E)} with respect to identity mappings E → (E, ∥ · ∥U ).
Corollary 2. Let (E,T) be the inductive limit of increasing sequences of locally
convex spaces {(En,Tn)}. Then the following statements are equivalent:

a) (E,T) is strict inductive limit sequence of normed spaces {(En, ∥ · ∥n)}.
b) There is an absolutely convex T-neighborhoodU =

⋃
n∈N

Un in (E,T), where

Un = U ∩ En is a bounded absolutely convex neighborhood in(En,Tn).
c) On (E,T) there is a continuous norm ∥ · ∥ inducing on each En topology

Tn.

Proposition 2.2.3. Let (E,T) = s · lim
→

(En, ∥ · ∥n) be strict (LB)-space, F be
an LCS and A be a linear map of E in F . Then the following statements are
equivalent:
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a) A is continuous.
b) A is sequentially continuous, i.e. from the condition xk → x in E (and this

means that xk, x ∈ En0 for all k ∈ N and some n0 and xk → x in En0) it follows
that Axk → Ax0 in F .

c) The restriction of A from (E,T) to En is continuous in the topology of norm
∥ · ∥n for each n ∈ N, i.e. for each n ∈ N and each of a continuous norm q on F
there is a constant Cn,q > 0 such that

q(Ax) ≤ Cn,q∥x∥n for all x ∈ En .

d) Restriction ofA from the normed space (E, ∥·∥U ) on eachEn is continuous
in the norm topology ∥·∥n, whereU ∈ U0(E) satisfies the conditions of Proposition
2.2.2.

Proof. a)⇔b) is fair because (E,T) is bornological ([147], p. 82). a)⇔c) follows
from Theorem 7 ( [82], p. 398). a)⇔d) follows from Corollary 1 of Proposition
2.2.2, since the induced topologies from (E,T) and (E, ∥ · ∥U ) on En coincide
with the topology of the norm ∥ · ∥n.

2.3 Quojection is a strictly regular Fréchet space

This section studies Fréchet spaces representable in the form of a strict projective
limit of the sequence Banach spaces and it is important when studying the prob-
lem of existence of generalized splines. As noted in 2.2, such spaces are called
quojections.

Theorem 2.3.1. Let (E,T) be the Fréchet space with the non-increasing generat-
ing sequence of closed absolutely convex T-neighborhoods {Vn}. Then the follow-
ing statements are equivalent:

a) The space (E,T) is strictly regular, i.e. (E′, β(E′, E)) = s · lim
→
E′V 0

n
.

b) In the space E there is a closed, bounded absolutely convex set B such that
B0 ∩ E′V 0

n
is bounded neighborhood in E′V 0

n
for each n ∈ N.

c) For every n ∈ N, the T-neighborhoods has the form Vn = B +Ker pn,
where B is a closed, bounded and absolutely convex set and pn is the Minkowski
functional for Vn.

Proof. a) ⇒ b). By condition we have E′β = s · lim
→
E′V 0

n
. By virtue of Proposi-

tion 2.2.2 we obtain the existence of a bounded set B, satisfying the conditions of
statement b), if take into account the fact that strong neighborhoods are polars of
bounded sets from E.
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b) ⇒ c). Let B be closed, bounded, absolutely convex set for which B0 ∩
E′V 0

n
= B′n is bounded neighborhood in E′V 0

n
. It is easy to check that homothetic

images of the setsB′n form a fundamental sequence of bounded sets inE′β . Moving

on to the polars in E, we obtain that B′n
0 = B00 + E′

V 0
n

⊥, where E′V 0
n

⊥ is weak
closed subspace inE, orthogonal toE′V 0

n
. SinceB is closed and absolutely convex,

then B00 = B and therefore B′n
0 = B + E′

V 0
n

⊥. Let pn(·) be the Minkowski

functional for B′n
0. Obviously, E′⊥V 0

n
⊂ Ker pn. If there exists x ∈ Ker pn and

x∈E′V 0
n

⊥, then λx ∈ B′n
0 for any number λ and there exists x′ ∈ E′V 0

n
such that

⟨x, x′⟩ ≠ 0. On the other hand, for some λ0 > 0 we have that λ0x′ ∈ B′n and
therefore ⟨λ0x′, x⟩ = ⟨x′, λ0x⟩ = 0, which contradicts our assumption. Hence,
E′V 0

n

⊥ = Ker pn. Now let us assume that Vn = B′n
0, i.e. Vn = B +Ker pn for

each n ∈ N.
c) ⇒ a). Let the condition of statement c) be satisfied, then E′V 0

n
= Ker p⊥n .

Indeed, passing to the polar in E′, we obtain that V 0
n = B ∩ Ker p⊥n . There-

fore, any continuous linear functional, orthogonal to Ker pn belongs to E′V 0
n

and
vice versa. On the other hand, in the (DF )-space E′β bounded sets coincide with
equicontinuous sets V 0

n . From the above equality V 0
n = B0 ∩ Ker p⊥n it follows

the metrizability of these sets, and by virtue of [65] we get that E′β = lim
→

Ker p⊥n .

From the equalities V 0
n = B0∩Ker p⊥n = (B0∩Ker p⊥n+1)∩Ker p⊥n it also follows

that the identity mappings Ker p⊥n → Ker p⊥n+1 are monomorphisms. This means
that E′β = s · lim

→
Ker p⊥n , i.e. the space (E,T) is strictly regular. Therefore, strong

dual of E′β to a strictly regular Fréchet space is strict inductive limit of weakly
closed sequences of Banach subspaces {Ker p⊥n } in E′β .

It should be noted that in the case of reflexivity of the Fréchet space (E,T) in
statements b) and c) can be assumed that B is weakly compact bounded set and,
therefore, the sets B +Ker pn will be closed in (E,T).

Corollary 1. Let (E,T) be a strictly regular Fréchet space. Then the spaces
(E/Ker pn, p̂n) are Banach spaces, Kn : E → (E/Ker pn, p̂n) is a homomor-
phism and its adjoint map K ′n is strong monomorphism.

Indeed, by virtue of Theorem 2.3.1 the topology of the space (E,T) is gener-
ated by a sequence of neighborhoods of the form Vn = B +Ker pn, where B is a
closed, absolutely convex subset of the space E. Therefore, we have

V̂nn = kn(Vn) = kn(B +Ker pn) ⊂ kn(B).
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This means that V̂nn is a bounded, absolutely convex neighborhood in quotient
space E/Ker pn, since it is contained in the closure of the image of a bounded set
under a canonical mapping. It follows that quotient spaces E/Ker pn are Banach
in the norm p̂n, i.e. En = (E/Ker pn, p̂n) are Banach spaces for every n ∈ N.

The adjoint mapping k′n is the identity embedding of space E′n in E′ with
weakly closed image k′n(E

′
n) = Ker p⊥n . It is well known that it is a weak monomor-

phism. From equalities V 0
n = Ker p⊥n ∩ B0 it follows that k′n is also strong

monomorphism, i.e. strong topology β(Ker p⊥n , En) on Ker p⊥n of the dual sys-
tem ⟨Ker p⊥n , En⟩ coincides with induced topology β(E′, E)∩Ker p⊥n on Ker p⊥n .

Corollary 2. The class of strictly regular Fréchet spaces coincides with quojection.

Indeed, if the Fréchet space (E,T) is strictly regular, thenE′β=s·lim→ π′nm(E
′
m)

and mappings π′nm (n ≤ m) are strong monomorphisms. By virtue of the well-
known theorem of J. Dieudonne and L. Schwartz [43], we find that the mappings
πnm : Em → En (n ≤ m) are also surjective and therefore homomorphisms.
Hence, the space (E,T) is a quojection.

Let (E,T) be a quojection, then the mappings πnm : Em → En (n ≤ m)
and kn : E → En (n ∈ m) are homomorphisms and conjugate mappings π′nm :
E′n → E′m (n ≤ m) are strong monomorphisms. To prove the strict regularity of
the space (E,T) we present the reasoning due to the first author of the works [39].
More precisely, it will be proved that in (E,T) there exists generating sequence
of absolutely convex neighborhoods, having the form B + Ker kn, where B is
an absolutely convex bounded set. Indeed, since πn,n+1 is surjective, then for
each n ∈ N, by induction we can find a sequence of bounded absolutely convex
neighborhoods Bn ∈ B(En) ∩ U0(En) such that πn,n+1(Bn+1) = Bn for all
n ∈ N. Let B =

∏
n∈N

Bn ∩E. Obviously, B is bounded set in E. Let us prove that

Un = k−1n (kn(Bn)), (n ∈ N) forms a generating sequence of neighborhoods in E
having the form Un = B +Ker kn.

Let n ∈ N. Then kn(B + Ker kn) ⊂ Bn because Ker kn + B ⊂ Un. Con-
versely, let x = {xk}k∈N ∈ Un. Then x ∈ E and xn ∈ Bn. Since πl,l+1(Bl+1) =
Bl we can by induction construct a sequence {yl}l≥n ∈

∏
l≥n

Bl such that yn = xn

and πl,l+1(yl+1) = yl (l ≥ n). For all l < n let’s put yl = πln(xn) ∈ πln(Bn) =
Bl. Then y = {yl} is contained in B and kn(x) = xn = yn = kn(y), where
x = x − y + y ∈ Ker kn + B. Obviously, { 1

n Un}n∈N forms a basis of T-
neighborhoods of zero in E. Now, repeating the reasoning given when proving
the implications c) ⇒ a) of Theorem 2.3.1, we obtain a strict regularity of space E.

From Corollary 2 of Theorem 2.3.1 it follows that the class of strictly regu-
lar Fréchet spaces coincides with the class of Fréchet spaces representable in the
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form of a strict projective limit of a sequence of Banach spaces. In the work of
V. Slovikovsky and V. Zavadovsky [149] strict projective limits were called as
relatively complete B0-spaces. These spaces have been intensively studied since
the early 80s in the study of a wide variety of questions of functional analysis,
and the term “quojection” became very widespread (see, e.g., [17, 20–25, 27, 28,
101–103, 110, 111, 117, 153, 154]). That’s why, we are forced in the future, in-
stead of the previously proposed term “ strictly regular Fréchet space” use the
term “quojection”. It should also be noted that in the works of many foreign au-
thors [17, 20, 25, 26, 36, 38, 111] the identity of these notion was also noticed. It’s
obvious that quojection (strictly regular Fréchet space) is distinguished. On the
other hand, there are reflexive, and therefore distinguished Fréchet spaces, which
are not quojections. These classes include:

1) Reflexive Fréchet spaces in which do not exist total bounded sets, since in
their dual spaces do not exist continuous norms. An example of such a Fréchet
space was constructed in [6].

2) Reflexive Fréchet spaces on which there exist continuous norms, since, ob-
viously, continuous norms cannot exist on a quojection.

3) The Fréchet-Montel space (of type (FM)), is a quojection if and only if
it is isomorphic to the nuclear space Fréchet of all sequences ω = RN (or CN ).
Indeed, let the strong conjugate E′β to a space of type (FM) is a strict inductive
limit of Banach spaces. Then the space E′β is also Montel space and, by virtue
of J. Dieudonne’s theorem ( [82], p. 371), has fundamental sequence absolutely
convex compact sets {V 0

n }. Therefore, the unit balls V 0
n of spaces E′V 0

n
= Ker p⊥n ,

are compact Kerp⊥n is and finite-dimensional. Consequently, E′β turns out to be a
strict inductive limit of sequences of finite-dimensional Banach spaces Ker p⊥n and
therefore isomorphic to the space of all finite sequences φ ( [82], p.405) with the
topology of the strict inductive limit. Then the strong second conjugate (E′β)

′
β = E

and is isomorphic to the space ω, which is conjugate to the space φ.
From the representation of neighborhoods of the quojection it follows that the

quotient space of a quojection over any closed subspace is always a quojection.
Since every Fréchet space is isomorphic to a closed subspace the product of a
sequence of Banach spaces, which is quejection, then the closed subspace of a
quejection is not always a quejection.

By virtue of ([65], Theorem 5), a sufficient condition for the distinguishedness
of the Fréchet space (E,T) is metrizability of all bounded sets of the space E′β or
existence of an everywhere dense sequence in it (in space E′β) ( [65], Corollary 2
of Theorem 4). As shown by examples of spaces of type (FM), non-isomorphic
ω, these conditions are no longer sufficient for (E,T) to be a quoejection, because
in its strong dual space all bounded sets are metrizable [121], and there exists an
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everywhere dense sequence ([82], p. 371).
The quojection (E,T) is quasi-normable, however, the converse is false, i.e.

there is a quasi-normable space that is not quojection. Indeed, the quasinormability
of a quasi-barrel LCS (E,T) is equivalent to the fact that the space E′β satisfies the
strict Mackey convergence condition. It means, that for every equicontinuous set
C ⊂ E′β there exists a T-neighborhood of zero V such that the topology induced
in C from strong topology coincides with the topology of uniform convergence on
V , i.e. with the topology induced from the normed space E′V 0 . As follows from
Theorem 2.3.1, for quojection a stronger statement holds: for every equicontinuous
set C ⊂ E′β , there is T-neighborhood V such that C ⊂ V 0 and induced topology
in E′V o with the strong topology β(E′, E) coincides with the topology of Banach
space E′V 0 . An example of a quasi-normable space, which is not a quojection,
serves any quasi-normable Fréchet-Montel space, not isomorphic to the space ω.
In particular, such is Schwartz space S(Rl) (see Section 2.6.2).

Theorem 2.3.2. Let (F,T) = s · lim
→
Fn be strict (LB)-space. Then the following

statements are valid:
a) A strong dual space F ′β is a quojection and F ′β = s · lim

←
F ′/F⊥n .

b) For the strong second dual space the following equalities hold:

(F ′′, β(F ′′, F ′)) = s · lim
→
F ′′n = s · lim

→
(F ′/F⊥n )′.

Proof. a) Let V represent T-neighborhood satisfying condition b) of Proposition
2.2.2 and V ∩Fn = Vn. It is well known that homothetic images of the sets Vn form
a fundamental sequence of bounded sets in (F,T). Passing to the polars in F ′ we
obtain that Vn = V 0 + F⊥n . Since V 0 is weakly compact and F⊥n is weakly closed,
then we immediately obtain weak closedness of set V 0+F⊥n , i.e. V 0

n = V 0+F⊥n .
The sequence {V 0

n } generates the topology Tβ , and V 0
n are closed in this topology.

Let pn be the Minkovski functional for V 0
n . Similar to how it was done when

proving the implications b) ⇒ c) of Theorem 2.3.1 we obtain that Ker pn = F⊥n .
Therefore, V 0

n = V 0 +Ker pn, F
′
β is quojection and F ′β = s · lim

←
F ′/F⊥n .

b) Due to the properties of quojection, this is a rare example of a projective
limit of a sequence of Banach spaces, the strong dual of which is represented as a
strict inductive limit of sequence of dual spaces. Therefore, the equalities are true

(F ′′, β(F ′′, F ′)) = s · lim
→

(F ′/F⊥n )′β = s · lim
→

(F ′/Ker pn)
′
β.

Further, every bounded set of quotient space F ′/Ker pn is contained in the
canonical image of the bounded set V 0 from E′, and this is equivalent to the fact
that the space (F ′/Ker pn)

′ which is endowed with strong topology
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β((F ′/Ker pn)
′, F ′/Ker pn), is isomorphic to the subspace Ker p⊥n = F⊥⊥n of

space E′′, endowed with induced topology β(F ′′, F ′) ∩ F⊥⊥n , in which it is a
Banach space. On the other hand, F ′n was identified with the quotient space
F ′/F⊥n , endowed with quotient topology β(F ′, F )/F⊥n due to known properties
dual to subspaces of (DF )-spaces. Therefore, F ′′n = F⊥⊥n and (F ′′, β(F ′′, F ′)) =
s · lim
→
F ′′n.

Corollary. Let (E,T) be a Fréchet space, strongly dual spaceE′β of which is strict
(LB)-space. Then its strong bidual space (E′′, β(E′′, E′)) is a quojection.

Statement a) of Theorem 2.3.2, which, by virtue of Corollary 2 of Theorem
2.2.2 is valid for the strict inductive limit of sequence of normed spaces, strength-
ens the result of A. Grothendieck ([65], corollary of Proposition 8), which proves
the distinguishedness of the strong dual to the strict inductive limit of the sequence
of normed spaces.

In [14], an example of a non-reflexive Fréchet space was constructed, which is
not a quojection, but its strong dual space is a strict (LB)-space. Other examples
and construction method of such Fréchet spaces can be found in [102]. Fréchet
space, the strong bidual of which is a quojection, was named in [102] prequojec-
tion. In [199] (see also [38, 117]), it is proved that the class of prequojections
exactly coincides with the class of Fréchet spaces, strong dual of which are strict
(LB)-spaces.

Theorem 2.3.3. Let (F,T) be a strict (LB)-space. In order that the quotient space
F/G over a closed subspaceG to be a strict (LB)-space in the quotient topology, it
is necessary, and in the case of reflexivity of the quotient space F/G it is sufficient,
that for a weakly closed subspace G⊥ of quojection F ′β was a quojection.

Proof. Necessity. Let quotient space F/G be a strict (LB)-space. By virtue of
statement a) of Theorem 2.3.2, the strong dual space F ′β is a quojection. From
([65], Proposition 5) it follows that the subspace (G⊥, β(F ′, F )∩G⊥) of the space
F ′β is identified with the dual to the quotient space F/G in the strong topology
β(G⊥, F/G), in which it is a quojection.

Sufficiency. Now, let the weakly closed subspace G⊥ of the quojection F ′β be
again a quojection. It is well known that for an arbitrary closed subspace G the
quotient space (F/G,T/G) is a (LB)-space. Further, as noted above, the strong
topology β(F ′, F ) ∩ G⊥ on G⊥ coincides with the induced topology β(F ′, F ) ∩
G⊥. Let in this topology G⊥ be a Banach space, then, by virtue of Theorems 4
and 7 from ( [82], p. 397), we find that F/G is also a Banach space. If G⊥ is a
non-normed subspace in F ′β , then, by assumption, it is a reflexive quojection, i.e.
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strong bidual to the (LB)-space F/G is a strict (LB)-space and, therefore, it itself
is a strict (LB)-space.

Remark 2.3.1 (A note about the terms “strictly distinguished”, “strictly regular”,
“quoection”, “prequojection”). The term “strictly distinguished Fréchet space”
was first introduced in the Russian paper [193] as a Fréchet space whose strong
dual is strict (LB-space) that is a natural reinforcement of A. Grothendieck’s term
“distinguished Fréchet space” ( [82], pp. 306, 399). This article was translated
from Russian to English and its translator correctly used the term “strictly distin-
guished”. Then the author used the term “strictly distinguished” in the paper [196],
the translator of which used the term “strictly regular” to denote those Fréchet
spaces whose strong dual is strict inductive limit of the sequence spanned on the
polars of neighborhoods of zero (canonical sequence). Unfortunately, we did not
see the translation correction. We used the same term for such spaces in [39].
Later, the term “quojection” was used to denote “strictly regular Fréchet spaces”.
However, in [14], it was proved that the Fréchet spaces exist whose strong dual is
strict (LB)-spaces, but they are not strict (LB)-spaces of canonical sequence.

Thus, the strictly regular and strictly distinguished Fréchet spaces are different
from each other, and the Fréchet spaces whose strong dual are strict (LB)-spaces
are called “prequojection”. At the same time, we introduced the notion of a strictly
distinguished LCS as a space whose strong dual is strict inductive limit of the fam-
ily of Banach spaces. In particular, in the case of Fréchet spaces, the prequojection
and strictly distinguished Fréchet spaces are identical [199]. Unfortunately, we
have not seen the English translation of this article.

2.3.1 Examples of quojections

A simple example of a quojection is the product of a sequence of Banach spaces
(E,T) =

∏
k∈N

(Ek, ∥ · ∥k). In particular, the simplest quojection is the space of all

real (complex) sequences ω = RN (CN ).
Indeed, let us define the topology of the space E with sequence of seminorms

pn(x) =

n∑
k=1

∥xk∥k, x = {xk} ∈ E, n ∈ N.

It is easy to verify that the quotient space E/Ker pn by quotient norm p̂n is

isomorphic to the Banach space
n∏
k=1

(Ek, ∥ · ∥k), i.e. (E,T) is a quojection. Strong

dual space E′β = ⊕k∈N(E
′
k, ∥ · ∥′k), i.e. is the direct sum of strong dual Banach

spaces.
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According to [110], a quojection is called trivial if it isomorphic to the prod-
uct of a sequence of Banach spaces. An example of a non-rivial quojection was
constructed in [110].

It is easy to verify that the Fréchet space (E,T) is isomorphic to the space ω
if and only if there exists on E sequence of seminorms generating a topology T
such that dim(E/Ker pn) = CodimKer pn < ∞ for each n ∈ N, i.e. space ω is
represented as the projective limit of finite-dimensional spaces. The strong dual to
the space ω is isomorphic to the space of all finite sequences φ.

Let us now consider the Fréchet space B × ω, where (B, ∥ · ∥) is a Banach
space. Let us define a sequence of seminorms

pn(x
(1), x(2)) = (∥x(1)∥2 + |x(2)1 |2 + · · ·+ |x(2)n−1|

2)1/2),

x = (x(1), x(2)) ∈ B × ω, n ∈ N.

For each n ∈ N the quotient space (B × ω)/Ker pn is a Banach space with
the norm p̂n isomorphic to the space (B × Rn−1, pn,B×Rn−1), where pn,B×Rn−1

is restriction of seminorms pn on the subspace B × Rn−1. Canonical mappings
kn and πnm are topological homomorphisms, dimKerπnm = m − n < ∞ and
therefore Kerπnm have topological complement in Em. The strong dual space E′

isomorphic to the spaceB′×φ. The spaceB′×φ in the strong topology admits the
following representation (B′ × φ)β = s · lim

→
(Ker p⊥n , ∥ · ∥′n), i.e. B′ × φ is repre-

sented as a strict inductive limit of a sequence of Banach spaces {(Ker p⊥n , ∥ · ∥n)},
where Ker p⊥n is considered in induced topology β(B′ × φ,B × ω) ∩ Ker p⊥n ,
which coincides with the topology of the norm ∥ · ∥′n, generated by the polar
V 0
n = {x′ ∈ B′ × φ; sup{|⟨v, x′⟩|; v ∈ Vn} ≤ 1}. Adjoint mappings π′nm :

(Ker p⊥n , ∥ · ∥′n) → (Ker p⊥m, ∥ · ∥′m), and k′n : (Ker p⊥n , ∥ · ∥′n) → B′×φ are topo-
logical monomorphisms. From the mentioned properties of mappings πnm for π′nm
we obtain that dimCokerπ′nm = m−n <∞, i.e. dim(Ker p⊥m/π

′
nm(Ker p⊥n )) =

dim(Ker p⊥m/Ker p⊥n ) = m− n <∞.
It is well known that every closed subspace G of the space B × ω is again a

space of the same type. Moreover, every closed subspace G of the Fréchet space
E is a quojection if and only if it is isomorphic to the space B × ω. Indeed, if
E is not isomorphic to the space B × ω, then due to [16] it has a nuclear Kothe
subspace, i.e. nuclear Fréchet space with continuous norm and basis, which is not
quojection.

The quotient space of the spaceB×ω is again the space of the same form, since
every closed subspace of the quotient space is isomorphic to the quotient space of
the subspace.

Let us now present a description of the topology of the strong dual to subspace
G of the space B × ω, which we will need in further. Let pn,G be the restriction of
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the seminorm pn to G and (G/Ker pn,G, p̂n,G) is a normed space, where p̂n,G is
associated norm on the quotient space. The space (G/Ker pn,G, p̂n,G) is isometric
to the subspace kn(G) of the quotient space (E/Ker pn, p̂n) and this isometry is
carried out by the correspondence kn,G(g) → kn(g), where kn,G is the canonical
mapping of G to G/Ker pn,G. As is known, the subspace G is isomorphic to
the projective limit of a sequence of Banach spaces Gm = (km(G), p̂m,km(G))
with respect to the mappings πnm,Gm , where πnm,Gm is a restriction of πnm to
Gm, πnm,Gm is its continuous extension to G̃m, and p̂m,km(G) is restriction of p̂m
to km(G). Let us prove now that the conjugate mapping π′nm,Gm

: G′n → G′m
is a monomorphism. Indeed, we have that kn(G)′ = (E/Ker pn)

′/kn(G)
⊥ =

Ker p⊥n /(Ker p⊥n ∩G⊥), since kn(G)⊥ = k′n
(−1) (G⊥) = Ker p⊥n ∩G⊥. Therefore

π′nm,Gm
: (Ker p⊥n , ∥ · ∥n)/(Ker p⊥n ∩G⊥) → (Ker p⊥m, ∥ · ∥m)/(Ker p⊥m ∩G⊥).

Applying Theorems 6 and 7 from ( [82], p. 55), we obtain the algebraic iso-
morphism of the following quotient spaces

(Ker p⊥m/(Ker p⊥m ∩G⊥))/(Ker p⊥n /(Ker p⊥n ∩G⊥)),

(Ker p⊥m/(Ker p⊥m ∩G⊥))/((Ker p⊥n +G⊥ ∩Ker p⊥m)/(Ker p⊥m ∩Gm)),

and
Ker p⊥m/(Ker p⊥n +G⊥ ∩Ker p⊥m).

But the last quotient space is the image of a finite-dimensional space
Ker p⊥m/(Ker p⊥n ) under homomorphism and therefore itself is finite-dimensional,
i.e.

dim cokerπ′nm,Gm
≤ m− n.

Besides, according to the theorem proved in [81], we obtain that the mapping
π′nm,Gm

is a monomorphism and π′nm,Gm
(Ker p⊥n /(Ker p⊥n ∩ G⊥)) is closed in

Ker p⊥m/(Ker p⊥m ∩ G⊥). This means that Ker p⊥1 /(Ker p⊥1 ∩ G⊥) has at most
countable dimension in G′. Further, as proved in the note after Proposition 11
in [65], it turns out that G′β is isomorphic to B′1 × φ, i.e. G is isomorphic to
B1 × ω.

In the case of reflexivity of space, we can prove the following assertion: the
reflexive (LB)-space (F,T) has a quotient space that is not a strict (LB)-space if
and only if it is not isomorphic to the space B × φ, where B is reflexive Banach
space. Indeed, if (F,T) has quotientspace (F/G,T/G), which is reflexive (LB)-
space, but is not a strict (LB)-space, then dual space G⊥ in the strong topology
β(G⊥, F/G) is identified with the space (G⊥, β(F ′, F ) ∩ G⊥). Therefore, G⊥
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cannot be a quojection and therefore F ′β is not isomorphic to the space B′ × ω, i.e.
(F,T) is not isomorphic to the space B × φ.

Let us also prove that if (F,T) = B × ω, then every closed subspace
(G, β(F ′, F ) ∩G) of its strong dual subspace B′ × φ is a strict (LB)-space.

Closed subspace (G, β(F ′, F ) ∩ G) of space B × φ is a Banach subspace if
and only if it is contained in some Banach space (Ker p⊥n , ∥ · ∥n) and is a closed
subspace in it. If (G, β(F ′, F ) ∩ G) is a non-normed closed subspace, then G =⋃
n∈N

(G ∩ Ker p⊥n ) and it should be proven that (G, β(F ′, F ) ∩ G) = s · lim
→

(G ∩

Ker p⊥n , ∥ · ∥n). From the properties of monomorphisms π′nm (n ≤ m) it follows
that for monomorphisms Inm : (G ∩ Ker p⊥n , ∥ · ∥n) → (G ∩ Ker p⊥m, ∥ · ∥m)
the inequalities dimCo kerInm ≤ m − n < ∞ are valid. Therefore subspace
B1 = G ∩ B′ = G ∩ Ker p⊥1 has a countable codimension in G. Let {ek} be the
algebraic basis of the complement G ∩ B′ in G and H is a subspace spanned by
{ek}, then ek ∈ G∩φ andH ⊂ φ. The subspaceH is closed in φ, since, due to the
known properties of the space φ each of its vector subspaces is closed (topology
of space φ is the strongest locally convex topology). Moreover, H is isomorphic
to the space φ, and has a topological complement in φ [49], and therefore, in the
induced topology from the space φ it is a strict (LB)-space. It also follows that G
is isomorphic to the space B1 × φ and is a strict (LB)-space.

We can give another proof of this fact. Namely, as is known, the quotientspace
((B′ × φ)/G,T/G) = lim

→
(Ker p⊥n , ∥ · ∥n)/(G ∩ Ker p⊥n ). The strictness of this

inductive limit can be proved by reasoning similar to those given higher. Then, by
virtue of the first part of Theorem 2 from [142] it turns out that (G, β(F ′, F )∩G) =
s · lim
→

(G ∩Ker p⊥n , ∥ · ∥n).

2.3.2 Quojections of continuous functions and measures

Space of continuous functions C(T ). Let T be a separated locally compact space
countable at infinity, i.e. T is represented as union of a sequence of compact sets
{Tn} and each a compact subset K is contained in some Tn0 . We can assume that
for each n ∈ N the set Tn ⊂ intTn+1 and T =

⋃
n∈N

Tn. We denote by C(T )

(respectively CR(T )) linear space of continuous complex (resp. real) functions on
T with the topology of compact convergence on T . This topology can be defined
by the sequence of seminorm

pn(f) = max{|f(t)|; t ∈ Tn}. (2.3.1)

Let us introduce the following notation Vn = {f ∈ C(T ); pn(f) ≤ 1}, B =
{f ∈ C(T ); sup{|f(t)| : t ∈ T} ≤ 1}. Let us prove that for each n ∈ N the
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equality Vn = B+Ker pn is true. Let f ∈ Vn. By virtue of Urisohn’s continuation
theorem ([30], p. 47), the restriction of functions f on Tn can be continued on T so
that the continuation of the function f(t) will be bounded on T by the number 1.
Let f1(t) be one of these continuations. Then f2 = f − f1 is equal to zero on
Tn and therefore f2 ∈ Ker pn. Therefore, f = f1 + f2, where f1 ∈ B and
f2 ∈ Ker pn. Inverse inclusion is obvious, therefore C(T ) is a quojection and the
quotient spaces C(T )/Ker pn are Banach spaces by the norm

p̂n(knf) = pn(f),

where kn : C(T ) → C(T )/Ker pn is the canonical map. Elements of quotient
space C(T )/Ker pn are the classes of all extensions of restrictions to Tn continu-
ous functions defined on T . These classes are uniquely determined by restrictions
to Tn of continuous functions. Therefore, the space (C(T )/Ker pn, p̂n) is isomet-
ric to the Banach space C(Tn), that is, the space of continuous functions on the
compact set Tn. Up to the isomorphism we can write that

C(T ) = s · lim
←
πnm(C(Tm)),

where πnm : C(Tm) → C(Tn) is restriction operator on Tn of a continuous func-
tion defined on Tm.

In particular, the spaceC(Ω),Ω ⊂ Rl is an open set, is a quojection. Moreover,
in ([177], Chapter 3, Section 2) it is proved that the space of k-times continuously
differentiable functions Ck(Ω) is isomorphic to the space (Ck(I l))N , where I =
[0, 1].

Measure space M(T ). Let again T be locally compact space from the previ-
ous example. K(T ) denotes the linear subspace in the space C(T ), consisting of
continuous complex functions with a compact support. Let K be a compact subset
of T . Let K(T,K) denote the set of those functions x ∈ K(T ), whose supports
are contained in K. Each of the sets K(T, Tn) is subspace in K(T ) and the space
K(T ) is the union of spaces K(T, Tn), i.e. K(T ) =

⋃
n∈N

K(T, Tn). If each space

K(T, Tn) is endowed by the norm

∥f∥n = max{|f(t)|; t ∈ Tn} ,

then it becomes a Banach space with a unit ball

Un = {f ∈ K(T, Tn); ∥f∥n ≤ 1}.

It is obvious that ∥ · ∥n is a restriction of the seminorm (2.3.1) to K(T, Tn).
The space K(T ) can be endowed with the topology of an inductive limit T

with respect to identical embeddings Inm : K(T, Tn) → K(T, Tm) (n ≤ m).
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Obviously, for each n ∈ N the norm ∥ · ∥n+1, of the space K(T, Tn+1) induces on
K(T, Tn) the topology of the norm ∥ · ∥n, i.e. in the T topology the space K(T ) is
a strict (LB)-space, K(T ) = s · lim

→
K(T, Tn).

By virtue of Proposition 2.2.2 on K(T ) there exists T - continuous norm which
induces on every K(T, Tn) a norm topology ∥ · ∥n. As such a norm we can take the
norm defined by the equality

∥f∥ = max{|f(t)|; t ∈ T}, f ∈ K(T ).

If U = {f ∈ K(T ); ∥f∥ ≤ 1}, then U =
⋃
n∈N

Un and U ∩ K(T, Tn) = Un.

It should be noted that U coincides with B ∩ K(T ), where B is the set from the
previous example. Moreover, the U is neighborhood on K(T ), and B is a bounded
set inC(T ). From Corollary 1 of Proposition 2.2.2 it follows that the normed space
(K(T ), ∥ ·∥) is not complete, but K(T, Tn) are complete subspaces of (K(T ), ∥ ·∥)
for each n ∈ N. The completion of the space (K(T ), ∥·∥) is space of continuous on
T functions f(t) tending to 0 when t tends to the infinitely distant point at infinity
([30], p. 73).

According to [30], the Radon measure on a locally compact space T is a linear
functional µ on the linear space K(T ) satisfying the following condition: for any
compact set Tn ⊂ T the restriction of µ to subspace K(T, Tn) is continuous in the
norm topology ∥ · ∥n. The space of all Radon measures on T is denoted by M(T ).
From Theorem 2.3.2 it follows that the Radon measure on T is a linear functional
on K(T ), continuous (even sequentially continuous) in the inductive limit topology
T, therefore the space M(T ) = K(T )′.

A measure µ is said to be bounded in the Bourbaki sense if there exists C > 0
such that for any function f ∈ K(T )

|⟨µ, f⟩| ≤ C∥f∥.

Thus, the boundedness of the measure µ means that µ belongs to the dual to the
normed space (K(T ), ∥ · ∥). We denote this dual space by M1(T ).

As follows from Theorem 2.3.2, the spaceM(T ), endowed with a strong topol-
ogy of the duality ⟨K(T ),M(T )⟩, is a quojection. Let’s give specification of this
theorem in the case of the space M(T ).

Homothetic images of sets Un form a fundamental sequence of bounded sets in
K(T ). Therefore polars U0

n generate a strong topology β(M(T ),K(T )) in M(T ).
As we know U0

n = U0 +Ker p⊥n , where U0 = {µ ∈ M(T ); sup{|⟨f, µ⟩|; ∥f∥ ≤
1} ≤ 1} is σ(M(T ),K(T )) compact set. From here it is clear that the set U0

contains measures that are bounded in the Bourbaki sense with number 1, i.e. U0
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represents the unit ball of the space M1(T ). The subspace K(T, Tn)
⊥ contains the

measures µ ∈M(T ) whose supports do not intersect with intTn, i.e.

K(T, Tn)
⊥ = {µ ∈M(T ); supp(µ) ∩ intTn = ∅}.

Indeed, let µ ∈ K(T, Tn)
⊥ and t ∈ supp(µ) ∩ intTn. Then there exists a neigh-

borhood S of the point t such that S ⊂ intTn. For this neighborhood there is a
continuous function g(t) with compact support contained in S such that ⟨g, µ⟩ ≠ 0.
The obtaining contradiction shows that supp(µ) ∩ intTn = ∅.

Now let supp(µ) ∩ intTn = ∅ and f be a function with compact support con-
tained in Tn, then f(t) = 0 for t ∈ Tn\ intTn. Indeed, if for some t0 ∈ Tn\ intTn
we have f(t0) ̸= 0, then there exists a number a > 0 and a neighborhood S
of the point t0 such that |f(t)| ≥ a, when t ∈ S. Therefore we obtain that
intTn ∪ S ̸⊂ Tn, i.e. the support of function f is not contained in Tn. This
means that f(t) = 0, when t ∈ Tn\ intTn. Hence, by virtue of Proposition 8
([30], p. 86), we find that ⟨f, µ⟩ = 0, i.e. µ ∈ K(T, Tn)

⊥.
The Minkowski functional pn for U0

n have the following form:

pn(µ) = sup{|⟨f, µ⟩|; f ∈ Un} = sup{|⟨f, µ⟩|; f ∈ U ∩ K(T, Tn)}

and the sequence {pn}, by virtue of the above, generates strong topology inM(T ).
By virtue of statement a) of Theorem 2.3.2, we have that

(M(T ), β(M(T ),K(T ))) = s · lim
←
M(T )/Ker pn = s · lim

←
M(T )/K(T, Tn)

⊥,

with respect to canonical mappings πnm :M(T )/K(T, Tm)
⊥→M(T )/K(T, Tn)

⊥.
Quotient space M(T )/K(T, Tn)

⊥ is a Banach space in the quotient topology gen-
erated by the norm p̂n(knµ) = pn(µ), where kn : M(T ) → M(T )/K(T, Tn)

⊥

is the canonical mapping. The space M(T )K(T, Tn)
⊥ is isometric to the Banach

space of measures on T , whose supports are contained in Tn. This space we denote
by M(T, Tn). Therefore, we have

M(T ) = s · lim
←
M(T, Tn).

In the work [176] it was proved that the space of measures M(T ), where T is
locally compact space countable at infinity, is isomorphic to the space (C[0, 1]′)N ,
i.e. the spaceM(T ) in this case is a trivial quojection. It was also proved there that
this result is valid for the space M(V ), where V is a non-compact locally compact
manifold, countable at infinity.

Proposition b) of Theorem 2.3.2 makes it possible to describe the strong ad-
joint to the space M(T ) using the second conjugate Banach spaces K(T, Tn). The
representations are valid

(M(T )′, β(M(T )′,M(T ))) = s · lim
→

K(T, Tn)
′′ = s · lim

→
(M(T )/K(T, Tn)

⊥)′.
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It is well known that the dual to the space C(T ) is space of Radon measures
with compact support Mc(T ). By Theorem 2.3.2, for the strongly dual space
Mc(T ) the following representation holds:

(Mc(T ), β(Mc(T ), C(T ))) = s · lim
→

Ker p⊥n ,

where the seminorms pn are defined by the equality (2.3.1). As noted above,
Ker p⊥n = (C(T )/Ker pn)

′ = C(Tn)
′. Therefore the last space is isomorphic

to the space of measures on Tn. Therefore,

(Mc(T ), β(Mc(T ), C(T ))) = s · lim
→
M(Tn) = s · lim

→
M(T, Tn),

where the last space is defined above.
As noted above, the Radon measure on T is continuous linear form on K(T ).

In ([30], p. 72) it is proved that the Lebesgue measure is not bounded on R by the
norm ∥ · ∥, that is, does not belong to the space (K(R), ∥ · ∥)′. But for any Radon
measure µ there is a norm ∥ · ∥µ, inducing on each K(T, Tn) norm topology ∥ · ∥n
such that µ ∈ (K(T ), ∥ · ∥µ)′, that is µ is bounded by the norm ∥ · ∥µ. For the
Lebesgue measure of such a norm we can take the norm on K(R) defined by the
equality

∥f∥µ = max{(1 + t2)|f(t)|; t ∈ R}, f ∈ K(R).

Indeed, the following relations are valid:

sup{|⟨f, µ⟩|; ∥f∥µ ≤ 1} = sup

{∣∣∣∣
∞∫
−∞

f(t)dt

∣∣∣∣; ∥f∥µ ≤ 1

}

≤ sup

{∣∣∣∣
∞∫
−∞

(1 + t2)f(t)dt

(1 + t2)

∣∣∣∣; ∥f∥µ ≤ 1

}
≤

∞∫
−∞

dt

1 + t2
= π,

i.e. the Lebesgue measure is bounded with respect to the norm ∥·∥µ, which induces
on each K(R, Tn), where Tn = [−n, n], the norm topology ∥ · ∥n.

2.3.3 Quojections of locally summable functions

1. Space Lploc(T, µ) (1 ≤ p ≤ ∞). Let again T be locally compact space,
countable at infinity, T =

⋃
n∈N

Tn, where Tn ⊂ intTn+1 are compact sets and

µ ∈ M(T ). Collection all complex valued, measurable functions f , defined on T ,
for which for any n ∈ N the quantity

∥f∥n =


( ∫
Tn

|f(t)|pdµ(t)
)1/p

, 1 ≤ p ≤ ∞,

vrai sup{|f(t)|; t ∈ Tn}, p = ∞,
(2.3.2)
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is finite, is called the space of p-locally summable functions in T (for p = 1, this is
the space of locally summable functions on T ). It is Fréchet space and is denoted
by Lploc(T, µ). If µ is the Lebesgue measure on R, then the indicated space is
denoted by Lploc(R). Let us prove that with a sequence of seminorms (2.3.2) it is a
quojection. Indeed, it is easy to check that the quotient space Lploc(T, µ)/Ker ∥·∥n
is isomorphic to the Banach space Lp(Tn, µ) of functions summable on Tn with
respect to restriction µ on Tn. Obviously, in this case it is also true the equality

Vn = B +Ker ∥ · ∥n,

where Vn = {f ∈ Lploc(T, µ); ∥f∥n ≤ 1} and

B =

{
f ∈ Lploc(T, µ);

∫
T

|f(t)|pdµ(t) ≤ 1

}
.

Therefore, Lploc(T, µ) = s · lim
←
πnm(L

p(Tm, µ)), where πnm : Lp(Tm, µ) →
LP (Tn, µ) (m ≥ n) is the restriction operator. Therefore, for 1 < p < ∞ the
space Lploc(T, µ) is the projective limit of a sequence of reflexive Banach spaces
{Lp(Tn, µ)} and by virtue of [65] it is totally reflexive, i.e. each of its quotient
spaces is again reflexive.

A measurable function is called compactly supported in T , if it vanishes al-
most everywhere outside some compact set contained in T . The set of all com-
pactly supported functions from Lploc(T, µ) is denoted by Lp0(T, µ). The set of all
finite functions that turn into zero almost everywhere outside some set K ⋐ T is
denoted by Lp0(K,µ). Obviously, Lp0(T, µ) =

⋃
n∈N

Lp0(Tn, µ). Conjugate to the

space Lploc(T, µ) (1 ≤ p <∞) is identified with the space Lq0(T, µ)
(
1
p +

1
q = 1

)
.

In the strong topology, the space Lq0(T, µ) is identified with strict inductive
limit of an increasing sequence of Banach spaces {Lq0(Tn, µ)}, i.e.

(Lq0(T, µ), β(L
q
0(T, µ), L

p
loc(T, µ))) = s · lim

→
Lq0(Tn, µ)

relatively identical embeddings π′nm : Lq0(Tn, µ) → Lq0(Tm, µ).
2. The space of p-locally summable double sequences. Let lploc (1 ≤ p <∞)

denote the echelon space p-th order on the set of indices N ×N , defined by double
sequences a(n), where

a
(n)
ij =

{
1, when i ≤ n, j arbitrary,
0, at i > n, j arbitrary,

i.e. lploc is the space of all double sequences x = {xij}, the product of which with
any a(n) is summable to the p-power. This we call the space of p-locally summable
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doubles sequences. The topology of the space lploc is given by the following se-
quence of seminorms:

pn(x) =

( n∑
i=1

∞∑
j=1

|xij |p
)1/p

, x = {xij} ∈ lploc, n ∈ N.

The space lploc is a quojection and a quotient space lploc/Ker pn is isomorphic to the
Banach space lp.

The double sequence x = {xij} is called rowwise finite of order n, if xij = 0
for all i > n. The set of all such sequences from the space lploc we denote by
lp0(n). Space lp0 =

⋃
n∈N

lp0(n) will be called the space of row-finitely supported

p-integrable double sequences. Conjugate to the space lploc (1 ≤ p < ∞) is
identified with the space lq0

(
1
p + 1

q = 1
)
. In the strong topology, lq0 is a strict

(LB)-space and (lq0, β(l
q
0, l

p
loc)) = s · lim

→
lq0(n).

3. Let Ω ⊂ Rl be an open set and {Ωn} be an increasing sequence of its
compact subsets such that Ωn ⊂ intΩn+1 for each n ∈ N and Ω =

⋃
n∈N

Ωn. Let

W p,k
loc (Ω) (1 ≤ p < ∞, k ∈ N) denote the space of all real functions f , having

generalized derivatives of order s=(s1, . . . , sl), where |s| =
∑
si ≤ k, belonging

to the Banach space Lp(Ωn) for each n ∈ N. Space W p,k
loc (Ω) is a Fréchet space

with a sequence of seminorms

∥f∥p,kn =

( ∑
|s|≤k

∫
Ωn

|f (s)(t)|dt
)1/p

, f ∈W p,k
loc (Ω), k, n ∈ N.

Let Up,kn = {f ∈W p,k
loc ; ∥f∥

p,k
N ≤ 1} and

B =

{
f ∈W p,k

loc ;

(∑
s≤k

∫
Ω

|f (s)(t)|pdt
) 1

p

≤ 1

}
.

It is obvious that

Up,kn ⊂ B +Ker ∥ · ∥p,kn ⊂ Up,kn−1 for any n ≥ 2.

According to statement b) of Theorem 2.3.1, this means that the space W p,k
loc is

quojection.
The function f ∈ W p,k

loc (Ω) is called finite of order n, if it vanishes almost
everywhere outside Ωn. The set of all such functions from the space W p,k

loc (Ω) we
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denote byW p,k
0 (Ωn) and call it the space of p-summable finite functions of order n.

The space W p,k
0 (Ω) =

⋃
n∈N

W p,k
0 (Ωn) will be called the space of all p-summable

finite functions. In the topology of the inductive limit, the space W p,k
0 (Ω) is a

strict (LB)-space and we have the representation W p,k
0 (Ω) = s · lim

→
W p,k

0 (Ωn).

The strong dual space to the space W p,k
0 (Ω) is a quojection by virtue of Theorem

2.3.2 and it is true the representation

((W p,k
0 (Ω))′, β((W p,k

0 (Ω))′,W p,k
0 (Ω))) = s · lim

←
(W p,k

0 (Ωn))
′.

In the case k = 0 the last space coincides with the space Lploc(Ω). It is easy to
verify that W p,k

loc (Ω) = (W q,k
0 (Ω))′ (1 < p <∞, 1

p +
1
q = 1).

4. Consider the set Mνp(R) (1 ≤ p <∞, ν > 0) of all entire functions g(z)
of exponential type ν, whose restrictions to R belong to Lp(R). It is known that
Mνp(R) is closed subspace of the space (Lp(R), ∥ · ∥p),Mν1p(R) ⊂ Mν2p(R),
when ν1 ≤ ν2 and Mp(R) =

⋃
ν≥0

Mνp(R) is dense in Lp(R) ( [116], p. 245). In

the topology of the inductive limit, the space Mp(R) is a strict (LB)-space, and its
strongly conjugate space is a quojection.

Numerous examples of quojections appear when representing topology of gen-
eralized functions space D′.

2.4 Strict Fréchet–Hilbert space

This section studies topological, geometric and structural properties of strict Fréchet–
Hilbert spaces, i.e. of quojections, which are represented as strict projective limits
of a sequence of Hilbert spaces. And also studies their strong dual strict (LH)-
spaces, subspaces and quotient spaces of these spaces.

2.4.1 Representation of the topology of the strict Fréchet–Hilbert space and
its strong dual space

The Fréchet space (E,T) is called the strict Fréchet–Hilbert space if its topol-
ogy T is generated by a sequence of hilbertian seminorm pn(x) = (x, x)

1/2
n ,

i.e. seminorms generated semi-inner products (·, ·)n and the space E is complete
with respect to each seminorm pn(·). We can assume that sequence {pn} is non-
decreasing, i.e. p1(x) ≤ p2(x) ≤ · · · ≤ pn(x) ≤ · · · for all x ∈ E.

It is easy to verify that the completeness of the Fréchet spaces E with respect
to the seminorm pn is equivalent to the fact that the quotient space E/Ker pn is
a Banach space with respect to associated norm p̂n. Therefore, in the case of the
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strict Fréchet–Hilbert space (E,T), quotient spaces E/Ker pn are Hilbert spaces
according to the norms p̂n. Therefore, a strict Fréchet–Hilbert space is a strict
projective limit of sequences of Hilbert spaces {(E/Ker pn, p̂n)} with respect to
canonical mappings πmn : (E/Ker pm, p̂m) → (E/Ker pn, p̂n)(n ≤ m). Such
class of spaces appeared for the first time in the report [194] when representing the
topology of the space of generalized functions D′ (see also Section 2.6). In [85],
there were received interesting properties of these spaces and various algebras of its
continuous endomorphisms. It was generalized the concept of the self-adjoint oper-
ator and the spectral representation such operators was obtained. Similar represen-
tations in the case of Hilbert space are extremely important in quantum mechanics.
Note that this is achieved by a natural generalization concepts of orthogonality in
Fréchet–Hilbert spaces, like in the same way as was done earlier in [191] in the case
of countable-Hilbert spaces. In the works [31, 84, 173, 191] were found orthogo-
nal complements of various subspaces in the metrizable and in the non-metrizable
case. Similar issues are discussed in more detail in the review [132].

Here we will study topological, geometrical and structural properties of strict
Fréchet–Hilbert spaces and their strong dual strict (LH)-spaces, as well as sub-
spaces and quotient spaces of these spaces. A rich class of subspaces of strict
Fréchet–Hilbert spaces with topological complements is established. Moreover,
the LCS (E,T) is a topological sum of its closed subspaces G and H means that
E = G +H , G ∩H = {0} and the quotient space (E/G,T/G) is isomorphic to
the subspace (H, T ∩H). This fact will be denoted below as (E,T) = G

.
+ H .

A closed subspace G of an LCS E is said to have topological complement if there
is a closed subspace H such that E = G

.
+H .

Theorem 2.4.1. Let (E,T) be a real or complex non-normable Fréchet space with
non-decreasing sequence of seminorms {pn} generating the topology T. Then the
following statements are equivalent:

a) (E,T) is a strict Fréchet–Hilbert space with the sequence of seminorms
{pn}, that are generated by the semi-inner products (·, ·)n, and E is complete with
respect to pn (n ∈ N).

b) The strong dual E′β = s lim
→
Hn is a strict (LH)-space, where each Hilbert

space Hn is spanned by the polar V 0
n of the neighborhood Vn = {x ∈ E, pn(x) ≤

1} and Hn has a topological complement in E′β .

c) For each n ∈ N the equality (E,T) = (Hn, pn,Hn)
.
+Ker pn, holds, where

(Hn, pn,Hn) is a Hilbert subspace of the space E with respect to the restriction
pn,Hn

of pn to Hn. In particular, (E,T) = s lim
←

(Hn, pn,Hn).

Proof. a) ⇒ b). As mentioned above, for each n ∈ N, the quotient space
(E/Ker pn, p̂n) is a Hilbert space with respect to the norm p̂n(knx) = pn(x)
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and the inner product ⟨knx, kny⟩n = (x, y)n, where kn : E → E/Ker pn is the
canonical homomorphism. This Hilbert space we denote by Hn. As was indicated
in Corollary 1 of Theorem 2.3.1, the space k′n(E/Ker pn, p̂n)

′ = k′n(H
′
n) is iso-

morphic to the Hilbert space E′V 0
n

, spanned by V 0
n , i.e. E′V 0

n
is isomorphic to H ′n,

and hence to Hn. Further, π′nm (n ≤ m) is the identity imbedding of k′n(Hn) in
k′m(Hm), and thus Hn is isomorphic to a subspace of Hm. In view of Theorem
2.3.1 it was indicated that E′V 0

n
= Ker p⊥n , where Ker p⊥n is the weakly closed sub-

space E′, orthogonal to Ker pn with respect to ⟨E,E′⟩. From here we get, that
H ′n = Ker p⊥n and E′β = s lim

→
Hn. Now we prove that Hn has topological com-

plement in E′β . Let Gn,i be topological complement of the subspace Hn+i−1 in

Hn+i (i ∈ N) and let G(n)
k = ⊕k

i=1Gn,i. Let Gn = s · lim
→
G

(n)
k is a strict (LH)-

space. It is not hard to verify that Gn is an algebraic complement of Hn in E′, i.e.
E′ = Hn+Gn andHn∩Gn = {0}. The induced topology of β(E′, E)∩Gn onGn
coincides with the topology of the original strict (LH)-space. Due to completeness
of strict (LH)-space we obtain that Gn is closed in E′β and E′β = Hn

.
+Gn.

b) ⇒ c). Passing to the polar ofE, we get from the equalities established above
that Hn ∩Gn = {0} and E′=Hn+Gn, i.e. that E = H⊥n +G⊥n and H⊥n ∩G⊥n =
{0}, where H⊥n and G⊥n are σ(E,E′) closed subspaces of E, orthogonal to Hn

and Gn respectively in the sense of a dual pair ⟨E,E′⟩. The following equalities
are valid up to isomorphism:

(E/H⊥n ,T/H
⊥
n ) = (E′′/H⊥n , β(E

′′, E,′ )/H⊥n ) = (H ′n, β(H
′
n, Hn))

= ((E′/Gn)
′, β((E′/Gn)

′, (E′/Gn)))

= (G⊥n , β(E
′′, E′) ∩G⊥n )) = (G⊥n ,T ∩G⊥n ) .

Indeed, the first and last are valid becauseE is reflexive, the second is valid in view
of a property of the representation of the dual of the subspace Hn [65], the third
is valid because Hn and Gn are mutually complemented subspaces of E′β , and the
fourth is valid in view of the representation of the strong dual of the quotient space
of the (DF)-space E′β [49]. This means that (E,T) = H⊥n

.
+G⊥n . Further, H⊥n =

Ker p⊥1n = Ker pn and G⊥n = (E/Gn)
′ = H ′n = Hn, i.e. E = Ker pn

.
+Hn and

Hn is closed complemented subspace of E. It also follows from the last equality
that the restriction pn,Hn of the seminorm pn toHn is generated with inner product,
with which Hn is a Hilbert space.

c) ⇒ a) is obvious.

As is well known, a Hilbert space is isomorphic to its dual space. The analo-
gous property cannot hold in the case of nonnormable strict Fréchet–Hilbert spaces,
because the dual of a Fréchet space is metrizable if and only if it is normable. But
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a similar property for the strict Fréchet–Hilbert space (E,T) is the condition that
in view of Theorem 2.4.1, the space (E,T) can be represented as a strict projective
limit of a sequence of Hilbert spaces, and in the space E′β can be represented as
a strict inductive limit of the same sequence. Moreover, Hn is a closed comple-
mented subspace both for the space (E,T), and the space E′β (If necessary empha-
size that Hn is a subspace of E (respectively E′β), then we denote it by Hn,E (re-
spectively Hn,E′)). It should also be noted that the dual the space E′ =

⋃
n∈N

Hn,E′

is everywhere dense in space (E,T).

Corollary 1. Let (E,T)=s · lim
→
Hn be a strict (LH)-space. Then every closed

Hilbert subspace G of the space (E,T), i.e. subspace contained in some Hn, has
a topological complement in (E,T).

Corollary 2. Let (E,T) be a strict Fréchet–Hilbert space and p is a continuous
seminorm on E. Then the subspace Ker p has a topological complement in E that
is Hilbert subspace of the space (E,T).

The proved theorem makes it possible to construct strict Fréchet–Hilbert spaces
using Hilbert spaces.

Let H be a Hilbert space and let {Hn} be an increasing sequence of its closed
subspaces such that F =

⋃
n∈N

Hn is everywhere dense in (H, ∥ · ∥). We define on

H the sequence of seminorms pn by equality

pn(x) = sup{|(x, y)|; y ∈ Hn ∩ S}, x ∈ H, n ∈ N,

where S is the unit ball of spaceH . This sequence generates a metrizable topology
on H , which is weaker than the norms topology. Obviously, H cannot be complete
in this topology. Let us denote the completion of the space H in this topology
viaE. We prove that E is a strict Fréchet–Hilbert space. Indeed, consider the strict
inductive limit of sequences {Hn}. Let F = s · lim

→
Hn. Its strong dual space F ′β

by Theorem 2.4.1 is a strict Fréchet–Hilbert space. Since the sequence of bounded
sets {Hn ∩ S} forms a fundamental sequence, then the sequence of seminorms
{pn} generates the topology of space F ′β . Hence it follows that E = F ′β .

In particular, the space M2(R) from Section 2.3 is a strict (LH)-space, and its
strong dual space is strict Fréchet–Hilbert space.
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2.4.2 Examples of strict Fréchet–Hilbert spaces

1. Fréchet space (E,T) =
∏
k∈N

(Xk, ∥ · ∥k), where (Xk, ∥ · ∥k) are real Hilbert

spaces, with the sequence of seminorms

pn(x) =

( n∑
k=1

∥xk∥2k
)1/2

, x = {xk} ∈ E, n ∈ N,

is a strict Fréchet–Hilbert space. Indeed, the subspaces Hn of the spaces E and

E′, mentioned in the theorem 2.4.1 can be taken to be the space
n∏
k=1

Xk, which can

be identified with subspace of E and E′. With the norm pn,Hn , this subspace is a
complemented Hilbert subspace in E.

In particular, the spaces ω = RN (GN ), l2 × ω and (l2)N are Fréchet–Hilbert
spaces. Moreover, the space ω characterized in the class of Fréchet–Hilbert spaces
by what is represented in the form of a strict projective limit of the sequence of their
finite-dimensional subspaces. Further, as noted in Subsection 2.3, the space l2 ×ω
is characterized by the fact that on the space there is a sequence of seminorms pn
such that dimKerπnm = dimCoKerπ′nm <∞ for any m ≥ n.

2. The space l2loc of locally in a square summable double sequences. l2loc is the
space of all double sequences whose product with any a(n) from Subsection 2.3 is
square-summable. This space will be called the space of locally square-summable
double sequences. It is the strict Fréchet–Hilbert space with the sequence of semi-
norms

pn(x) =

( n∑
i=1

∞∑
j=1

|xij |2
)1/2

, x = {xij} ∈ l2loc, n ∈ N .

The space l20 =
⋃
n∈N

l20(n) is called the space of row-finite double sequences.

The dual space (l2loc)
′ is identified with the space l20. Due to the above, the equalities

are true

l2loc = Ker pn
.
+l20(n) ,

l2loc = s · lim
←
l20(n) ,

(l2loc)
′ = l20 and (l20, β(l

2
0, l

2
loc)) = s · lim

→
l20(n) .

3. The space L2
loc(T, µ). Let in the example from Section 2.3, p = 2. Space

L2
loc(T, µ) with a sequence of seminorms

pn(x) =

(∫
Tn

|x(t)|2dµ
)1/2

, x ∈ L2
loc(T, µ), n ∈ N,



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 105

is a strict Fréchet–Hilbert space. As subspaces Hn mentioned in Theorem 2.4.1,
we can choose Hilbert space L2(Tn, µ). In particular, the strict Fréchet–Hilbert
space is the space L2

loc(Ω, dx), where dx is the Lebesgue measure on the open set
Ω ⊂ Rl.

4. Space W 2,k
0 (Ω)′ (Ω ⊂ Rl, k ∈ N). Let Ω ⊂ Rl be an open set and {Ωn} be

its increasing sequence of compact subsets such that Ωn ⊂ intΩn+1 (n ∈ N) and
Ω =

⋃
n∈N

Ωn. Let W 2,k
loc (Ω) denote the space all real functions f , having general-

ized derivatives f (s) of order s = (s1, . . . , sl), where |s| =
l∑

i=1

si ≤ k belonging

to the space L2(Ωn) for each n ∈ N. The spaceW 2,k
loc (Ω) is a strict Fréchet–Hilbert

space with a sequence of seminorms

pn,k(f) =

( ∑
|s|≤k

∫
Ωn

|f (s)|2dx
)1/2

, f ∈W 2,k
loc (Ω) (n ∈ N) .

Let W 2,k
0 (Ω) be the collection of all compactly supported functions from

W 2,k
loc (Ω), which vanish almost everywhere outside Ωn. We call the space

W 2,k
0 (Ω) =

⋃
n∈N

W 2,k
0 (Ωn) the space of all summable compactly supported func-

tions from the square W 2,k
loc (Ω). In the topology of the inductive limit W 2,k

0 (Ω) is
a strict (LH)-space and has the representation W 2,k

0 (Ω) = s · lim
→
W 2,k

0 (Ωn). The

dual space of the space W 2,k
0 (Ω) in the strong topology is a strict Fréchet–Hilbert

space with a sequence of seminorms

qn,k(f) = sup

{∣∣∣∣ ∑
|s|≤k

∫
Ωn

f (s)(t)φ(s)(t)dt

∣∣∣∣; φ ∈W 2,k
0 (Ωn) ∩ S

}
,

where

S =

{
φ ∈W 2,k(Ω);

( ∑
|s|≤k

∫
Ω

∣∣φ(s)
∣∣2dt)1/2

≤ 1

}
.

We have inequalities for f ∈W 2,k
0 (Ω)′

qn,k(f) = sup

{∣∣∣∣ ∑
|s|≤k

∫
Ωn

f (s)(t)φ(s)(t)dt

∣∣∣∣; φ ∈W 2,k
0 (Ωn) ∩ S

}

≤ sup

{( ∑
|s|≤k

∫
Ωn

∣∣f (s)(t)∣∣2dt)1/2

·
( ∑
|s|≤k

∫
Ωn

∣∣φ(s)(t)
∣∣2dt)1/2

;
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φ ∈W 2,k
0 (Ωn) ∩ S

}
≤ pn,k(f) .

From this it follows that the strict Fréchet–Hilbert space is strong dual to the
space W 2,k

0 (Ω) can be wider, than the space W 2,k
loc (Ω). We also have the inclu-

sion Ker pn,k ⊂ Ker qn,k. Do these spaces coincide at least for some Ω, are not
known.

2.4.3 On complemented subspaces of strict Fréchet–Hilbert spaces

As is known [92], Hilbert spaces can be characterized in the class of Banach spaces
by the condition that they have the complemented subspace property, i.e., each
closed subspace of a Hilbert space has a topological complement. In view of [66]
(see also [49]) this gives us that among Fréchet spaces it is only in the spaces ω
and l2 × ω each closed subspace has a topological complement. These results (see
also [103]) suggest that in an arbitrary strict Fréchet–Hilbert space there must be
an extensive class of complemented subspaces. Here we present such a class of
subspaces and prove that the strict Fréchet–Hilbert space characterized in Fréchet
spaces by the condition that each subspace in this class has a topological comple-
ment.

Definition. A subspace G of an LCS (E,T) will be called prequotient subspace if
for some continuous seminorm p onE and some closed subspace Ĝ of the quotient
space E/Ker p the equality G = k−1p (Ĝ) holds, where kp : E → E/Ker p, is the
canonical mapping of E onto E/Ker p.

Obviously, the prequotient subspaces are closed. Examples of prequotient sub-
spaces of an LCS are subspaces of the type Ker p, where p is continuous seminorm
on E. In particular, closed hyperspaces and subspaces of finite codimension are
such subspaces. Further, each closed subspace G of a normed space E is a prequo-
tient space, because G = Ker p for p(x) = sup{|⟨x, x′⟩|; x′ ∈ G⊥}, where G⊥

is orthogonal to G with respect to the duality ⟨E,E′⟩. Examples of subspaces that
are not prequotient will be given below.

Lemma 2.4.2. Let (E,T) be a quojections and G be its closed subspace. Then the
following statements are equivalent:

a) G is a prequotient subspace.
b) There exists a continuous norm on the quotient space E/G.
c) G = Ker p for some continuous seminorm p on E.

Proof. a) ⇒ b). By assumption, there exist a continuous seminorm p on E and
a closed subspace Ĝ of the quotient spaces E/Ker p such that G = k−1p (Ĝ).
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Since E is a quojections and there exists a continuous norm on their quotient space
E/Ker p, it follows that (as is known [111])E/Ker p is a Banach space. Consider
the quotient space (E/Ker p)/Ĝ. It is known that a quotient space of a quotient
space of the Fréchet space (E,T) is isomorphic to a quotient space of (E,T). In
our case, it can be proved that the quotient space (E/Ker p)/Ĝ under considera-
tion is isomorphic to the quotient space E/G. Since E/Ker p is a Banach space,
a continuous norm exists also on the quotient space.

b) ⇒ c). Let ∥ · ∥- be a continuous norm on quotient space E/G, then the
seminorm p on E defined by the equality p(x) = ∥kG(x)∥, where kG :E→E/G
is the canonical mapping, is continuous and satisfies the condition Ker p = G.

c) ⇒ a) is obvious.

It should be noted that in [37] were given several more statements that are
equivalent to statement c) of Lemma 2.4.2 for an arbitrary LCS. In particular, such
are:

d) There exist a continuous seminorm on E such that the subspace G is closed
in this seminorm.

e) For every continuous seminorm p0 on G, there exists its extension p to E
such that Ker p0 = Ker p.

As indicated in [37], in each non-normable Fréchet space E there exists a sub-
space G such that E/G is isomorphic to the space ω and hence there is no contin-
uous norm on it. Consequently, in each strict Fréchet–Hilbert space (E,T) there
exist subspaces that are not prequotient subspaces. In particular, the Hilbert sub-
spacesHn of it mentioned in Theorem 2.4.1 are such subspaces. This follows from
Lemma 2.4.2, since E/Hn = Ker pn and there is no continuous norm on Ker pn.
It should also be mentioned that the same subspaces Hn,E′ are prequotient sub-
spaces in the strong dual space E′β . Indeed, as we established in the proof of the
implication a)⇒b) in Theorem 2.4.1, the subspaceHn,E′ has a topological comple-
ment Gn in E′β , that is a strict (LH)-space. Hence, there exists a continuous norm
on Gn, and thus on E′/Hn. This gives us that the subspace Hn,E′ is a prequotient
in E′β .

Theorem 2.4.3. A Fréchet space (E,T) is a strict Fréchet–Hilbert space if and
only if each prequotient subspace of the space (E,T) has a topological comple-
ment.

Proof. Sufficiency. Let p be an arbitrary continuous seminorm on E, Ĝ is an
arbitrary closed subspace of quotient space E/Ker p and G = k−1p (Ĝ), where
kp : E → E/Ker p is the canonical mapping. By assumption, the subspaces Ker p
and G have topological complement in E; therefore, there exist closed subspaces
M and N of the space E such that E = Ker p

.
+M and E = G

.
+ N . Obviously,
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Ker p ⊂ G and Ker p ∩N ⊂ G ∩N = {0}. This implies that the restriction of kp
toN is an algebraic isomorphism of the subspaceN on kp(N) ⊂ E/Ker p and the
equality E/Ker p = Ĝ + kp(N) holds. As mentioned above, the quotient spaces
(E/Ker p)/Ĝ and E/G are topologically isomorphic; therefore the subspaces N
and kp(N) are isomorphic and E/Ker p = Ĝ

.
+ kp(N). Accordingly, each closed

subspace of the Fréchet space E/Ker p, on which there exists a continuous norm,
has a topological complement. Since there exists a continuous norm on E/Ker p,
then E/Ker p is isomorphic to the Hilbert space Hp. Hence it is easy to see that
there is a hilbertian seminorm q on E such that Ker p = Ker q and the restriction
of q to Hp is generated by an inner product with which Hp is a Hilbert space. If we
repeat these arguments for each seminorm from a sequence {pn} generating the
topology of the space (E,T), then we obtain that (E,T) is a strict Fréchet–Hilbert
space.

Necessity follows from Corollary 2 of Theorem 2.4.1 and Lemma 2.4.2.

Corollary 1. Let (E,T) be a Fréchet–Hilbert space. A subspace G is prequotient
if and only if G has a topological complement, which is Hilbert subspace.

Indeed, by Corollary 2 of Theorem 2.4.1 the prequotient subspace has a topo-
logical complement, which is a Hilbert subspace. Conversely, if G has a topolog-
ical complement that is Hilbert subspace, then on the quotient space E/G there
exists continuous norm. Therefore G is a prequotient subspace of space E.

Corollary 2. Let (E,T) be a Fréchet–Hilbert space, G is its prequotient subspace
and H is its Hilbert subspace such that G ∩ H = {0}. Then G + H is again
prequotient subspace of the space (E,T).

Indeed, there is a continuous Hilbert seminorm p onE and the Hilbert subspace
Hp ofE such thatG = Ker p and (E,T) = G

.
+ (Hp, pHp), whereHp is a Hilbert

space with respect to the norm pHp . Let us prove that kp(H) ⊂ (E/Ker p, p̂) is
a closed subspace in it. If h ∈ H and kp(h) = 0, then h ∈ Ker p ∩ H = {0},
i.e. the restriction of p to H is the norm. Therefore, the spaces H and kp(H) are
algebraically isomorphic and this isomorphism is realized by the mapping kp,Hp ,
which is restriction of kp on Hp. Let {xk} ⊂ kp(H) and xk → x in E/Ker p by
the norm p̂. It is necessary to prove that x ∈ kp(H). Let hk = k−1p,Hp

(xk) ∈ H

and h = k−1p,Hp
(x) ∈ Hp, then by condition p(hk − h) = p̂(kphk − kp(h)) → 0,

for k → ∞. If {pn} is a sequence of seminorms satisfying conditions of statement
c) of Theorem 2.4.1, then there exists n0 ∈ N and Cn0 > 0 such that p(x) ≤
Cn0pn(x) for x ∈ E and n ≥ n0. The restriction of each seminorm pn (n ≥ no)
to Hp generates the topology of space Hp. Indeed, this follows from the fact that
pn,Hp stronger than pHp , (Hp, pHp) is complete and is a closed subspace of the
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spaces (Hn, Pn,Hn) (n ≥ n0), as proved when proving the implication a) ⇒ b) of
Theorem 2.4.1. From here it follows that pn(hk − h) → 0 at k → ∞ for each
n ≥ n0, i.e. due to the closedness of H , we have that h ∈ H and kp(h) ∈ kp(H).
The prequotientity of G + H follows from the equality G+H = k−1p (kp(H)).
Moreover, the spaces (H, pHp) and (kp(H), p̂kp(H)) are topologically isomorphic.

Proposition 2.4.4. Every prequotient subspaceG of a strict Fréchet–Hilbert space
(E,T) is the strict Fréchet–Hilbert space. The converse is not true, i.e. each
nonnormable Fréchet–Hilbert space has a subspace of the same type that is not
prequotient subspace.

Proof. It suffices to prove that each subspace Ker pn0 is a strict Fréchet–Hilbert
space, i.e. its strong dual space is a strict (LH)-space. Indeed, using the notation
of Theorem 2.4.1 we have that Ker pn0 = E/Hn0 . Further,

(Ker p′n0
, β(Ker p′n0

,Ker pn0)) = ((E/Hn0)
′, β((E/Hn0)

′, E/Hn0))

= (H⊥n0
, β(H⊥n0

, E/Hn0)) = s · lim
→
Hn0 ∩Hn,E′ ,

since the quotient space E/Hn0 is again a reflexive quojection. It should be noted
that the subspace s · lim

→
Hn0 ∩Hn,E′ of space E′β is nothing more than Gn0 in

topology β(E′, E) ∩Gno .
In the subspace ω, we consider a subspace G such that g = {gn} ∈ G are

defined by

gn =

{
0 , at n = 2k,

a ∈ R , at n = 2k + 1 .

The subspace G is a strict Fréchet–Hilbert space, but it is not prequotient, because
for an arbitrary continuous seminorms p on ω the subspaces G and Ker p are dis-
tinct. The rest of our assertion follows from the fact that there is no continuous
norm on a nonnormable strict Fréchet–Hilbert space and thus it contains a sub-
space isomorphic to ω that is not a prequotient subspace.

Below we will prove that strict Fréchet–Hilbert spaces nonisomorphic to ω and
l2 × ω, have closed subspaces that are not strict Fréchet–Hilbert spaces.

2.4.4 Structural properties of strict Fréchet–Hilbert spaces. Properties of
permanentness

A strict Fréchet–Hilbert space is a Montel space if and only if it is isomorphic to
the nuclear space ω. This follows from the fact that a quojection is a Montel space
if and only if it is isomorphic to ω [193]. On the other hand, each nuclear Fréchet
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space can be regarded as a closed subspace of the product of a sequence of separa-
ble Hilbert spaces l2. Consequently, a closed subspace of the strict Fréchet–Hilbert
space is not in general a strict Fréchet–Hilbert space. However, as mentioned
above, each subspace of the spaces ω and l2 × ω is again a strict Fréchet–Hilbert
space.

Proposition 2.4.5. A quotient space of a strict Fréchet–Hilbert space is a strict
Fréchet–Hilbert space.

Proof. Let (E,T) = s·lim
←
Hn be a strict Fréchet–Hilbert space, and G be its

closed subspace. If there is a continuous norm on E/G, then G is prequotient
subspace in view of Corollary 1 of Theorem 2.4.3. If there is no continuous
norm on the quotient space E/G, then it is a nonnormable quojection. Let us
show that it is a strict Fréchet–Hilbert space. It is enough to prove that space
((E/G)′, β((E/G)′, E/G)) is a strict (LH)-space. Indeed, (E′, β(E′, E)) =
s · lim
→
Hn is a strict (LH)-space and hence

((E/G)′, β((E/G)′, E/G))=(G⊥, β(G⊥, E/G)) = s · lim
→
Hn ∩G⊥.

It should be noted that the example constructed in [65] shows that the strict
Fréchet–Hilbert space E = (l2)N has a Montel subspace F such that the space
F⊥ ⊂ E′ in the induced topology β(E′, E) ∩ F⊥ is not a strict (LH)-space. By
Proposition 2.4.5, the space (F⊥, β(F⊥, E/F )) is a strict (LH)-space. It will be
proved below that arbitrary nonnormable strict Fréchet–Hilbert spaces not isomor-
phic to ω nor l2 × ω have such subspaces.

Theorem 2.4.6. Each nonnormable separable strict Fréchet–Hilbert space (E,T)
is isomorphic to only one space of the sequences ω, l2 × ω or (l2)N . In particular,
the spaces l2loc and L2

loc(R) are isomorphic to the space (l2)N .

Proof. From the Proposition 2.4.5 it follows that E′β = s · lim
→
Hn, where Hn are

the Hilbert subspaces of the space E′β . According to a proposition in ([52], Section
6) it suffices to prove that the space E′β is isomorphic to the topological direct sum
⊕n∈NFn, where Fn is a complemented subspace of E′β . Indeed, as F1 we take H1,
and as Fn (n ≥ 2) we take a complement of Hn−1 to Hn. It is not hard to see
that the identical mapping I of space E′β = s · lim

→
Hn onto ⊕n∈NFn is linear and

maps bounded sets into bounded sets, i.e. I is continuous. In view of the open
mapping theorem for strict (LB)-spaces we get that these spaces are isomorphic,
i.e. E′β = ⊕n∈NFn. Therefore, (E,T) = (E′′, β(E′′, E′)) =

∏
n∈N

F ′n.
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Let us now consider the following three mutually exclusive cases: a) dimFn <
∞ for each n ∈ N, b) dimF1 = ∞ and dimFn < ∞ for each n ≥ 2. c)
dimFn = ∞ for each n ∈ N.

In the case a) the space E′β is isomorphic to the space φ of all finite sequences
and hence E is isomorphic to the space ω. In case b) E is isomorphic to space
l2 × ω. In case c) the space E is isomorphic to (l2)N . It should be mentioned that
the general case reduces to one of the cases a) - c).

In particular, due to the separability of the spaces l2loc and L2
loc(R), they are

isomorphic to the space (l2)N .

Corollary. Let (E,T) be a separable strict Fréchet–Hilbert space. Then the fol-
lowing statements hold:

a) (E,T) has an unconditional basis.
b) (E,T) has a nuclear Kethe subspace, i.e. subspace with continuous norm

and basis if and only if it is isomorphic to the space (l2)N .
c) Every subspace and quotient space of the space E′β is a strict (LH)-space

if and only if when (E,T) is isomorphic to the space ω or l2 × ω.

Proof. a) follows from Theorem 2.4.6 and the proposition, proved in ( [52], Sec-
tion 6). b) follows from Theorem 2.4.6 and the results works [15]. Due to [49], the
space ω, l2 × ω and their strongly adjoint spaces φ and l2 × φ have the comple-
mented subspace property, i.e. every closed subspace of these spaces has a topo-
logical complement and subspace and quotient spaces of the spaces φ and l2 × φ
are isomorphic to these spaces.

2.4.5 Orthogonality in the Fréchet–Hilbert spaces

Let the topology of the Fréchet–Hilbert space E be given by non-decreasing se-
quence of hilbertian seminorms {pn}, i.e. each seminorm pn is generated by the
semi-inner product (·, ·)n. In particular, such are nuclear Fréchet spaces, countable
Hilbert spaces and strict Fréchet–Hilbert spaces. For such Fréchet–Hilbert spaces,
it is naturally defined the concept of orthogonality: elements x, y ∈ E are called
orthogonal with respect to the inner product (·, ·)n, if (x, y)n = 0. This fact is de-
noted as x⊥ny. The elements x, y ∈ E are called orthogonal in E, if (x, y)n = 0
for each n ∈ N. This fact in further is denoted as x⊥y.

Orthogonality defined in this way has some properties similar to orthogonality
in Hilbert spaces. For example, x⊥x if and only if x = 0. x⊥y for each y ∈ E if
and only if x = 0.

Let M ⊂ E be a bob-empty set. We will write M⊥n = {x ∈ E; x⊥nm for
all m ∈ M} and M⊥ = ∩n∈NM⊥n . It is obvious that the sets M⊥n and M⊥ are
closed subspaces in E. IfM is a closed subspace, thenM⊥ is called its orthogonal
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complement and denoted by E = M ⊕M⊥. The problem naturally arises, when
the space E can be represented as a sum of subspaces M and M⊥, i.e. which
subspace M has orthogonal complement M⊥. In the case of countable Hilbert
spaces orthogonal subspaces were found and characterized in [191], and in the case
of strict Fréchet–Hilbert spaces they were defined and studied in [84, 133, 201].
For non-metrizable locally convex spaces, similar problems were considered in
[31, 72, 173].

According to [191] a set G has property (H) in a Fréchet–Hilbert space E with
a sequence of hilbertian seminorms {∥ · ∥n} if for each x ∈ E in G there is a
sequence {gk} such that

lim
k→∞

∥x+ gk∥n = inf{∥x+ g∥n; g ∈ G}

for all n ∈ N. It is also proved that a closed subspace G of a Fréchet–Hilbert space
has an orthogonal complement G⊥ if and only if it has property (H).

Let E be a countable Hilbert space with an increasing sequence of norms
{∥ · ∥n}, which are generated by the inner products {(·, ·)n}. Let En denote the
completion of the space E with respect to the norm ∥ · ∥n. Obviously, En is a
Hilbert space. From the completeness of the space E it follows that

E =
⋂
n∈N

En . (2.4.1)

In what follows we will need to consider some elements of the spaceE as elements
of the corresponding Hilbert spaces En. In cases where this may lead to misunder-

standing, we will write
(n)
x instead of x. Thus, in the case of a countable Hilbert

space E, the elements
(1)
x ,

(2)
x , . . . ,

(n)
x , . . . is the same element x ∈ E of different

spaces En.
Let G be a subspace of E. We denote the closure of G in En by Gn, then the

following representation holds:

G =
⋂
n∈N

Gn .

By virtue of the Beppo-Levi theorem, for each n ∈ N the equality holds

Hn = Gn ⊕G⊥n , (2.4.2)

where G⊥n is the orthogonal complement of Gn to Hn, defined in a known way.

Let f ∈ E, then by (2.4.1) for all n ∈ N
(n)

f can be uniquely represented in the
form

(n)

f = gn + yn ,
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where gn ∈ Gn and yn ∈ G⊥n .
According to [19], a subspace G has property (C) if for any f ∈ E there is a

g ∈ G such that for all x ∈ N
(n)
g = gn, where gn are defined above. It is also

proved that a closed subspace G of a countable Hilbert space E has an orthogonal
complement G⊥ if and only if it has property (C).

Let us now present a sufficient condition for the closed subspace G of the strict
Fréchet–Hilbert space E to have an orthogonal complement G⊥ in E.

Proposition 2.4.7. Let in the notation of Theorem 2.4.1 E = s · lim
←
Hn be strict

Fréchet–Hilbert space with a sequence of seminorms {pn} and G is a closed sub-
space satisfying the following conditions:

a) G ∩Hn = Gn is a closed subspace in the Hilbert space Hn.
b) For eachm ≥ n the equality πnm,Gm◦Pm = Pn◦πnm is true, where πnm,Gm

is the restriction of πnm on Gm (we identify Gm with km(Gm)), Pm is projection
of the Hilbert space Hm on Gm, i.e. the following diagram is commutative

Hm
Pm−→ Gm

πnm
y yπnm,Gm

Hn
P n−→ Gn

c) The sequence {G⊥n } of orthogonal complements Gn in Hn is increasing.
Then G has the orthogonal complement G⊥ in E, i.e. E = G⊕G⊥.

Proof. According to Theorem 2.4.1 each element f ∈ E is identified with the
sequence {knf}, where πmn ◦ kmf = knf for any m ≥ n. One can also identify
knf with some element hn ∈ Hn. Due to a), for each n ∈ N the following equality
holds: hn = gn + zn, where gn = Pnhn ∈ Gn, zn ∈ G⊥n and (gn, zn) = 0.
Since by condition c) we have non-decreasing sequence of Hilbert spaces {G⊥n },
then this sequence defines a certain subspace, as a strict projective limit of the
sequence {G⊥n }. It should be proved that it is the orthogonal complement G⊥ of
subspace G in E. For this it suffices to prove that the above sequences {gn} and
{zn} determine the required elements g ∈ G and z ∈ G⊥, for which f = g + z
and (g, z)n = 0 for every n ∈ N. The subspace G is strict projective limit of
a sequence of Hilbert spaces {(G/Ker pn,G, p̂n,G)}. But spaces (G/Ker pn,G,
p̂n,G), (kn(G), p̂n,kn(G)) and (kn(Gn), p̂n,kn(Gn)) are isometric. This means that
G is a strict projective limit of sequence of Hilbert spaces {(kn(Gn), p̂n,kn(Gn))}
relative to mappings πnm,Gm (n ≤ m). It remains to prove that the sequence
{kngn} = {gn} = {Pn ◦ πnm ◦ kmf} generates an element of subspaces G, but
this follows from condition b), since

Pn ◦ πnm ◦ kmf = gn = πnm,Gm ◦ Pm ◦ kmf = πnm,Gm ◦ Pmhm = πnm,Gmgm ,
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for n ≤ m. Hence, there is an element g ∈ G such that g = {gn}, i.e. gn = kng
for any n ∈ N. Further, from the equality hm = gm + zm we obtain the equalities
kmfm = kmgm + kmzm = kmg + kmzm and πnm ◦ kmf = πnm ◦ kmg + πnm ◦
kmzm. It follows from here that knf = kng+πnm◦kmzm, i.e. πnm◦kmzm = knzn
for n ≤ m. Therefore, the sequence {zn} defines element z from the projective
limit of the sequence of Hilbert spaces {G⊥n }, i.e. from G⊥. Therefore, we have
also (gn, zn)n = ⟨kng, knz⟩n = (g, z)n = 0 for each n and f = g + z.

It should be noted that if in the Fréchet–Hilbert spaceE every finite-dimensional
subspace has an orthogonal complement, then E is isomorphic to a Hilbert space.
Really, if a subspace G has an orthogonal complement of G⊥ in E, then for f ∈ E
there exists g ∈ G and z ∈ G⊥ such that f = g + z and (g, z)n = 0 for each
n ∈ N. Then such a subspace G is a Chebyshev subspace in E with respect to the
metric (2.5.4), since for each f ∈ E the only best approximation in G there will be
its projection g ∈ G. By virtue of ([3], Theorem 8) we obtain that the balls of this
metric Kr(r ∈ R+) will be strictly convex in E, i.e. the Minkowski functional qr
for Kr will be strictly convex norm for each r ∈]0, 1/2[. And this is possible only
in the case when the space E will be Hilbert. Again, by virtue of ([3], Theorem 8),
it is sufficient require that every one-dimensional subspace has an orthogonal com-
plement. An example of a one-dimensional subspace of the strict Fréchet–Hilbert
space L2

loc(R), without orthogonal complement, is given in [84]. Very interesting
results about strict Fréchet–Hilbert spaces were given by M. Poppenberg [129], D.
Vogt [179], K. Piszczek [127], B. Dierolf [35], E. Uyanık, M. H. Yurdakul [171].

2.5 New metric on metrizable LCS

Theorem 2.5.1 ( [82], p. 205). Let (E,T) be a metrizable LCS with a generating
increasing sequence of seminorm {∥ · ∥n}. Then the topology T of the space E is
also can be given by metric

d(x, y) =
∑
n∈N

∥x− y∥n
2n(1 + ∥x− y∥n)

, x, y ∈ E , (2.5.1)

which is translation-invariant.

It was of great importance the construction by G. Albinus in [3] norm-like
metrics. Translation-invariant metric d is called norm-like if the balls Kr = {x ∈
E; d(x, 0) ≤ r} are absolutely convex and the mapping of the positive semi-axis
R+ into itself, defined by the correspondence t→ d(tx, 0) is strictly monotone for
each x ̸= 0.
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Theorem 2.5.2 ( [3], p. 181). On each metrizable LCS E there is an translation-
invariant norm-like metric that generates its topology. In particular, if {∥ · ∥n} is
a generating sequence pairwise nonequivalent seminorms on E and Vn = {x ∈
E; pn(x) ≤ 1}, then the metric defined by the equality

d1(x, y) =


p1(x− y), when x− y ∈ E\V1,
2nmax{2− [pn+1(x− y)]−1, 2pn(x− y)},

when x− y ∈ Vn\Vn+1 (n ∈ N) ,
0, when x = y ,

(2.5.2)

where p1(·) = ∥ · ∥1, pn+1(·) = max
{

2n∥·∥n+1

∥z∥n+1
, 2pn(·)

}
, z ∈ E is any point

defined by the equality p1(z) = 1, is a translation-invariant norm-like metric on
E, generating its topology.

For Minkowski functionals of qr balls Kr = {x ∈ E; d1(x, 0) ≤ r} metrics
(2.5.2) the equalities are valid

qr(x) =


r−1p1(·), when 1 ≤ r <∞,

pn+1(·), when r = 2−n (n ∈ N),
max{(2− 2nr)pn+1(·), 2

−n+1

r pn(·)},
when r ∈]2−n, 2−n+1[ (n ∈ N) .

(2.5.3)

Theorem 2.5.3 ([5], p. 33). Let (E,T) be metrizable LCS and {pn} be a sequence
of seminorms, generating the topology E. Then the metric defined by the equality

d2(x, y) = sup
n∈N

pn(x− y)

2n(1 + pn(x− y))
, x, y ∈ E , (2.5.4)

is a norm-like metric on E generating its topology.

For Minkowski functionals of qr balls Kr metrics (2.5.4), the equalities are
valid

qr(x) = max
n≤n0

1− 2nr

2nr
pn(x)

= max
n<

ln 1/r
ln 2

1− 2nr

2nr
pn(x), when r ∈ [2−n0+1, 2−n0 [ . (2.5.5)

Theorem 2.5.4 ( [3], p. 185). Let (E, d) be LCS with metric (2.5.1). If at least
one of the seminorms ∥ · ∥j is not neither norm nor identically zero on E, then the
metric d is not norm-like.
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Other metrics on a metrizable LCS can be find in [18, 76, 144]. Let’s take a
closer look at the metric from [146], which in turn is a modification of the metric
from [76].

Let us denote by [r] (resp. {r}) the integer (resp. fractional) part of the number
r ∈ R. Let D be the set of all non-negative numbers r for which {r} is repre-
sented as a finite binary fraction, i.e. {r} =

∑
k∈N

ck({r})2−k, where ck({r}) are

the coefficients representations of the number {r} equal to 0 or 1.

Theorem 2.5.5 ([146], p. 11). Let (E,T) be a metrizable linear topological space
with a basis of closed, balanced neighborhoods of zero {Vn}, where V1 ̸= E and
Vn+1 + Vn+1 ⊂ Vn (n ∈ N). Then there exists translation-invariant metric which
generates on E the topology T

d(x, y) = inf{r ∈ D; x− y ∈ Ar} (2.5.6)

where the sets Ar have the following form

Ar = V1 + · · ·+ V1︸ ︷︷ ︸
[r]

+
∑
k∈N

ck({r})Vk+1, r ∈ D .

2.5.1 New metric on a metrizable LCS

We use the metric (2.5.6) to construct a new metric on a metrizable LCS.

Proposition 2.5.6. Let (E,T) be a metrizable LCS with a generating sequence
of seminorms {pn}, where p1 ̸= 0, 2pn(·) ≤ pn+1 (n ∈ N), i.e. V1 ̸= E and
2Vn+1 ⊂ Vn (n ∈ N), where Vn = {x ∈ E; pn(x) ≤ 1}. Then the equalities are
trueAr = [r]V1+A{r} andAr = Kr (r ∈ D), whereKr is a closed ball of radius
r of the metric (2.5.6), andAr means the closure ofAr. Next, for r ∈ [2−n, 2−n+1[
(respectively r ∈ [1,∞[) Minkowski functionals qr of balls Kr are equivalent to
pn+1(·) (respectively p1(·)).

Proof. The family {Ar; r ∈ D} is increasing, therefore the equalityKr = ∩
s∈D,
s>r

As

is valid. Hence, Kr is an absolutely convex neighborhood such that Kr ̸= E(r ∈
R+), i.e. the metric d is not bounded on E. Let us now show that Ar = Kr (r ∈
R+). The inclusion of Ar ⊂ Kr is obvious. Let x ∈ Kr, then x ∈ Ar+2−n (n ∈
N). It is not difficult to find n0 ∈ N such that for n ≥ n0 the equalities are valid

[r + 2−n] = [r], {r + 2−n} = {r}+ {2−n} and

Ar+2−n = [r]V1 +A{r+2−n} = [r]V1 +A{r} +A2−n = Ar + Vn+1 .
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From here it immediately follows that x ∈ Ar. In particular, A2−n = Vn+1 =
K2−n .

Let now s ∈Dn =D ∩ [2−n, 2−n+1[, then c1(s) = · · · = cn−1(s) = 0 and
cn(s) = 1, i.e. As =

∑
k≥n

ck(s)Vk+1. Therefore Vn+1 ⊂ Kr (r ∈ [2−n, 2−n+1[ ),

i.e. the inequality qr(·) ≤ pn+1(·) is true. On the other side, for the mentioned s
and r the inclusions hold

As =
∑
k≥n

ck(s)Vk+1 ⊂
∑
k≥n

ck(s)2
n−kVn+1 ⊂ 2nVn+1

∑
k≥n

ck(s)2
−k = 2nsVn+1 ,

Kr =
⋂

s∈D, s>r
As =

⋂
s∈Dn, s>r

As ⊂
⋂

s∈Dn, s>r

2nsVn+1 = 2nrVn+1 ,

those.
pn+1(·) ≤ 2nrqr(·) ≤ 2qr(·) .

If r ∈ [1,∞[, then V1 ⊂ Kr ⊂ ([r] + 1)V1 .

Corollary. Let (E,T) be a metrizable LCS with a basis of decreasing neighbor-
hoods of zero {Vn} having the following form Vn = 2−n+1B + Ker pn (n ∈ N),
where B is closed, bounded, absolutely convex subset of the space E and pn is
Minkowski functional for Vn. Then for balls Kr of metric (2.5.6) the following
equalities are true:

Kr =

{
rV1, when r ∈ [1,∞[ ,

2nrVn+1, when r ∈ [2−n, 2−n+1[ .

Proof. Let r ∈ Dn, then

Ar =
∑
k≥n

ck(r)Vk+1 =
∑
k≥n

ck(r)(2
−kB +Ker pk+1)

= B
∑
k≥n

ck(r)2
−k +Ker pn+1 = rB +Ker pn+1

= rB +Ker pn+1 = 2nr(2−nB +Ker pn+1) = 2nrVn+1 = Kr,

due to the closedness of Ar. If r ∈ [2−n, 2−n+1[, then

Kr =
⋂

s∈D, s>r
As =

⋂
s∈Dn, s>r

As =
⋂

s∈Dn, s>r

2nsVn+1

= 2nrVn+1 = rB +Ker pn+1 .
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Let now r ∈ D ∩ [1,∞[ and {r} ∈ [2−n, 2−n+1[, then

Ar = [r]V1 +A{r} = [r]B +Ker p1 + {r}B +Ker pn+1

= rB +Ker p1 = rV1 = Kr .

Similarly, it turns out that Kr = rV1 for other r ∈ [1,∞[ .

This corollary gave rise to the idea of proving the following theorem.

Theorem 2.5.7. Let (E,T) be a metrizable LCS with a generating sequence of
seminorms {pn}, where p1 ̸= 0, 2pn ≤ pn+1 (n ∈ N), i.e. V1 ̸= E, 2Vn+1 ⊂ Vn
(n ∈ N), where Vn = {x ∈ E; pn(x) ≤ 1}. Then by the family

Kr = 2n−1rVn, where r ∈ In =

{
[1,∞[ , when n = 1,

[2−n+1, 2−n+2[ , when n ≥ 2
(2.5.7)

on E it is defined the metric d(x, y) = inf{r ∈ R+; x − y ∈ Kr} with closed
absolutely convex balls Kr and for its quasinorm | · | the equalities are valid

d(x, y) = |x− y|

=


p1(x− y), when x− y ∈ E\ intV1,
2−n+1, when x− y ∈ intVn\2 intVn+1 (n ∈ N),
2−npn+1(x− y), when x− y ∈ 2 intVn+1\ intVn+1 (n ∈ N),
0, when x− y = 0 .

(2.5.8)

Proof. To prove the triangle inequality it is enough prove that for any r, s ∈ R+

inclusion Kr +Ks ⊂ Kr+s is true. Consider the following three cases:
a) Let r ∈ [2−n, 2−n+1[= In+1 and s ∈ [2−m, 2−m+1[, where 1 ≤ n ≤ m,

(n,m ∈ N). Then r + s ∈ [2−n + 2−m, 2−n+1 + 2−m+1[. If r + s ∈ In+1, then
Kr +Ks = 2nrVn+1 + 2msVm+1 ⊂ 2nrVn+1 + 2m−1sVm ⊂ · · · ⊂ 2nrVn+1 =
Kr+s.

If r+s ∈ In, thenKr+Ks = 2nrVn+1+2msVm+1 ⊂ 2n−1rVn+2n−1sVn =
2n−1(r + s)Vn = Kr+s.

b) Let r ∈ [1,∞[ and s ∈ [2−m, 2−m+1[= Im+1 (m ∈ N), then r + s ∈ I1
and Kr +Ks = rV1 + 2msVm+1 ⊂ rV1 + sV1 = Kr+s.

c) The case r, s ∈ I1 is trivial.
Let us now prove the formula (2.5.8). Let x− y ∈ E\ intV1, then

d(x, y) = inf{r ∈ R+; x− y ∈ Kr} = inf{r ≥ 1; x− y ∈ rV1}
= inf{r ∈ R+; r−1(x− y) ∈ V1} = p1(x− y) ,
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where the last equality is true by definition of the Minkovski functional. If x− y ∈
intVn\2 intVn+1 = intK2−n+1\ int 2K2−n , then obviously d(x, y) ≤ 2−n+1. Let
us assume that d(x, y) = s < 2−n+1, then d(x, y) < s+ ε for each ε > 0. When
s + ε < 2−n+1, this is means that x − y ∈ intKs+ε = 2n(s + ε) intVn+1 ⊂
2n · 2−n+1 intVn+1 = 2 intVn+1. But this is impossible, and therefore d(x, y) =
2−n+1. Let it now x− y ∈ int 2Vn+1\ intVn+1, then d(x, y) = inf{r ∈ R+; x−
y ∈ Kr} = inf{r ∈ [2−n, 2−n+1[; x − y ∈ Kr}. Indeed, x − y ∈ 2 intVn+1

and therefore x − y ∈ (2 − ε)Vn+1 for some ε > 0, i.e. x − y ∈ 2n(2−ε)
2n Vn+1 =

2nsVn+1 = Ks, where s = 2−ε
2n < 2−n+1. Further, if d(x, y) = l < 2−n, then, by

virtue of the above, it is immediately obtained that x− y ∈ intVn+1. Hence,

d(x, y) = inf{r ∈ In+1; x− y ∈ 2nrVn+1} = 2−npn+1(x− y) .

From the form (2.5.7) of the balls of the metric (2.5.8) it is obtained the fol-
lowing representation for Minkowski functionals

qr(·) = 2−n+1r−1pn(·), for r ∈ In . (2.5.9)

If (E, ∥ · ∥) is a normed space with unit ball S and Vn = 2−n+1S, then the quasi-
norm | · | of the metric (2.5.8) defined by the equality |x| = d(x, 0), coincides with
the original norm.

Corollary. In the notation of Theorem 2.5.7 the following are true:
a) If |x| ∈ int I1 (respectively |x| ∈ int In, n ≥ 2) and α ∈

[
1

p1(x)
,∞
[

(respectively α ∈
[

1
pn(x)

, 2
pn(x)

[
, ) then |αx| = α|x|.

b) If |x| = 2−n+1 (n ∈ N) and α ∈
[

2
pn+1(x)

, 1
pn(x)

[
, then |αx| = |x|.

Proof. A). Let |x| ∈ int I1 and α ∈
[

1
p1(x)

,∞
[
, then |x| = p1(x) and p1(αx) =

αp1(x) = α|x| ≥ 1
p1(x)

· p1(x) = 1, i.e. |αx| = p1(αx) = αp1(x) = α|x|.
Let now |x| ∈ int In =]2−n+1, 2−n+2[ (n ≥ 2), then |x| = 2−n+1pn(x) and
2−n+1 < 2−n+1pn(x) < 2−n+2, i.e. 1 < pn(x) < 2. Then 1 < pn(αx) and
therefore |αx| = 2−n+1pn(αx) = α|x|.

b). Let |x| = 2−n+1, then x ∈ Vn\2 intVn+1. If α ∈
[

2
pn+1(x)

, 1
pn(x)

[
, then

again αx ∈ Vn\2 intVn+1, i.e. |αx| = 2−n+1 = |x|.
If (E,T) is a metrizable LCS with a generating non-decreasing sequence of

seminorms {∥ · ∥n}, then we put pn(x) = 2n−1∥x∥n. Then the metric (2.5.8) takes
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view

d(x, y) =



∥x− y∥1, when x− y ∈ E\ intV1,
2−n+1, when x− y ∈ intVn\2 intVn+1(n ∈ N),
∥x− y∥n+1, when x− y ∈ 2 intVn+1\ intVn+1

(n ∈ N),
0, when x− y = 0,

(2.5.10)

where Vn = {x ∈ E; pn(x) ≤ 1}. And the Minkowski functionals of qr balls Kr

have the form
qr(x) = r−1∥ · ∥n, when r ∈ In . (2.5.11)

This metric can be given a more convenient form

d(x, y) =



∥x− y∥1, when ∥x− y∥1 ≥ 1,

2−n+1, when ∥x− y∥n ≤ 2−n+1

and ∥x− y∥n+1 ≥ 2−n+1,

∥x− y∥n+1, when 2−n ≤ ∥x− y∥n+1 < 2−n+1

(n ∈ N),
0, when x− y = 0.

(2.5.12)

In spite of the fact that the balls of the metric Kr (r ∈ R+) are absolutely con-
vex, the constructed metric is not norm-like. Indeed, due to corollaries of Theorem
2.5.7 quasinorm of the metric (2.5.8) is not strictly monotonic for points x with a
quasinorm, which equal to 2−n+1 (n ∈ N). In other words, the topological bound-
ary ∂Kr of balls Kr coincides with the metric boundary Sr = {x ∈ E, |x| = r}
for r ̸= 2−n+1 (n ∈ N). However, ∂Kr ⊂ Sr and these sets, generally speaking,
do not coincide for r = 2−n+1 (n ∈ N). Let us give a simple example illus-
trating the mentioned situation. Let C(R) be the space continuous real functions
with the topology of compact convergence on R, which is given by the sequence
of seminorms

pn(x) = 2n−1max{|x(t)|; t ∈ [−n, n]}, n ∈ N,

and the basis of neighborhoods of zero Vn = {x ∈ E; pn(x) ≤ 1}. Let’s consider
the functions

xn(t) =



2−n+1, when t ∈ [−n, n],
2−n+3, when t = ±(n+ 1),

0, when t ∈]−∞,−(n+ 2)] ∪ [n+ 2,∞[ ,

linear in intervals [−(n+ 2),−(n+ 1)],

[−(n+ 1),−n], [n, n+ 1] and [n+ 1, n+ 2] .
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Then we get that xn, xn/2 ∈ Vn\2 intVn+1, i.e. |xn| =
∣∣xn
2

∣∣ = 2−n+1. To present
the situation more clearly, let us indicate the form of the graph of the function
α→ |αx1| on R+.

By virtue of statement a) of the corollary of Theorem 2.5.7, for α ≥ 1 the
equalities |αx1| = α|x1| = α are valid, and by virtue of statement b) of corollary
of Theorem 2.5.7, for α ∈

[
2

p2(x1)
, 1
p1(x1)

]
=
[
1
4 , 1
]

the equalities are true |αx1| =
|x1| = 1. Next, consider the function y = 3

16x1 ∈ 2V2\ intV2. Therefore, |y| =
1
2p2(y) =

3
4 ∈ int I2 =

]
1
2 , 1
[

. Again by virtue of statement a) of the corollary of
Theorem 2.5.7, |βy| = β|y| = 3

4β, when β ∈
[
2
3 ,

4
3

]
. Hence for α = 16

3 β ∈
[
1
8 ,

1
4

]
we get that |αx1| = 4α. Let us now consider the function y = 1

9x1. Then p3(y) =
16
9 , i.e. y ∈ 2V3\ intV3 and therefore |y| = 1

4p3(y) =
4
9 ∈ int I3 =

]
1
4 ,

1
2

[
. This

means that for β ∈
[

1
p3(y)

, 2
p3(y)

]
=
[
9
16 ,

18
16

]
the equalities |βy| = β|y| = 4

9β

are valid. From here for α = 1
3β ∈

[
1
16 ,

1
8

]
we again obtain that |αx1| = 4α.

Considering the function y = 1
17x1 again we are convinced that |αx1| = 4α for

α ∈
[
1
32 ,

1
16

]
, etc. Due to the above, the graph of the function α → |αx1| has the

form of a non-decreasing broken line on [0,∞[ .

Let us now consider the Fréchet space of all (equivalent classes) p-locally inte-
grable on R functions Lploc(R) (1 ≤ p < ∞). Basis of neighborhoods of the zero
of the topology of this space is given by a sequence of neighborhoods

Vn = 2−n+1B +Ker pn , (2.5.13)

where

B =

{
x ∈ Lploc(R);

( ∞∫
−∞

|x(t)|pdt
)1/p

≤ 1

}
and

pn(x) = 2n−1
( n∫
−n

|x(t)|pdt
)1/p

(2.5.14)

By virtue of (2.5.11), the following equalities are valid:

qr =


r−1
( 1∫
−1

|x(t)|pdt
)1/p

, when r ∈ [1,∞[ ,

r−1
( n∫
−n

|x(t)|pdt
)1/p

, when r ∈ [2−n, 2−n+1[ (n ∈ N),

i.e. seminorms qr (r ∈ R+) have the form Lp-norm. Moreover, R+ is represented
as the union of right half open right intervals In so that corresponding to the num-
bers r1 and r2 ∈ In balls Kr1 and Kr2 , like to the balls of normed spaces, satisfy
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the equality Kr1 = r1
r2
Kr2 . However, in non-normed spaces all balls cannot be

similar each other. The constructed metric does not have this property only for
the space Lploc(R), but also for arbitrary metrizable LCS and this property will be
multiple times be used in the future.

2.6 Representation of topologies of spaces of basic functions D(Ω) and gen-
eralized functions D′(Ω)

In the previous sections, strict (LB)-spaces, which are discussed in relation to best
approximation problems and the existence of interpolation splines, are studied. In
this section, the representations of the topology of strict (LF )-spaces and their
strong dual spaces are studied and used to represent the topologies of the spaces of
basic functions D(Ω) and generalized functions D′(Ω). During the representation
of the topologies of these spaces strict Fréchet–Hilbert spaces and their strongly
dual spaces appeared for the first time.

2.6.1 Existence of a continuous metric on a strict (LF )-space

Definition of strict (LF )-spaces introduced by J. Dieudonne and L. Schwartz [43],
is given in Chapter II, Section 2.2. When proving Proposition 2.2.2 we have ex-
tended the norm from the normed subspace of strict (LB)-space to the entire space.
We do the same in case of strict (LF )-spaces when the metric is extended from its
metrizable subspace on entire space.

Theorem 2.6.1. Let (E,T) be the inductive limit of non-decreasing sequences of
locally convex spaces {(En,Tn)}, i.e. (E,T) = lim

→
(En,Tn). Then the following

statements are equivalent:
a) (E,T) is a strict (LF )-space, i.e. (E,T) = s · lim

→
(En,Tn).

b) In (E,T) there is a non-increasing sequence of absolutely convex neighbor-
hoods of zero {Vm} such that ∩m∈NVm = {0} and En ∩ Vm = Vnm are bases of
neighborhoods of zero of the topology Tn for each n ∈ N.

c) On (E,T) there is a continuous metric (2.5.12) inducing on each En topol-
ogy Tn.

Proof. a)⇒b). Let (E,T) = s · lim
→

(En,Tn) is strict (LF )-space and the topology
Tn of the Fréchet space En is generated by a non-decreasing sequence of semi-
norms {pnm}. Let us denote by Unm the sets

Unm = {x ∈ E, pnm(x) ≤ 1} .
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Obviously, for each n ∈ N the following inclusions are true: Un1 ⊃ . . . ⊃ Unm ⊃
· · · . One can also assume that for each n ∈ N the following equalities hold:⋂
m∈N

Unm = {0}.

Since the imbedding (E1,T1) → (E2,T2) is topological monomorphism of
the Fréchet space (E1,T1) into the Fréchet space (E2,T2), then for each T1-
neighborhood U1m there is T2-neighborhood U2km such that U2km ∩ E1 ⊂ U1m.
We can assume that for each m ∈ N the inclusion U2km ⊃ U2km+1 is true. The
sequence {U2km} is also the basis of a neighborhood of zero in E2 and denote
it again through {U2m}. Consider neighborhoods in E2, defined by the relation
V2m = Γ(U1m ∪ U2m), where the latter denotes absolutely convex hull of the
set U1m ∪ U2m. For each m ∈ N we have V2,m+1 = Γ(U1,m+1 ∪ U2,m+1) ⊂
Γ(U1m ∪ U2m) ⊂ V2m.

Obviously, for each m ∈ N the following equalities are true V2m ∩E1 = U1m.
Indeed, each x ∈ V2m has the following form: x = αx1 + βx2, where x1 ∈ U1m,
x2 ∈ U2m and |α|+ |β| ≤ 1. From the relation βx2 = x−αx1 ∈ E1 it follows that
either β = 0, or x2 ∈ E1. In both cases x ∈ U1m. Therefore, U2m ∩ E1 ⊂ U1m.

Let us now show that the sequence {V2m} forms a basis neighborhoods in E2.
Since for each m ∈ N it is true inclusion U2m ⊂ V2m, then it is enough to show
that for each neighborhood U2k there is a neighborhood V2kl such that V2kl ⊂ U2k.
Indeed, since U2k ∩ E1-neighborhood in E1, then there exists T1-neighborhood
U1kl , where kl ≥ k such that U2k ∩ E1 ⊃ U1kl . From here we have that

U1kl ∪ U2kl ⊂ U2k ∪ U2k = U2k ,

i.e.
V2kl ⊂ U2k .

Let such basis of neighborhoods {Vn−1,m} be already constructed in En−1.
Repeating the reasoning given above, we can construct in En the basis of neigh-
borhoods {Vnm}, satisfying the condition

Vnm ∩ En−1 = Vn−1,m

for each n ∈ N. On the other hand, the following inclusions hold:

U1m ⊂ V2m ⊂ · · · ⊂ Vnm ⊂ · · · .

Therefore, the sets Vm = ∪n∈NVnm, where V1m = U1m, are absolutely convex
T-neighborhoods of zero in E. The sequence {Vm} satisfies the conditions

Vm
⋂
En = Vnm
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and ⋂
m∈N

Vm =
⋂
m∈N

( ⋃
n∈N

Vnm

)
=
⋃
n∈N

( ⋂
m∈N

Vnm

)
=
⋃

{0} = {0} .

The second equality takes place due to the ordering of the neighborhoods Vnm for
fixed n ∈ N.

b)⇒c). The sequence of absolutely convex neighborhoods {Vm} generates a
metrizable locally convex topology T{Vm} on E, which is not stronger than T. Let
pm be the Minkowski functional, corresponding to the neighborhood Vm. It is
well known that the topology T{Vm} can be given using one of the metrics (2.5.2),
(2.5.4) or (2.5.8). It is also obvious that this metric induces on eachEn the topology
Tn.

c)⇒a). It immediately follows from the condition that for each n ∈ N the
topology Tn+1 of the space En+1, induces a topology Tn on En.

Corollary 1. Let (E,T) = s·lim
→

(En,Tn) be a strict (LF )-space and the sequence

{En} is strictly increasing. Then the space (E,T{Vm}) is not complete. However,
(En,Tn) are Fréchet subspaces of the space (E,T{Vm}).

Indeed, by virtue of Proposition 5 from ( [144], p. 188) we obtain, that the
space (E,T) is not metrizable. If the space (E,T{Vm}) was complete, then by
Theorem 1 ([43], p. 66) the identity mapping of the space (E,T) onto (E,T{Vm})
would be a topological isomorphism. And this contradicts non-metrizability of
the space (E,T). Completeness of subspaces En in (E,T{Vm}) follows from the
completeness of the space (E,T) and statement 4 ([144], p. 188).

Corollary 2. Let (E,T) = lim(En,Tn) be the inductive limit of locally convex
spaces {(En,Tn)}. Then the following statements are equivalent:

a) (E,T) = s · lim
→

(En,Tn), where (En,Tn) is metrizable locally convex
spaces.

b) In (E,T) there is a sequence of absolutely convex neighborhoods of {Vm}
such that ∩m∈NVm = {0} and En ∩ Vm = Vnm are bases of neighborhoods of
zero of topologies Tn for each n ∈ N.

c) On (E,T) there is a continuous metric (2.5.12) inducing on each En the
topology Tn.

Corollary 3. Let (E,T) be a strict (LF )-space. In his strong dual space E′ there
is an increasing subsequence equicontinuous sets such that the σ(E′, E)-closure
their union coincides with E′.
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Indeed, if {Vm} is a sequence of T-neighborhoods, satisfying the conditions of
statement b) of Theorem 2.6.1, then it is easy to see that for the polars of these sets
the statement of Corollary 3 is true. It should also be noted that, however, strong
dual space does not satisfy the second countability axiom Mackey, i.e. there is
no fundamental sequence in it of bounded absolutely convex sets. Locally convex
spaces, possessing a sequence of equicontinuous sets, weak closure of the union of
which coincides with E′, were studied in [177].

Existence of a continuous metric on an LCS is an important fact for applica-
tions. For example, from existence of a metric on a strict (LF )-space using The-
orem 3 of J. Dieudonne and L. Schwartz ([82], p. 311) it is immediately obtained
relatively weak sequential compactness relatively weakly countably compact sets
( [82], p. 312). In [51], it was proved that a continuous metric exists on LCS
(E,T) = s · lim

→
(En,Tn), where (En,Tn) is locally convex spaces on which there

exist continuous metrics. This theorem was proved using step-by-step continua-
tion of metrics from the first subspace to the second, etc. Interesting results on
the continuation of the norm from a subspace to the entire space were obtained
in [37, 51].

2.6.2 Representations of the topology of strict (LF )-spaces and its strong
dual spaces. Applications to the spaces D and D′

Let (E,T) be a strict (LF )-space and let V be a basis of zero’s neighborhoods of
the topology T. In what follows, we denote by TV , V ∈ V , metrizable locally
convex topology T{Vm}, satisfying conditions of statement c) of Theorem 2.6.1,
and for which V = V1.

Proposition 2.6.2. Strict (LF )-space (E,T) is topologically isomorphic to the
locally convex kernel of all metric spaces {(E,TV ); V ∈ V}, with respect to
identity mappings E→(E,TV ), i.e. topology T coincides with the upper bound of
the topology of family {TV ; V ∈ V}.

Proof. Let T′ be a topology of the above-mentioned locally convex kernel. Since
the identity mappings (E,T) → (E,TV ) are continuous and T′ is the weakest
such topology, then T′ ≤ T. If now V ∈ V and {Vm} are a sequence of T-
neighborhoods, satisfying the conditions of statement b) of Theorem 2.6.1, then the
sequence V, V ∩V1, . . ., V ∩Vm, . . . again satisfies the specified conditions. Due to
the continuity of the identity map (E,T) → (E,TV ) we immediately obtain that
V is T′-neighborhood, i.e. T ≤ T′. This means (E,T) = KV ∈V(E,TV ). From
the proof it is clear that the family metrizable topologies {TV ; V ∈ V} can be
chosen so that its cardinality was equal to the cardinality of the given basis of the
zero’s neighborhoods V .
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Corollary 1. Let (E,T) = s · lim
→

(En,Tn) be a strict (LF )-space, and B ⊂ E is
a subset of the space E. Then the following statements are equivalent:

a) B is bounded (precompact).
b) B is contained and bounded (precompact) in some Fréchet space En.
c)B is bounded (precompact) in every metrizable space (E,TV ), where V ∈V .
d) B is contained in some En and is bounded (precompact) in some (E,TV ).

Proof. Equivalence a)⇔b) is proven in ( [144], p. 188). a)⇔c) follows from the
Proposition 2.6.2 by virtue of Theorem 7 ( [82], p. 227). a)⇒d) follows from
statements b) and c). d)⇒a) is true due to the properties of the topology TV .

Corollary 2. Let (E,T) = s · lim
→

(En,Tn) be a strict (LF )-space. Then the
following statements are equivalent:

a) The sequence {xk} converges to x in (E,T).
b) For each k ∈ N xk, x ∈ En0 for some n0 ∈ N and {xk} converges to x in

(En0 ,Tn0).
c) The sequence {xk} converges to x in every space (E,TV ), where V ∈ V .
d) For each k ∈ N xk, x ∈ En0 , for some n0 ∈ N and {xk} converges to x in

some space (E,TV ).

It should be noted that convergence in the strict (LF )-space (E,T) = s ·
lim
→

(En,Tn) is a simple quasimetric convergence c = c(dV , f) ( [48], p. 492),
where dV is a metric on E, generating the topology TV , and f is a function on E,
defined by the equality:

f(x) = min{n; x ∈ En} .

It should also be noted that precisely according to statement b) of Corollary 2
defines convergence in many known strict (LF )-spaces.

Let (E,T) = s · lim
→

(En,Tn) be a strict (LF )-space with a basis of neigh-

borhoods of zero V and {Tα; α ∈ A} be a family of all metrizable topologies
Tα, α ∈ A on E, inducing on each En topology Tn.

This family can be made directed by setting Tα = T{Vm} ≤ T{V ′
m} = Tβ , if

for any neighborhood Vm there exists a neighborhood V ′km and the number λm > 0
such that V ′km ⊂ λmVm, i.e. if the topology T{Vm} is not stronger than the topology
T{V ′

m}. For such topologies, identity mappings παβ : (E,Tβ) → (E,Tα) are

continuous. Let παβ be a continuous extension on (Ẽβ,Tβ) of mapping παβ , where

(Ẽβ,Tβ) is completion of the space (E,Tβ).



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 127

Theorem 2.6.3. Let (E,T) = s · lim
→

(En,Tn) be strict (LF )-space and {Tα; α ∈
A} be the family of all metrizable locally convex topologies Tα on E, inducing on
each En topology Tn. Then the following statements are valid:

a) The space (E,T) is topologically isomorphic to the projective limit of the
family of Fréchet spaces {(Ẽα,Tα); α ∈ A} with respect to mappings παβ .

b) If the space (E,T) is nuclear (respectively of type (S), i.e. Schwartz space),
then Fréchet spaces (Ẽα,Tα) one can choose nuclear (respectively of type (FS),
i.e. as Fréchet-Schwartz) spaces.

Proof. a) Consider the projective limit F = lim
←

(E,Tα). The topology of the

space F is the induced topology from the product
∏
α∈A(E,Tα). The mapping

from E to F is linear and injective. From Corollary 2 of Proposition 2.6.2 it fol-
lows that it is sequentially continuous, and due to the bornologicality of the space
(E,T), is continuous. In addition, since (E,T) = Kα∈A(E,Tα) then, according
to Theorem 1 ([82], p. 230), (E,T) is topologically isomorphic subspaceE0 of the
projective limit F . From the above we find that E0 = F , i.e. (E,T) is topologi-
cally isomorphic to the space F . On the other hand, one can prove that F is a dense
subspace of the projective limit lim

←
(Ẽ,Tα) with respect to the mappings παβ . But

F , being isomorphic to E, is complete and therefore (E,T) = lim
←

(Ẽ,Tα).

b) Let (E,T) be nuclear, V be T-neighborhood and {Vm} be a sequence of
T-neighborhoods satisfying the conditions of statement b) of Theorem 2.6.1, and
V = V1. Let pV1 be the Minkowski functional for V1. By EV1 we denote the space
E/KerpV1 with the associated norm p̂V1 . Due to nuclearity (E,T) for V1 exists
the T-neighborhood U such that the canonical map of the normed spaces EU on
EV1 is nuclear. Therefore the canonical mapping of EU∩V2 onto EV1 is nuclear,
as the product of a continuous mapping EU∩V2 to EU and nuclear mapping EU to
EV1 . Now denoting U ∩ V2 again by V2 and repeating the reasoning given above,
we will construct a sequence {Vm}, satisfying again the conditions of statement b)
of Theorem 2.6.1 and such that the canonical mapping EVm+1 to EVm is nuclear
for every m ∈ N. Consequently, if the strict (LF )-space (E,T) is nuclear, then
metrizable spaces (E,Tα), α ∈ A and their completions can be chosen nuclear.

If the space (E,T) is a space of type (S), then analogously to the above, one
can prove the completely boundedness of the mapping EVm+1 onto EVm for each

m ∈ N. Consequently, in this case, the space (Ẽ,Tα), α ∈ A can be chosen as
Fréchet-Schwarz spaces (of type (FS)).

Corollary. Let (E,T) = s · lim
→

(En,Tn) be a strict (LF )-space. In the notation

of Theorem 2.6.3, for the dual space E′, the following statements are valid:
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a) The space E′ = ∪α∈AE′α and E′α is weakly dense in E′ for each α ∈
A. Further, if the space (E,T) is nuclear (resp. of type (S)), then the space
(E′, β(E′, E)) is isomorphic to the inductive limit of the family of nuclear (LB)-
spaces (resp. spaces of type (DFS)) {(E′α, β(E′α, Eα)); α ∈ A} with respect to
mappings π′αβ .

b) If the spaces (En,Tn), n ∈ N, are distinguished, then for any n ∈ N
and α ∈ A the spaces (E′n, β(E

′
n, En)), (E

′/E⊥n , β(E
′, E)/E⊥n ) and (E′α/E

⊥
n,α,

β(E′α, Eα)/E
⊥
n,α) are isomorphic, where E⊥n and E⊥n,α are orthogonal (in the

sense of dual pairs ⟨E,E′⟩ and ⟨Eα, E′α⟩, respectively) to the subspaces En of the
spaces E′ and E′α, respectively. Further, for each α ∈ A, the space (E′, β(E′, E))
is isomorphic to the projective limit of a sequence of (LB)-spaces
{(E′α/E⊥n,α, β(E′α, Eα)/E⊥n,α)} with respect to topological homomorphisms j′n,
where jn is topological monomorphism of the space (En,Tn) in (En+1,Tn+1).

c) If the space (En,Tn) is reflexive (nuclear, type (S)), then the spaces
(E′α/E

⊥
n,α, β(E

′
α, Eα)/E

⊥
n,α) are reflective (LB)-spaces (nuclear (LB)-spaces,

spaces type (DFS)).

Proof. a) The first equality follows from the fact that a linear functional on a lo-
cally convex space (E,T) is continuous if and only if it is bounded in some neigh-
borhood of zero. Since identical the mapping (E,T) onto (E,Tα) is injective, then
(E,Tα)

′ is weakly dense in E′.
Let (E,T) be a nuclear strict (LF )-space. Because metrizable locally convex

spaces Eα = (E,T{Vm}) in such case, it is possible choose nuclear ones, then
(E′α, β(E

′
α, Eα)) = lim

→
E′V 0

m
, where E′V 0

m
is Banach space spanned by V 0

m. On the

other hand, by virtue of nuclearity, the space (E,T) has the property (S) ([147], p.
432), i.e. is represented as a projective limit with completely continuous mappings.
Therefore, (E′, β(E′, E)) = lim

→
E′V 0 , where V runs through the basis of neigh-

borhoods of zero V = U0(E). By virtue of transitivity of the formation of a locally
convex hulls ( [82], p. 217), we also have that (E′, β(E′, E)) is a locally convex
hull of the spaces (E′α, β(E

′
α, Eα)) relative to imbeddings (E′α, β(E

′
α, Eα)) → E′.

Since conjugate to the identity map παβ : (E,Tβ) → (E,Tα) is continuous in
strong topologies, then (E′, β(E′, E)) = lim

→
(E′α, β(E

′
α, Eα)). By similar reason-

ing one can prove this statement in case of a space (E,T) of type (S).
b) By ([65], Theorem 8) the strong dual to the distinguished subspace (En,Tn)

is identified with quotient spaces

(E′/E⊥n , β(E
′, E)/E⊥n ) and (E′α/E

⊥
n,α, β(E

′
α, Eα)/E

⊥
n,α),

where E⊥n and E⊥n,α are subspaces of the spaces E′ and E′α, orthogonal to En,
respectively. From the distinguishness of subspaces (En,Tn), we obtain also that
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the conjugate to the monomorphism jn : (En,Tn) → (En+1,Tn+1) is a strong
homomorphism. The rest of our statement follows from the fact that the strong
dual to the inductive limit sequences of locally convex spaces is projective limit of
strong dual spaces with respect to conjugate mappings ([82], p. 290).

c) If the space (En,Tn) is reflexive (nuclear, type (S)), then the spaces
(E′α/E

⊥
n,α, β(E

′
α, Eα)/E

⊥
n,α) are reflective (LB)-spaces (nuclear (LB)-spaces,

spaces type (DFS)). The rest of statement c) follows from statement b).
We now assume that on a strict (LF )-space (E,T) = s · lim

→
(En,Tn) there is a

basis of zero’s neighborhoods V such that the Minkowski functional pV for V ∈ V
is norm onE. Let pV,n be the restriction of pV toEn, (EV ,TV ) = s·lim

→
(En, pV,n)

is strict inductive limit of a sequence of normed spaces {(En, pV,n)}, TV is its

topology and (ẼV ,TV ) = s · lim
→

(Ẽn, pV,n) is strict (LB)-space, where (Ẽn, pV,n)

is the completion of the normed space (En, pV,n). In these conditions it is valid

Theorem 2.6.4. Let (E,T) = s · lim
→

(En,Tn) be a strict (LF )-space with a basis
of zero’s neighborhoods V . Then the following statements are valid:

a) (E,T) is isomorphic to the projective limit of the family of strict (LB)-
spaces {(ẼV ,TV ); V ∈ V} with respect to mappings gUV , where gUV is a
continuous extension to (ẼV ,TV ) of identity mapping (EV ,TV ) on (EU ,TU )
(V ⊂ U, U, V ∈ V). In addition, E = ∩V ∈VEV , T coincides with the supre-
mum of the family {TV ; V ∈ V} in the topology lattice on E. The dual space
E′ = ∪V ∈VE′V and E′V are weakly dense in E′ for each V ∈ V .

b) For each V ∈ V , the space (E′V , β(E
′
V , EV )) is quojection and

(E′′V , β(E
′′
V , E

′
V )) is a strict (LB)-space. Next, if the spaces (En,Tn) are dis-

tinguished, then the space (E′, β(E′, E)) is isomorphic to the inductive limit of
the family {(E′V , β(E′V , EV )); V ∈ V} with respect to conjugate maps g′UV .

c) If the space (E,T) is nuclear (i.e., the spaces (En,Tn) are nuclear), then
the spaces (EV ,TV ) can be chosen as strict (LH)-spaces, and therefore the strong
dual spaces (E′V , β(E

′
V , EV )); V ∈ V can be chosen as strict Fréchet–Hilbert

spaces.

Proof. a) Let IV : E → (EV ,TV ) be the identical mapping. The topology T is a
projective topology with respect to families {(EV ,TV , IV ); V ∈ V}, i.e. weakest
topology on E, for which all mappings IV , V ∈ V are continuous ( [147], p. 68).
Further, T is the supremum topology of the family {TV ; V ∈ V}. Moreover, the
space (E,T) is projective limit of the spaces {(ẼV ,TV ); V ∈ V} with respect
to mappings gUV ( [147], p. 70). The completeness of strict (LF )-spaces implies
equality E = ∩V ∈VẼV . It is obvious that E′ = ∪V ∈VE′V . The conjugate mapping
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I ′V to the identity mapping IV is injective and has weakly dense image. Therefore,
the space E′V is weakly dense in E′ for each V ∈ V .

b) The first part of this statement follows from the theorem 2.3.2. Due to the
distinguishness of Fréchet spaces (En,Tn) and Theorem 10 from [65] it follows
that the space (E′, β(E′, E)) is bornological. Therefore (E′, β(E′, E)) is the in-
ductive limit of the family of Banach spaces EB , where B is bounded, closed and
absolutely convex subset of the space (E′, β(E′, E)), and EB is space spanned by
B. On the other side, for each V ∈ V the space (E′V , β(E

′
V , EV )) is also the in-

ductive limit of corresponding spaces EB . Therefore, due to transitivity formation
of the inductive limit, the space (E′, β(E′, E)) is isomorphic to the inductive limit
of the family of quojections {(E′V , β(E′V , EV )); V ∈ V}.

c) If the space (E,T) is nuclear, then, as is well known, the neighborhood basis
V can be chosen so that for each V ∈V Minkowski functional pV is generated by
the inner product. Then the spaces (ẼV ,TV ) will be strict (LH)-spaces. Next, it
remains to apply sentemce b).

It should be noted that, in contrast to the representation of nuclear (LF )-spaces
and their strong dual spaces in the form of projective and inductive limits of the
family of Hilbert spaces [125], the strict (LF )-space (E,T) is not represented
in the form of inductive and projective limits of families of strict Fréchet–Hilbert
spaces, and its strong dual space (E′, β(E′, E)) is not represented in the form of
projective and inductive limits families of strict (LH)-spaces.

Example. Space of basic (finite) functions D(Ω). Let Ω be a non-empty open set
in Rl and {Ωn} be an increasing sequence of compact sets in Ω such that Ωn ⊂
intΩn+1 for each n ∈ N and ∪n∈NΩn = Ω. As is well known, through D(Ω)
denotes the space of infinitely differentiable functions with compact support in Ω.
The space D(Ω) is the strict inductive limit of the increasing sequence of nuclear
countable-normed spaces Dn = C∞0 (Ωn), i.e. spaces of functions from D equal
to zero outside the compact set Ωn. Indeed, each Dn is endowed with topology by
a sequence of norms

pΩn,m
(f) = sup{|D(S)f(t)|; t ∈ Ωn, |s| ≤ m}, n,m ∈ N , (2.6.1)

where

s = (s1 . . . , sl), |s| =
l∑

i=1

si, D(s)x(t) =
∂s1+···+slf(t1, . . . , tl)

∂ts11 · · · ∂tsll
.

Then Dn turns into a Fréchet space, and its topology coincides with the induced
topology from the space Dn+1 on Dn, i.e. D(Ω) = s · lim

→
(Dn,Tn).
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By virtue of Theorem 2.6.1 on the spaceD(Ω) there exist metrizable topologies
inducing on each Dn the topology of the space Dn. As such topologies we present
the topologies defined with a countable sequence of norms on D(Ω)

pm(f) = sup{|D(S)f(t)|; t ∈ Ωm, |s| ≤ m}, m ∈ N , (2.6.2)

pmr(f) = sup

{
(1 + |t|r)

∑
|S|≤m

|D(s)f(t)|; t ∈ Ωm

}
, r,m ∈ N , (2.6.3)

∥f∥m = sup

{ ∑
|S|≤m

|D(s)f(t)|; t ∈ Ω

}
, m ∈ N . (2.6.4)

From Corollary 1 of Theorem 2.6.1 it follows that in the case Ω = Rl the space
D(Rl), considered by these metrizables topologies,is not complete. By complet-
ing the space D(Rl) by topology with the sequence (2.6.1) or (2.6.2) it is ob-
tained the universal nuclear space of all infinite differentiable functions E(Rl) with
the topology of compact convergence, i.e. with the topology of uniform conver-
gence of derivatives of all orders on compact sets from Rl. By completing the
spaceD(Rl) with the topology of a sequence of norms (2.6.3) a nuclear countable-
normed Schwartz space S(Rl) is obtained. In [194], other examples of metrizable
locally convex spaces inducing on each Dn topology Tn are considered.

A continuous linear functional defined on an LCS (D,T), is called a distri-
bution or generalized function of L. Schwartz. Therefore, for every generalized
function F ′ ∈ D′(Ω) there is a T-neighborhood V , for which F ′ ∈ V 0. Therefore,
by virtue of the corollary of Theorem 2.6.3, F ′ is also continuous linear func-
tional on some nuclear metrizable space Dα, inducing on each subspace (Dn,Tn)
original topology. For example, generalized functions with compact support is
the nuclear (LB)-space E ′(Rl). The space of tempered distributions on Rl is the
nuclear (LB)-space S′(Rl). More precisely, from the above results about strict
(LF )-spaces, for the space (D,T) it follows that the following is true

Theorem 2.6.5. Let the space (D,T) = s · lim
→

(Dn,Tn) and {Tα; α ∈ A} be a
family of all metrizable locally convex topologies on D, inducing on each Dn the
topology Tn. Then the following statements are true:

a) The space D is isomorphic to the projective limit of the family of nuclear
Fréchet spaces {(D̃α,Tα); α ∈ A} with respect to the mappings παβ , where D̃α =

(D̃α,Tα) is the completion of spaces (D,Tα), and παβ is continuous extension
to D̃β of the identical mappings from (D,Tβ) to (D,Tα) (Tα ≤ Tβ) and the
topology of the space D coincides with the supremum of the family of topologies
{Tα; α ∈ A}. The space D′ = ∪α∈AD′α and D′α is weakly dense in D′ for each
α ∈ A.
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b) The space D′ in the strong topology β(D′, D) is isomorphic to the projec-
tive limit of the family of nuclear (LB)-spaces {(D′α, β(D′α, Dα)), α ∈ A} with
respect to mappings π′αβ .

c) For each α ∈ A the space (D′, β(D′, D)) is isomorphic to the projective
limit of a sequence of nuclear (LB)-spaces (D′α/D

⊥
n,α, β(D

′
α, Dα)/D

⊥
n,α) with

respect to topological homomorphisms j′n, where D⊥n,α is the subspace of D′α, or-
thogonal toDn and jn is monomorphism of the space (Dn,Tn) into (Dn+1,Tn+1).

d) If V is a basis of neighborhoods of zero in D, then the space (D,T) is iso-
morphic to the projective limit of the family of strict (LB)-spaces {(D̃V ,TV ); V ∈
V} with respect to mappings gUV , where D̃V = (D̃V ,TV ) is completion of space
(D,TV ) = s · lim

→
(Dn, pV,n), and gUV is continuous extension on D̃V of the

identity map (D,TV ) on (D,TU ) (TU ≤ TV ). D = ∩V ∈VDV , the topol-
ogy of the space D coincides with the supremume of the family {TV ; V ∈ V},
D′ = ∪V ∈VD′V and D′V is weakly dense in D′ for each V ∈ V .

e) The space (D′, β(D′, D)) is isomorphic to the inductive limit of families of
quojections {D′V , β(D′V , DV ))} with respect to mappings g′UV .

It should be noted that if the basis of neighborhoods of zero V of space D is
chosen so that for each V ∈ V the Minkowski functional pV is generated by the
inner product, then in statement d), the spaces DV can be chosen as strict (LH)-
spaces, and in statement e), the spacesD′V as strict Fréchet–Hilbert spaces for each
V ∈ V .

Let us now give examples of strict (LB)-spaces appearing in statement d) of
Theorem 2.6.4. As is known (see Section 2.3), K(Ω) denotes the space of func-
tions continuous on Ω with compact support. In the topology of the inductive limit
K(Ω) is a strict (LB)-space, since K(Ω) = s · lim

→
K(Ω,Ωn), where K(Ω,Ωn)

is the space of continuous functions on Ω, whose supports are contained in Ωn.
Also Lp0(Ω) (1 < p <∞) is reflexive (LB)-space of all finite in Ω functions from
Banach space of p-summable functions Lp(Ω), since Lp0(Ω) = s · lim

→
Lp0(Ωn)

(L2
0(Ωn) is strict (LH)-space), where Lp0(Ωn) is the space of all functions of

Lp(Ω), which vanish almost everywhere outside Ωn.
According to statement e) of Theorem 2.6.4 the quojections that are strong

dual to the specified strict (LB)-spaces, participate in the representation of space
(D′, β(D′, D)). In particular, such is the space of measures M(Ω) = K(Ω)′ in
the strong topology. Also, strong dual to space Lp0(Ω) is the space of q-locally
summable functions Lqloc(Ω)

(
1
p + 1

q = 1
)
. From these results in particular, it is

obtained

Proposition 2.6.6. In order for a generalized function f ∈ D′(Ω) was a measure
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(q-locally integrable function (1 < q < ∞)) on Ω, it is necessary and sufficient
that it admits linear and continuous extension on K(Ω)

(
Lp0(Ω), 1p +

1
q = 1

)
.

It should be noted that the obtained representations of nuclear strict (LF )-
spaces and its strong dual spaces are important in particular for nuclear spaces of
basic functions D(Qp) and generalized functions D′(Qp), where Qp is the field of
p-adic numbers. In this case it is also possible to define the strict Fréchet–Hilbert
space L2

loc(Qp), as well as the families of strict Fréchet–Hilbert spaces and nuclear
(LH)-spaces participating in representation of the topology D(Qp).

2.6.3 Sobolev space of infinite order and embedding theorems

Let again Ω ⊂ Rl be a non-empty open set. Sobolev spaces of finite order Wn
p (Ω)

(p ≥ 1, n ∈ N) are important Banach spaces of generalized functions. We connect
these Sobolev spaces to Sobolev spaces of infinite order and study the properties
of embedding operators. We will say that f ∈ W p,∞(Ω), if f has generalized
derivatives of all orders f (α) ∈ Lp(Ω) (α = (α1, . . . , αl) is multi-index). It is
natural to consider the space W p,∞(Ω) with a topology that coincides with Lp(Ω)
convergence of derivatives of all orders. This topology is not normable, but is
metrizable and can be given by a non-decreasing sequence of norms

∥f∥p,n =

( ∑
|α|≤n

∥f (α)∥pp
)1/p

, |α| =
l∑

i=1

αi, n ∈ N ,

where

∥f∥p =
(∫

Ω

|f(t)|pdt
)1/p

.

In [191], it was proved that the spaceW p,∞(Rl) is complete countable-normed
space. For an arbitrary open set Ω, the space W p,∞(Ω) is the countable Hilbert
space. From the well-known representation of complete countable-normed spaces
it follows that the following representation is valid

W p,∞(Ω) =
⋂
n∈N

(
˜W p,∞(Ω), ∥ · ∥p,n

)
,

where (W̃ p,∞, ∥ · ∥p,n) is the completion of the normed space (W p,∞(Ω), ∥ ·
∥p,n). It is well known that ( ˜W p,∞(Rl), ∥ · ∥p,n) = Wn

p (R
l). By virtue of what

has been said, the space W p,∞(Ω) is a projective limit of sequences of Banach

spaces {(W̃ p,n(Ω), ∥ ·∥p,n)}. From the reflexivity of Sobolev spacesWn
p (Ω) (1 <
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p < ∞) it follows that the space W p,∞(Ω) (1 < p < ∞) is totally reflexive
Fréchet space. Let us now consider the Sobolev space of infinite orderW∞(aα, p),
introduced by Yu. A. Dubinsky [46].

W∞(aα, p) (1 ≤ p <∞, aα ≥ 0) is Banach space and is defined as follows

W∞(aα, p) =

{
f ∈W p,∞(Ω);

∞∑
|α|=0

aα∥f (α)∥pp <∞
}
.

Here there are obtained imbedding theorems for infinite order Sobolev spaces of
one into the other, then their imbeddings in Sobolev space of finite order. Ac-
cording to ( [181], p. 31), the embedding of Banach space (F, ∥ · ∥1) into Banach
space (E, ∥ · ∥2) is in many cases equivalent to set-theoretic inclusion E ⊂ F . A
generalization of this result is valid for Fréchet spaces.

Proposition 2.6.7. Let the Fréchet spaces (E,T1) and (F,T2) are subsets of the
linear topological space L, and the convergence in the spaces (E,T1) and (F,T2)
entails convergence in topology L. Let also some set Φ ⊂ E ∩ F be dense in E
and F . Then the set-theoretic inclusion E ⊂ F is equivalent to the continuity of
the inbedding of (F,T1) in (E,T2).

Note that, generally speaking, as L, it is taken the space generalized functions
D′(Ω). Since we are considering regular generalized functions, then as L we can
take the space L1

loc(Ω). Let C∞(Ω) denote the space of all infinitely differentiable
functions f , derivatives of any order of which (including the function itself) admit
continuous extensions to Ω, with a sequence of norms

∥f∥n = sup{|f (α)(t)|; t ∈ Ω, |α| ≤ n}, n ∈ N .

To prove the following Proposition 2.6.8 and Theorem 2.6.9, Proposition 2.6.7
and the well-known theorems of S. L. Sobolev and V. I. Kondrashov are applied
([55], p. 47).

Proposition 2.6.8. The following statements are true:
a) For an arbitrary open set Ω ⊂ Rl the space W p,∞(Ω) is embedded in the

Fréchet space E(Ω).
b) If Ω ⊂ Rl is a bounded domain with a regular boundary in the sense of

Calderon ( [55], p. 45), then the space W p,∞(Ω) (1 ≤ p < ∞) is isomorphic to
the space C∞(Ω) and is the Fréchet-Schwartz space.

Corollary. If Ω is a bounded domain of class C∞ ( [160], p. 300) with regular
border or bounded domain with regular boundary satisfying only the Lifshitz con-
dition or a domain of the type rectangular parallelepiped, then the spaceW p,∞(Ω)
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is a nuclear space, i.e. for each n ∈ N there exists m ∈ N such that the embedding
( ˜W p,∞, ∥ · ∥p,m) → ( ˜W p,∞, ∥ · ∥p,n) is a nuclear operator.

Indeed, by virtue of Remark 1 ( [160], p. 607) we obtain that under the con-
ditions of the corollary of Proposition 2.6.8, the space W p,∞(Ω) is isomorphic to
the nuclear Fréchet space s of rapidly decreasing sequences. Consequently, in this
case in the Kondrashov’s theorem for certain indices one can assert nuclearity of
imbedding operators.

Theorem 2.6.9. Let Ω ⊂ Rl be a bounded domain, (1 ≤ p <∞) and aα > 0 are
an arbitrary sequence. Then the following statements are valid:

a) The spaces W∞(aα, p) are embedded in the space W p,∞(Ω) and into the
space Wn

p (Ω). Moreover, if 1 < p < ∞, then these imbeddings are weakly com-
pletely continuous, i.e. images of some neighborhood at these mappings are weakly
relatively compact.

b) If Ω is a bounded domain with a regular boundary and 1 < r < ∞, k ∈ N,
then the following imbeddings

W∞(aα, p) →W p,∞(Ω), W p,∞(Ω) →W k
r (Ω) and W∞(aα, p) →W k

r (Ω)

are completely continuous, i.e. images of a certain neighborhood for these map-
pings are relatively compact.

Corollary. If Ω satisfies the conditions of the Proposition 2.6.8, then for 1 ≤ p <
∞, 1 < r <∞ and k ∈ N the imbeddings

W∞(aα, p) →W k
r (Ω) and W∞(aα, p) →W k

r (Ω)

are nuclear.

It should be noted that unit balls Saα (aα > 0) of all spaces W∞(aα, p), form
a fundamental family of bounded absolutely convex sets in the space W p,∞(Ω).
Indeed, every bounded absolutely convex subsetB of spaceW p,∞(Ω) is contained
in the ball Saα of space W∞(aα, p), where aα = M−1α 2−n−1e−n for |α| = n and
Mα = sup{∥f (α)∥pp; f ∈ B}.

Let us denote by
◦
W p,∞(Ω) (1 ≤ p < ∞) the closure of a set of infinitely dif-

ferentiable functions with compact supportsC∞0 (Ω) in spaceW p,∞(Ω). The space
◦
W p,∞(Ω) is complete countable-normed space and for it is valid the representation

◦
W p,∞(Ω) =

∞⋂
n=0

◦
Wn

p (Ω) ,
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where
◦
Wn

p (Ω), as usual, is the completion of the space C∞0 (Ω) according to the

norm ∥ · ∥p,n. From the above, in particular, it follows that
◦
Wn

2 (R
l) = Wn

2 (R
l)

and therefore
◦
W 2,∞(Rl) =W 2,∞(Rl).

Proposition 2.6.10. The following statements are true:

a) If Ω is a bounded domain, then the space
◦
W p,∞(Ω) (1 ≤ p < ∞) is a

nuclear space.
b) If the domain Ω satisfies the conditions of the corollary of Proposition 2.6.8,

then the space
◦
W p,∞(Ω) (1 ≤ p < ∞) is nuclear, and therefore for every n ∈ N

there exist m ∈ N such that the embedding

◦
Wm

p (Ω) →
◦
Wn

p (Ω)

is nuclear.
c) There is an unbounded domain Ω ⊂ Rl such that the space

◦
W 2,∞(Ω) is

nuclear.

Indeed, the statement a) follows from the famous Rellich lemma and from the

nuclearity embedding
◦
Wm

p (Ω) →
◦
Wn

p (Ω) when m− n > l. Statement b) follows

from the nuclearity of the subspace
◦
W p,∞(Ω) of the space W p,∞(Ω). In [200],

the conditions are indicated under which the operators
◦
Wm

p (Ω) →
◦
Wn

p (Ω) in case
of unbounded domain Ω are the Hilbert-Schmidt operators. Therefore, for such

a region Ω the space
◦
W 2,∞(Ω) is also nuclear space due to the nuclearity of the

product of Hilbert-Schmidt maps.

2.7 On homomorphisms, open and their adjoint operators

The operator between locally convex spacesE and F is called open if it maps open
subsets of E into open subsets of F . A continuous linear operator between locally
convex spaces which is open into its image, is called a homomorphism.

In Section 2.3, when studying the dual characterization of quojection, it has
been proved that the adjoint operator to the canonical homomorphism of quojec-
tions on a Banach space is a strong homomorphism. In connection with this, we
recall that in [65] two examples of homomorphisms of Fréchet spaces were built,
whose adjoints are not strong homomorphisms, i.e. adjoint mappings are not ho-
momorphisms, when dual spaces are endowed with the strong topologies. In partic-
ular, one of these examples is the canonical homomorphism of the Fréchet-Montel
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space onto the Banach space ℓ1. These examples are also studied in detail in 2.7.4,
giving the original and dual spaces with the different topologies.

Similar tasks often arise in applications and were intensively studied, starting
with S. Banach, for certain spaces and topologies. The most important results were
obtained in the works of J. Dieudonne [42], J. Dieudonne and L. Schwartz [43],
A. Grothendieck [65], G. Köthe [80–83], F. Browder [29], V. S. Retakh [141],
V. P. Palamodov [119], K. Floret and V. B. Moscatelli [52], S. Dierolf and D.
Zarnadze [40], D. Zarnadze [204], J. Bonet and J. A. Conejero [22]. So far known
results in this direction are most fully presented in monographs [50, 83, 134], but
they have fragmented character. Special mention should be made of the strong ho-
momorphisms and the strong adjoints to homomorphisms, i.e. about those cases
when the original and dual spaces are endowed with the strong topologies. Ques-
tion about them was studied in ([43], paragraph 12).

Grothendieck’s homomorphism theorem ( [83], p. 8). Let (E,T1) and (F,T2)
be locally convex spaces, M1 and M2 be the families of equicontinuous sets in
E′ and F ′, respectively. The weak homomorphism A of the space (E, σ(E,E′))
into the space (F, σ(F, F ′)) is a homomorphism of the space (E,T1) in the space
(F,T2) if and only if A′(M2) = M1 ∩ A′(F ′), where A′ is the adjoint operator
and M1 ∩A′(F ′) = {M ∈ M1;M ⊂ A′(F ′)}.

It should be noted, however, that this theorem is not valid for the topologies
which are not compatible with the dualities ⟨E,E′⟩ and ⟨F, F ′⟩. In particular, the
above Theorem is not valid for the topology of uniform convergence T1 = TM1

and T2 = TM2 , where M1 and M2 families of weakly bounded sets E′ and F ′

accordingly. Namely, it is not valid for the strong topologies, i.e. when M1 and M2

are families of all weakly bounded sets in E′ and F ′ respectively. Counterexample
given in ( [83], p. 10) for the last case shows that there is a weak homomorphism
K of the LCS E onto the same space F , for which K ′(M2) = K ′(F ′) ∩ M1,
however K is not a strong homomorphism. The complexity of studying strong
homomorphisms is also noted in ( [83], p. 10). This is due to the fact that until
now actually did not exist necessary and sufficient conditions in order for the weak
homomorphism to be also a strong homomorphism and, in general, homomorphism
in topologies, that are not compatible to the dualities ⟨E,E′⟩ and ⟨F, F ′⟩.

This chapter proves a generalization of Grothendieck’s theorem for topologies,
which, in particular, are not compatible with the dualities. From here we derive
necessary and sufficient conditions for a weak homomorphism A (respectively its
adjoint mapping A′, respectively its the second adjoint mapping A′′) was again a
homomorphism under endowments of the original (respectively dual, respectively
bidual) spaces with strong topologies, Mackey topologies and topologies of the
strong precompact convergence. Our approach is uniform and is that the homo-
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morphicity of A (resp. A′, resp. A′′) in various situations characterized by the
coincidence of two naturally generated topologies on the quotient space E/KerA
(resp. F ′/KerA′, resp. E′′/KerA′′) and on the image A(E) (resp. A′(F ′), resp.
A′′(F ′′)). Similar reasoning yields a necessary and sufficient condition for a weak
homomorphism to be also a homomorphism under the endowment of spaces with
associated bornological topologies.

Here are the classes pairs of LCS E and F for which an arbitrary weak ho-
momorphism is again a homomorphism in the above topologies. In particular, in
sufficient detail are studied strong homomorphisms and strong adjoints to homo-
morphisms and strengthenings and generalizations of a few well-known results. By
applying the results of F.Browder from [29] the conditions of openness and strong
openness of weakly open operators having closed graphs are also given.

The theorems on homomorphisms given in this section are the result of a uni-
fied approach to their study. In particular, special diagrams are discussed for the
first time in the 100-year history of homomorphism research. On them the de-
pendence between the topologies on the quotient space and on the image of the
operator, which is obtained as a result of the canonical decomposition of operator,
are discussed. They give possibility of comparison these topologies and draw the
necessary conclusions.

2.7.1 Homomorphisms between locally convex spaces

This section provides conditions for a homomorphism between the LCS E and F
would again be a homomorphism in different known topologies of the spaces E
and F .

Let E be an LCS and let M be some family weakly bounded sets of the dual
space E′, containing the class of all finite sets δ. TM(E′) denotes the topology on
E that is uniform convergence on sets from M. In particular, through β(E,E′)
(resp. σ(E,E′), resp. τ(E,E′), resp. Tc(E

′)) will denote the topology on E of
uniform convergence on all bounded (resp. on finite, resp. on absolutely convex
and σ(E,E′)-compact sets, resp. on strongly precompact) sets from E′.

By symmetry, there are defined the topologies of the uniform convergence
β(E′, E), σ(E′, E), τ(E′, E) and Tc(E) on E′. For a subspace G of the lo-
cally convex space (E,TM(E′)), by TM(E′) ∩ G it is denoted the topology in-
duced on G, and through T

M̂
(E′/G⊥) the topology of uniform convergence on

sets M̂ = k(M) = {k(M); M ∈ M}, where k is the canonical mapping of E′ to
E′/G⊥. Next, for a closed subspace G of the space (E,TM(E′)) via TM(E′)/G
denotes the quotient topology on E/G, and by TM̄(G⊥) the topology on E/G of
the uniform convergence on the family M̄ = {M ∈ M; M ⊂ G⊥}.
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Theorem 2.7.1. Let E and F be the locally convex spaces with the saturated
classes of weakly bounded subsets M1 and M2 of the dual spaces E′ and F ′,
respectively. The weak homomorphism A of the space E in the space F is the ho-
momorphism of the space (E, TM1(E

′)) in the space (F , TM2(F
′)) if and only if

the following conditions are satisfied:

a)M1 =
˜̂
M2 and A′(M2) ⊂ M1, where A′ is dual operator to A, M1 =

{M ∈ M1; M ⊂ KerA⊥}, M̂2 = K1(M2) = {K1(M); M ∈ M2}, K1 :

F ′ → F ′/A(E)⊥ is a canonical map, and ˜̂M2 is saturated hull of M̂2.
b) TM1(E

′)/KerA = TM̄1
(KerA⊥) on E/ KerA, where TM̄1

(KerA⊥) is a
topology of uniform convergence on the class M̄1.

c) TM2(F
′)∩A(E) = T

M̂2
(F ′/A(E)⊥) on A(E), where T

M̂2
(F ′/A(E)⊥) is

the uniform convergence topology on M̂2.

Proof. Sufficiency. LetA = JǍK be the canonical decomposition of the weak ho-
momorphism A, where K is the canonical homomorphism of the space
(E, σ(E,E′)) on (E/KerA, σ(E,E′)/KerA), Ǎ is weak isomorphism of
(E/KerA, σ(E,E′)/KerA) onto (A(E), σ(F, F ′) ∩A(E)) and J is monomor-
phism (A(E), σ(F, F ′) ∩ A(E)) into (F, σ(F, F ′)). Due to the known prop-
erties of the weak topology ( [82], p. 276), the equalities σ(E,E′)/KerA =
σ(E/KerA, KerA⊥) onE/KerA and σ(F, F ′)∩A(E) = σ(A(E), F ′/A(E)⊥)
are valid on A(E), since (E/KerA)′ = KerA⊥ and A(E)′ = F ′/A(E)⊥.
Therefore, the spaces (E/KerA, σ(E/KerA, KerA⊥)) and (A(E), σ(A(E),
F ′/A(E)⊥)) are isomorphic.

Hence from condition a) it follows that the spaces (E/KerA, TM̄1
(KerA⊥))

and (A(E),T
M̂2

(F ′/A(E)⊥)) are isomorphic, where TM̄1
(KerA⊥) is the topol-

ogy on E/KerA, of uniform convergence on M1, and T
M̂2

(F ′/A(E)⊥) is the
topology on A(E) uniform convergence on sets K1(M2) ⊂ F ′/A(E)⊥. From the
conditionsA′(M2) ⊂ M1 by virtue of Theorem 1 ([83], p. 3), it follows continuity
of the operator A from the space (E, TM1(E

′)) into (F,TM2(F
′)). Next, from

the conditions b) and c) it follows that Ǎ is also an isomorphism of the spaces
(E/KerA, TM1(E

′)/KerA) on (A(E), TM2(F
′) ∩ A(E)), i.e. A is the homo-

morphism of the space (E, TM1(E
′)) into (F, TM2(F

′)).
Necessity. The weak homomorphism A of the space E in F is also the homo-

morphism of the space (E,TM1(E
′)) into (F, TTM2(F

′)). As stated above, Ǎ
is the weak isomorphism of the space (E/KerA, σ(E/KerA, KerA⊥)) onto
(A(E), σ(A(E), F ′/A(E)⊥)). In these spaces also coincide TM1(E

′)/KerA and
TM2(F

′) ∩ A(E), since A is the homomorphism of the space (E,TM1(E
′)) in

(F,TM2(F
′)). Hence, again by virtue of Theorem 1 from ( [83], p. 3) we ob-

tain A′(M2) ⊂ M1. This is equivalent to the fact that the mapping Ǎ is con-



140 D. Zarnadze, D. Ugulava

tinuous, since it is the mapping of the space (E/KerA, T
M̂1

(KerA⊥)) onto
(A(E), ;T

M̂2
(F ′/A(E)⊥)).

Indeed, A′ = K ′Ǎ′J ′, where K ′, Ǎ′ and J ′ are the adjoints to the map-
pings K, Ǎ and J , respectively. In that case we have K ′Ǎ′J ′(M2) ⊂ M1, but
as is known, J ′(M2) = K1(M2) = M̂2, and therefore K ′Ǎ′(M̂2) ⊂ M1, i.e.
Ǎ′(M̂2) ⊂ K

′(−1)(M1) = M1 ∩KerA⊥ = M1. Further, by virtue of Theorem 1
from ([82], p. 276), we obtain the inequality TM2(F

′)∩A(E) ≤ T
M̂2

(F ′/A(E)⊥)

on A(E). Indeed, forM ∈ M2 the following equalities are valid: K1(M)0A(E) =
J ′(M)0A(E) = J−1(M0F ) = M0F ∩ A(E). The above inequality is true, since
in the saturated cover of M̂2, there may occur the sets that are not contained in the
K1-image of the sets from M2. The inequality TM̄1

(KerA⊥) ≤ TM1(E
′)/KerA

can be proved in a similar manner using Theorem 3 ([82], p. 277). On account of
the preceding arguments, the following diagram is valid:

(E/KerA, TM1(E
′)/KerA)

Ǎ //

��

(A(E), TM2(F
′) ∩A(E))oo

(E/KerA, TM̄1
(KerA⊥))

Ǎ // (A(E), T
M̂2

(F ′/A(E)⊥)

OO

where vertical arrows denote the continuous identical algebraic isomorphisms.
From this it turns out that the indicated two topologies on E/KerA and A(E)
coincide. Furthermore, the topologies TM̄1

(KerA⊥) and T
M̂2

(F ′/A(E)⊥) on the
weakly isomorphic spacesE/KerA andA(E) also coincide. By Theorem 4 ([82],
p. 256) the saturated covers of the classes A′(M2) and M1 also coincide, i.e. con-
dition a) is fulfilled too.

Note that if the classes M1 and M2 consist only of equicontinuous sets, then
the class M̂2 is also saturated and the conditions b) and c) are always fulfilled by
virtue of Theorems 1 and 2 ([82], pp. 275–276). As the above-mentioned example
from [83] shows, we do not have the same situation in the general case. Below
we will give the examples of the topologies for which the statements b) and c)
imply a).

Corollary. Let in the notation of Theorem 2.7.1 A be a weak monomorphism of
E in F . Then A is a monomorphism of (E,TM1) into (F,TM2) if and only if

A′(M2) ⊂ M1 and M1 ⊂ Ã′(M2), where Ã′(M2) consists of weak closure
sets of the form A′(M), M ∈ M2 in F ′/A(E)⊥ with respect to the dual pair
⟨A(E), F ′/A(E)⊥⟩.

Indeed, ifA is a monomorphism of (E, TM1) in (F, TM2), then the conditions
of the corollary follow from Theorem 2.7.1. Vice versa, from the conditionA′(M2)
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⊂ M1, by virtue of Theorem 1 from ([83], p. 3), we obtain the continuity of A as a
mapping from (E, TM1) to (F, TM2). By condition,A is a weak monomorphism,
so A′(F ′) = E′ = KerA⊥, M1 = M1, and repeating the reasoning given in the
proof of Theorem 1 ([83], p. 10), we obtain TM1 − TM2 openness of operator A.

Let us now give a specification of Theorem 2.7.1 for known topologies.

Theorem 2.7.2. Let A be a weak homomorphism of the LCS E in the LCS F . A is
a strong homomorphism, i.e. a homomorphism of the space (E, β(E,E′)) in the
space (F, β(F, F ′)), if and only if β(E,E′)/KerA = β(E/KerA, KerA⊥)
on E/KerA and β(F, F ′) ∩ A(E) = β(A(E), F ′/A(E)⊥) on A(E), where
β(F, F ′)/KerA is quotient topology of the strong topology β(E,E′), β(F, F ′) ∩
A(E) is induced topology on A(E), β(E/KerA, KerA⊥) and β((A(E),
F ′/A(E)⊥) are strong topologies of dual pairs ⟨E/KerA,KerA⊥⟩ and
⟨A(E), F ′/A(E)⊥⟩, respectively.

Proof. Sufficiency. By repeating the reasoning, which were given in the proof of
Theorem 2.7.1, taking into account the fact that a weakly continuous operator is
strongly continuous, we obtain that the following diagram holds:

(E/KerA, β(E,E′)/KerA)
Ǎ //

��

(A(E), β(F, F ′) ∩A(E))

(E/KerA, β(E/KerA, KerA⊥))
Ǎ //

(A(E), β(A(E), F ′/A(E)⊥))

OO

oo

↗

(E, β(E,E′))

↘

↘

(F, β(F, F ′))

↗

It follows from the condition that the continuous algebraic isomorphisms in-
dicated by vertical arrows are topological isomorphisms. Therefore, A is a strong
homomorphism.

Necessity. We again use the above diagram. In this case, the operator indicated
by the upper horizontal arrow becomes a topological isomorphism. From this,
we immediately get the coincidence of the indicated topologies on E/KerA and
A(E).

It should be noted that in the proof of the necessity of Theorem 2.7.2, the a
priori conditions imposed on A can be weakened. Namely, for the coincidence of
the indicated topologies on E/KerA and A(E), it is enough to require that A is
a weakly continuous strong homomorphism. However, one cannot expect that A
will be a weak homomorphism.
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Corollary. If A is a homomoropism of the LCS of the barrelled space (E,T1) to
LCS (F,T2), then A is a strong homomorphism.

Indeed, the barrelledness of the space (E,T1) means that T1 = β(E,E′).
Since the quotient space of the barrelled space is barrelled, we have

T1/KerA = β(E/KerA, KerA⊥) = β(E,E′)/KerA

on E/KerA. By condition, the quotient space (E/KerA, β(E,E′)/KerA) is
isomorphic to the subspace (A(E), T2 ∩ A(E)) of the space (F,T2). Therefore,
the last space is also a barrelled space and the following equality holds:

T2 ∩A(E) = β(F, F ′) ∩A(E) = β(A(E), F ′/A(E)⊥).

By Tb∗(E
′) it is denoted the topology on E-uniform convergence on strongly

bounded sets of E′, i.e. topology of uniform convergence on bounded sets of the
space (E′, β(E,E′)).

Theorem 2.7.3. Let A be a weak homomorphism of the LCS E into the LCS F .
A is a Tb∗-homomorphism, i.e. homomorphism of LCS (E,Tb∗(E

′)) in the LCS
(F,Tb∗(F

′)) if and only if Tb∗(E′)/KerA = Tb∗(KerA⊥) on E/KerA and
Tb∗(F

′) ∩A(E) = Tb∗(F
′/A(E)⊥) on A(E).

Corollary. If A is a homomorphism of the quasi-barrelled LCS E in the LCS F ,
then A is a Tb∗-homomorphism.

The proofs of these statements are almost verbatim repetition of the above rea-
soning, due to the known properties of Tb∗-topologies, and we omit it.

Let us now present the conditions for a weak homomorphism to be a homo-
morphism in Mackey topologies.

Theorem 2.7.4. LetA be a weak homomorphism of the LCSE into the LCSF . A is
a Tk-homomorphism, i.e. a homomorphism of the space (E, τ(E,E′)) in the space
(F, τ(F, F ′)) if and only if τ(F, F ′) ∩ A(E) = τ(A(E), F ′/A(E)⊥) on A(E),
where τ(F, F ′)∩A(E) is the induced topology onA(E) and τ(A(E), F ′/A(E)⊥)
is the Mackey topology on A(E) with respect to the dual pair ⟨A(E), F ′/A(E)⊥⟩.

The validity of this theorem follows from Theorem 2.7.1 with regard for the
equality τ(E,E′)/KerA = τ(E/KerA,KerA⊥) on E/KerA, which is ob-
tained by Theorem 3 ([82], p. 277). It should also be noted that when proving the
necessity of the coincidence of the mentioned topologies on A(E), it is sufficient
only to require that A is Tk-homomorphism. Really, due to the weak continuity
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of Tk-continuous mappings ([83], p. 4.), it turns out that the following diagram is
valid:

(E/KerA, τ(E/KerA, KerA⊥)) //

��

(A(E), τ(A(E), F ′/A(E)⊥))

��
(E/KerA, τ(E,E′)/KerA)

OO

//
(A(E), τ(F, F ′) ∩A(E))oo

where the arrows indicate continuous algebraic isomorphisms.

Corollary 1. Let A be a continuous weak homomorphism LCS (E,T1) in LCS
(F,T2) such that the space (A(E), T2 ∩ A(E)) is the Mackey space. Then A is a
homomorphism of the space (E,T1) in the space (F,T2).

Indeed, due to the above results, from the condition we find that the following
diagram holds:

(E/KerA, T1/KerA) → (A(E), T2 ∩A(E))
//
(A(E), τ(A(E), F ′/A(E)⊥))oo

��
(E/KerA, τ(E,E′)/KerA)

OO

//
(E/KerA, τ(E/KerA, KerA⊥)

OO

oo

where the arrows indicate continuous algebraic isomorphisms. This implies that A
is a homomorphism of the space (E,T1) in the space (F,T2).

This result generalizes the first part of Proposition 5 of ([83], p. 8).

Corollary 2. Let A be a weak homomorphism of the barrelled (resp. quasi-
barrelled) LCS (E,T1) in the LCS (F,T2) such that the space (A(E),T2∩A(E))
is the Mackey space. ThenA is a strong homomorphism (resp. Tb∗-homomorphism).

Proof. Let us first prove that A is continuous. Really, from the weak continuity
of A it follows that it is strongly continuous (resp. Tb∗-continuous). Further, it
is continuous as a mapping from (E, β(E,E′)) to (F,T2) (resp. as a mapping
from (E,Tb∗(E

′)) to (F,T2), since T1 = β(E,E′) and T2 ≤ β(F, F ′) (resp.
T1 = Tb∗(E

′) and T2 ≤ Tb∗(F
′)). By Corollary 1, A is a homomorphism, and by

virtue of the corollary of Theorem 2.7.2 (resp. by the corollary of Theorem 2.7.3),
A is the strong homomorphism (resp. A is the Tb∗-homomorphism). This result
generalizes Sentence 21 from [42].

By Tc(E
′) it is denoted the topology on E of uniform convergence on strongly

precompact sets of the space E′.
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Theorem 2.7.5. Let A be a weak homomorphism of the LCS (E,T1) in the LCS
(F,T2). A is a Tc-homomorphism, i.e. a homomorphism of the space (E, Tc(E′))
in the space (F, Tc(F ′)) if and only if Tc(E′)/KerA = Tc(KerA⊥) onE/KerA
and Tc(F

′) ∩A(E) = Tc(F
′/A(E)⊥) on A(E).

This theorem can be proved similarly to the above theorems taking into account
the fact that the weakly continuous operator A is Tc-continuous, since its adjoint
mapA′ is strong continuous andA′-image of a strongly precompact set in F ′ is the
same in E′.

It should also be noted that, by virtue of Theorem 1 from ( [82], p. 276),
the topologies of Tc(E′) ∩ A(E) and Tc(F

′/A(E)⊥) on A(E) coincide if every
precompact subset of the quotient space (F ′/A(E)⊥, β(F ′, F )/A(E)⊥) is con-
tained in the closure of the canonical image of the precompact sets of the space
(F ′, β(F ′, F )).

There are the examples of monomorphisms of the spaces of test functions D
and generalized functionsD′, on whose range the considered in Theorem 2.7.5 two
topologies are different. It is well known that the spaces D and D′ are related by
the “Pontryagin duality”, i.e. the topology of each of these spaces coincides with a
uniform convergence topology on strongly compact sets of the dual space. As was
shown in [151], this duality does not any longer extend to the quotient spaces of
the spaces D and D′. This means that there exists a closed subspace G of D (resp.
a closed subspace M of the space D′) such that the spaces (G,Tc(D

′) ∩ G) and
(G, Tc(D

′/G⊥)) (resp. the spaces (M, Tc(D) ∩M) and (M, Tc(D/M
⊥)) are

not isomorphic. By virtue of Theorem 2.7.5, this is equivalent to the fact that the
monomorphism J : G → D (resp. the monomorphism J1 : M → D′) is not a
Tc-monomorphism.

Consider now this problem assuming that the spaces E and F are equipped
with the so-called associated bornological topologies. Let (E,T) be an LCS. By
([82], p. 380), there exists, on E, the strongest locally convex topology T×, which
possesses the same bounded sets as the topology T. For the topology T×, the
basis of neighborhoods of zero consists of all absolutely convex sets which absorb
all bounded sets. (E,T×) is a bornological space and is called the associated
bornological space.

Theorem 2.7.6. Let A be a weak homomorphism of the LCS (E,T1) in the LCS
(F,T2). Then A is a T×-homomorphism, i.e. a homomorphism of the space
(E,T×1 ) in (F,T×2 ) if and only if T×1 /KerA = (T1/KerA)× on E/KerA and
T×2 ∩A(E) = (T2 ∩A(E))× on A(E), where T×1 /KerA is the quotient topology
of the topology T×1 , (T1/KerA)× is the associated bornological topology of the
quotient topology T1/KerA, T×2 ∩ A(E) is the induced topology on A(E) of the
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topology T×2 , and (T2 ∩ A(E))× is the associated bornological topology of the
induced on A(E) topology T2 ∩A(E).

Proof. First, we prove that each weakly continuous mapping A is a continuous
mapping of the space (E,T×1 ) in (F,T×2 ). This follows from the local boundedness
of the mapping A, i.e. A transforms the bounded sets from (E,T1) into the same
kind of subsets in (F,T2). Therefore, the following diagram is valid:

(E/KerA, σ(E/KerA, KerA⊥)×) // (A(E), σ(A(E), F ′/A(E)⊥)×)
oo

(E/KerA, σ(E,E′)×/KerA) // (A(E), σ(F, F ′)× ∩A(E)),

↗

(E, σ(E,E′)×)

↘

↘

(F, σ(F, F ′)×)

↗

where the arrows denote the continuous mappings. Since the associated borno-
logical topology depends only on the dual pair, the topologies σ(E,E′),
σ(E/KerA, KerA⊥), σ(A(E), F ′/A(E)⊥) and σ(F, F ′) in the above diagram
can be replaced by the topologies T1, T1/KerA, T2∩A(E) and T2, respectively.

Let us now prove the continuity of the identity mappings

(E/KerA, T×1 /KerA) → (E/KerA, (T1/KerA)×),

(A(E), (T2 ∩A(E))×) → (A(E), T×2 ∩A(E)).

Indeed, let W be a (T1/KerA)×-neighborhood, then W absorbs all T1/KerA-
bounded sets of quotient space E/KerA. Therefore, the set K−1(W ) absorbs
all T1-bounded sets in E and is a T×1 -neighborhood, where K : E → E/KerA
is the canonical mapping. This means that W = K(K−1W ) is a T×1 /KerA-
neighborhood. Let now U be T×2 ∩ A(E)-neighborhood in A(E), then U = V ∩
A(E), where V is T×2 -neighborhood and therefore V absorbs all bounded sets in
(F,T2). Hence it immediately follows thatU = V ∩A(E) absorbs all bounded sets
A(E), i.e. U is (T2 ∩A(E))×-neighborhood in A(E). By virtue of this reasoning
the following diagram is valid:

(E/KerA, (T1/KerA)×)
//
(A(E), (T2 ∩A(E))×)oo

��
(E/KerA, T×1 /KerA) //

OO

(A(E), T×2 ∩A(E))

↗

(E, T×1 )

↘

↘

(F, T×2 )

↗
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where the arrows denote continuous mappings. From this diagrams it is already
easy to obtain a proof of our statement.

2.7.2 Adjoint operator to homomorphism between locally convex spaces

It is well known that A is a weak homomorphism of the LCS E in the LCS F
with the closed range if and only if the adjoint mapping A′ is a weak homomor-
phism with the weakly closed range A′(F ′) = KerA⊥. Then if A = JǍK is
the decomposition of the weak homomorphism A and J ′, Ǎ′ and K ′ are the ad-
joint to the mappings J , Ǎ and K, respectively, then A′ = K ′Ǎ′J ′ is the natural
decomposition of the weak homomorphism A′. This means that J ′ is a canoni-
cal homomorphism of the space (F ′, σ(F ′, F )) to (A(E)′, σ(A(E)′, A(E))) =
(F ′/KerA′, σ(F ′, F )/KerA′), K ′ is a weak monomorphism of the space
((E/KerA)′, σ((E/KerA)′, E/KerA)) = (KerA⊥, σ(E′E) ∩ KerA⊥) =
(A′(F ′), σ(E′, E) ∩ A′(F ′)) in (E′, σ(E′, E)), and Ǎ′ is a weak isomorphism of
the space (F ′/KerA′, σ(F ′, F ) /KerA′) to (A′(F ′), σ(E′, E) ∩A′(F ′)).

Let M1 and M2 be saturated classes of bounded subsets in E and F , respec-
tively. Denote by TM1(E) and TM2(F ) the topologies on E′ and F ′ of uniform
convergence on the subsets from M1 and M2, respectively. Let A be a weakly
continuous mapping of the space E onto the space F. Then the adjoint mapping
A′ is a continuous mapping of the space (F ′, TM2(F )) in (E′, TM1(E)) if and
only if A(M1) ⊂ M2. Hence it follows that the adjoint to the weak isomorphism
of the space E in the space F is strong and Tk-isomorphism. The example of the
identical mapping I of the normed space (E, ∥ · ∥) on (E, σ(E,E′)) shows that
its adjoint I ′ is a strong isomorphism, but I is not an isomorphism.

Theorem 2.7.7. Let E and F be the locally convex spaces, M1 and M2 be the
saturated classes of bounded sets in E and F , respectively, and A : E → F
be a weak homomorphism with closed range A(E). The adjoint mapping A′ is
a homomorphism of the space (F ′, TM2(F )) in the space (E′, TM1(E)) if and
only if

a) A(M1) ⊂ M2 and M2 ⊂ ˜̂
M1, where M2 = {M ∈ M2; M ⊂ A(E)} =

M2 ∩ A(E), M̂1 = K(M1) = {K(M); M ∈ M1}, ˜̂M1 is the saturated cover
M̂1.

b) T
M̂1

(E/KerA) = TM1(E)∩A′(F ′) on (E/KerA)′ = KerA⊥ = A′(F ′),

where T
M̂1

is the topology of uniform convergence on the sets from M̂1.
c) TM2(F )/KerA′ = TM2

(A(E)) on A(E)′ = F ′/A(E)⊥ = F ′/KerA′.

The validity of this theorem follows from Theorem 2.7.1 if the latter is ap-
plied to the weak homomorphism A′ of the space (F ′, σ(F ′, F )) in the space
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(E′, σ(E′, E)). One can also prove it in a straightforward manner analogously
to the proof of Theorem 2.7.1.

Next, we give a few concrete reformulations of Theorem 2.7.7 for the most
important topologies.

Theorem 2.7.8. Let A be a weak homomorphism of the LCS E in the LCS F with
a weak closed range. A′ is a strong homomorphism, i.e. a homomorphism of the
space (F ′, β(F ′, F )) in the space (E′, β(E′, E)) if and only if β(F ′, F )/KerA′ =
β(F ′/KerA′, A(E)) on F ′/KerA′ and β(KerA⊥, E/KerA) = β(E′, E) ∩
KerA⊥ on A′(F ′) = KerA⊥.

Proof. Let A = JǍK be the canonical decomposition of weak homomorphism
with the weakly closed range. Since the adjoint to a weak continuous mapping is
strongly continuous, A′ = K ′Ǎ′J ′ is strongly continuous and, due to the above,
this decomposition is the canonical decomposition of the operator A′. Therefore,
Ǎ′ : (F ′/KerA′, β(F ′, F )/KerA′) → (A′(F ′), β(E′, E) ∩ A′(F ′)) is injective
and continuous mapping. On the other hand,

Ǎ′ : (F ′/KerA′, β(F ′/KerA′, A(F )) → (A′(F ′), β(A′(F ′), E/KerA))

is a strong isomorphism, since Ǎ
′(−1) = (Ǎ−1)′.

From here, taking into account the known properties of strong topologies, we
obtain that the following diagram is valid:

(F ′/KerA′, β(F ′, F )/KerA′) //

��

(A′(F ′), β(E′, E) ∩A′(F ′))

(F ′/KerA′, β(F ′/KerA′, A(E))
//
(A′(F ′), β(A′(F ′), E/KerA))oo

OO

where the vertical arrows indicate the identity continuous algebraic isomorphisms.
From this it is not difficult to obtain the proof of Theorems 2.7.8.

Corollary 1. Let A : E → F be a homomorphism of the (DF )-space (E,T) in
an arbitrary LCS (F,T). Then A′ is strong homomorphism.

Indeed, by virtue of Theorem 1 ( [82], p. 401), we have that (E/KerA,T1/
KerA) is a (DF )-space and therefore ((E/KerA)′, β(KerA⊥, E/KerA)) =
(KerA⊥, β(E′, E) ∩ KerA⊥)). Further, from the condition we obtain that
(A(E),T2 ∩A(E)) is a (DF )-space and therefore, by virtue of Theorem 2 ([82],
p. 401), we obtain the equality

((A(E)′, β(F ′/KerA′, A(E))) = (F ′/KerA′, β(F ′, F )/KerA′).
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Consequently, it follows from Theorem 2.7.8 that A′ is a strong homomorphism.
It should be noted that Corollary 1 of Theorem 2.7.8 is valid for the space

(E,T1) of type (DFS), in particular, for Vladimirov algebra [178, 188]. More-
over, if the space (F,T2) is also a space of type (DFS), then the converse state-
ment is also true ( [43], p. 105), i.e. A is a homomorphism if A is continuous and
A′ is a strong homomorphism. In Section 2.7.4, Example 3 will be given that the
last statement is not true for arbitrary (DF )-spaces.

Corollary 2. Let A : E → F be a weak homomorphism of the Fréchet space E in
the Fréchet space F . The adjoint operatorA′ is a strong homomorphism if and only
if β((E/KerA)′, E /KerA)) = β(E′, E) ∩ KerA⊥ to (E/KerA)′ = KerA⊥

and β(A(E)′, A(E)) = β(F ′, F )/KerA′ on A(E)′ = F ′/KerA′.

From Theorem 12 [65] it follows that the Fréchet–Schwarz spaces E and F
satisfy the conditions of Corollary 2. Moreover, similarly to the proof of Corol-
lary 1, it can be proved that if A is a homomorphism of the space (FS) in an
arbitrary LCS, then A′ is a strong homomorphism. We will indicate here another
class of Fréchet spaces, containing non-reflexive spaces, satisfying the conditions
of Corollary 2.

Proposition 2.7.9. Let A be a homomorphism of the quejection B × ω in the
LCS (F,T2), where B is the Banach space and ω is the space of all numerical
sequences.Then the adjoint mapping A′ is a strong homomorphism. Furthermore,
if the space (F,T2) is a Fréchet space, then the adjoint mapping of arbitrary order
is a strong homomorphism.

Proof. Let the conditions of Corollary 2 of Theorem 2.7.8 are fulfilled. Indeed, as
is known, the quotient space B×ω is isomorphic either to the Banach space B1 or
to the space B2 ×ω, where B2 is also a Banach space. Therefore, the space ((B×
ω)/KerA)′, β((B×ω)/KerA)′, (B×ω)/KerA)) is a strictly (LB)-space. We
prove that the latter space is isomorphic to the space (KerA⊥, β(B′ × φ,B ×
ω) ∩ KerA⊥), where φ = ω′ is the space of all finite sequences. Indeed, since
KerA is a quojection, we have the equality ((KerA)′, β((KerA)′, KerA)) =
((B′×φ)/KerA⊥, β(B′×φ,B×ω)/KerA⊥), where the latter is a strict (LB)-
space. Then, by virtue of the first part of Theorem 2 from [142], it turns out that
the space (KerA⊥, β(B′ × φ,B × ω) ∩ KerA⊥) is also a strict (LB)-space. By
virtue of the well-known theorem about openness of a continuous mapping of strict
(LF )-spaces from [43], we obtain the coincidence of the above-mentioned two
topologies on KerA⊥.

By condition, the quotient space (B × ω)/KerA is isomorphic to the space
(A(B×ω),T2∩A(B×ω)) and, therefore, the latter space is distinguished. Further,
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applying Theorem 8 from [65], we obtain the equality(
(A(B × ω))′, β((A(B × ω))′, A(B × ω))

)
= (F ′/KerA′, β(F ′, F )/KerA′

)
.

Therefore, A′ is a strong homomorphism. The second adjoint A′′ to the homo-
morphismA, i.e. the adjoint to the mappingA′ : (F ′, β(F ′, F )) → (E′, β(E′, E)),
is a strong homomorphism of the space (E′′, β(E′′, E′)) in (F ′′, β(F ′′, F ′)), by
using Corollary 1 of Theorem 2.7.8 for the homomorphism A′. The remaining part
of the statement follows from the obvious fact that the strong bidual to the space
B × ω is identified with the space B′′ × ω.

It should be noted that, as follows from the proof of Propositions 2.7.9, every
weakly closed subspace of the strongly dual space to the space B × ω is a strict
(LB)-space. By a similar reasoning, one can prove that each closed subspace of
the space B × φ is a strict (LB)-space.

It should also be noted that Proposition 2.7.9 does not hold for an arbitrary
quojection. Indeed, in [65], it is constructed an example of a canonical homo-
morphism of a Fréchet-Montel space on a Banach space, whose adjoint is not a
strong homomorphism. It also states that using this example, one can construct a
canonical homomorphism k of the quojection (lp)N (1 ≤ p < ∞) on its quotient
space such that the adjoint mapping k′ will not be again a strong homomorphism.
Furthermore, it is indicated that an analogous example of the canonical homo-
morphism can be constructed for the quojection C] 0, 1[ of the space of continu-
ous functions on ] 0, 1[, which is equipped with a compact convergence topology.
In there both cases the weakly closed subspace Ker k⊥ in the strong topologies
β(Ker k⊥, (lp)N/Ker k)) and β(Ker k⊥, C] 0, 1[/Ker k) is a strict (LB)-space,
i.e. two of the three mentioned in [65] topologies coincide. In the topology in-
duced from the strong dual strict (LB)-space, the subspace Ker k⊥ is not even
(DF )-space, although it has a fundamental sequence of bounded sets. It should
be specially noted that unlike the above-mentioned canonical homomorphism, the
quotient spaces (lp)N/Ker k and C] 0, 1[ /Ker k cannot be Banach one by virtue
of the following Proposition.

Proposition 2.7.10. Let k : E → F be a canonical homomorphism of the pre-
quojection E to a Banach space (F, ∥ · ∥). Then the adjoint mapping k′ is a strong
homomorphism.

Proof. Indeed, the adjoint mapping k′ is a strongly continuous and injective map-
ping of the Banach space (F ′, ∥ · ∥′) in the strict (LB)-space (E′, β(E′, E)) =
s · lim
→
Fn with a weak and hence strongly closed image k′(F ′) = Ker k⊥. By The-

orem 4 from ([82], p. 285), we have that k′ is a continuous mapping of the Banach
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space F ′ in some Banach space Fn◦ , where k′(F ′) is closed. Hence it follows that
the strong topology on Ker k⊥ coincides with the induced topology from Fn0 and
therefore from (E′, β(E′, E)), i.e. k′ is a strong monomorphism.

The answer to the following question is known: is the quojectionE isomorphic
to the space B × ω if the adjoint to an arbitrary homomorphism of the space E to
an LCS F is a strong homomorphism?

We do not known whether in Proposition 2.7.9 the space ω can be replaced by
an arbitrary strict Fréchet-Schwartz space.

In the work [119] (see also [188], p. 105), in terms of the duality functorD, the
necessary and sufficient conditions were found if: a) the strong dual to subspace
was identified with the quotient space of the strong dual space and, b) the strong
dual to the quotient space was identified with the subspace of the strong dual.
Using these results in combination with Theorem 2.7.8, the following proposition
is obtained.

Proposition 2.7.11. Let A be a homomorphism of the LCS E into the LCS F . The
adjoint mapping A′ is a strong homomorphism if and only if D 1

M (KerA) = 0
and D+

M (A(E)) = 0, where M is an arbitrary set of a sufficiently large cardinal-
ity, D1

M is the first derivative of the duality functor D, and D+
M is an additional

derivative.

The stability of behavior of the class homomorphism in the case of (covariant)
functorial topologies, i.e. associated quasi barreled, ultra bornological, nuclear
topology are discussed in the work [40]. Homological algebra and derived functors
are also utilized in [35] to investigate when the adjoint (transpose) operator of
homomorphism in the category of locally convex spaces is again a homomorphism.

It would be interesting to find similar relations (connections) for second adjoint
mappings (betransposes) and other topologies to be considered below.

Theorem 2.7.12. LetA be a weak homomorphism of the LCS E in the LCS F with
a weakly closed image. Then the adjoint mapping A′ is a Tk-homomorphism, i.e.
a homomorphism of the space (F ′, τ(F ′, F )) in (E′, τ(E′, E)) if and only if

((E/KerA)′, τ((E/KerA)′, E/KerA)) = (KerA⊥, τ(E′, E) ∩KerA⊥).

This theorem follows from Theorem 2.7.7 due to the well-known equality(
A(E)′, τ(A(E)′, A(E))

)
= (F ′/KerA′, τ(F ′, F )/KerA′),

which is obtained from Theorem 4 ([82], p. 278).
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Theorem 2.7.13. Let A be a weak homomorphism of the LCS E in the LCS F
with a closed image. The adjoint mapping A′ is Tc-homomorphism, i.e. ho-
momorphism of the space (F ′,Tc(F )) in the space (E′,Tc(E)) if and only if
((E/KerA)′,Tc(E/KerA)) = (KerA⊥,Tc(E) ∩KerA⊥) and
(A(E)′,Tc(A(E)) = (F ′/KerA′,Tc(F )/KerA′).

Corollary 1. Let A be a homomorphism of the Fréchet space E into a quasicom-
plete LCS F , then the adjoint mapping A′ is a Tc-homomorphism.

This corollary follows from Theorems 5 and 6 ( [82], p. 278) and Theorem
2.7.13.

Corollary 2. Let A be a homomorphism of Montel (DF )-space E into a quasi-
complete LCS F , then the adjoint mapping A′ is a Tc-homomorphism.

Corollary 3. Let A be a monomorphism of the LCS E into a quasicomplete LCS
F , then the adjoint mapping A′ is Tc-homomorphism.

We will now study this problem by endowing the adjoint spaces by inductive
topologies. Inductive topology TI(E) was introduced in [137] as the strongest
locally convex topology on E′, preserving equicontinuous sets by bounded. This
topology coincides with the strong topology, in particular, for quasi-normed spaces
and differs from it in the case of nondistinguished Fréchet spaces.

Theorem 2.7.14. LetA be a homomorphism of the LCS (E,T1) in the LCS (F,T2).
The adjoint operator A′ is TI -homomorphism, i.e. homomorphism of the space
(F ′,TI(F )) into (E′,TI(E)) if and only if ((E/KerA)′,TI(E/KerA)) =
(KerA⊥,TI(E) ∩KerA1).

This theorem does not follow from the general Theorem 2.7.7, but it can be
proved by similar reasoning. Indeed, due to [141], we have that(

A(E)′,TI(A(E))
)
= (F ′/KerA′,TI(F )/KerA′).

Further, A′ is TI -continuous. It is enough to prove that it is continuous the re-
striction of the mapping A′ : (F ′,TI(F )) → (E′,TI(E)) on a Banach space E′V ◦

spanned by V ◦, where V is T2-neighborhood in F . LetW be TI(E)-neighborhood
of the space (E′,TI(E)) and U = A−1(V ) be a neighborhood in E. By defini-
tion of the topology TI(E), there is λ > 0 such that λU0 ⊂ W . On the other
hand, passing in polars in the equality AU = V we get that V 0 = (A(U))0 =
A

′(−1)(U0), i.e. U0 = A′(V 0). That’s why, A′(λV ◦) = λU◦ ⊂W .
To complete the proof of Theorem 2.7.14, we have also take into account the

inequality TI(E)∩KerA⊥ ≤ TI(E/KerA) between two topologies on KerA⊥.
Indeed, let W be TI(E) ∩ KerA⊥-neighborhood in KerA⊥, then it has the form
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W = V ∩KerA⊥, where V is TI(E)-neighborhood, i.e. V absorbs equicontinu-
ous sets U0 of the space E′. Then W absorbs every set of the form U0 ∩KerA⊥.
It follows that W absorbs the sets of the form k(U)◦, where k : E → E/KerA
is a canonical mapping, since the equalities k(U)0 = k

′(−1)(U0) = U0 ∩KerA⊥

are true. But this means that W is a TI(E/KerA)-neighborhood in KerA⊥.
In [141] (see also [119]), the sufficient conditions were obtained in order that

the adjoint of a homomorphism is a TI -homomorphism. From these results and
Theorem 2.7.14 it follows that if for a homomorphism A, the kernel KerA is a
quasi-normed metrizable LCS, then ((E/KerA)′, TI(E/KerA)) =
(KerA⊥,TI(E) ∩KerA⊥) and therefore A′ is TI -homomorphism.

2.7.3 Second adjoint operator to a homomorphism between locally convex
spaces

Let (E,T) be an LCS, E′ be its dual space, and E′′ be its second dual space,
i.e. E′′ = (E′, β(E′, E))′. For weakly continuous linear mapping A of the
LCS(E,T1) into the LCS (F,T2), it is defined the second dual mapping A′′ on
E′′ by the equality

⟨A′′x′′, y′⟩ = ⟨x′, A′y′⟩,

assuming that it holds for all x′′ ∈ E′′ and y′ ∈ F ′. Obviously, the restriction of
A′′ toE coincides withA. Due to the fact thatA′′ is the continuous mapping of the
space (E′′, σ(E′′, E′)) in the space (F ′′, σ(F ′′, F ′)) and E is σ(E′′, E′) dense in
E′′, it turns out that A′′ is the extension of A to E′′, by continuity in the topology
σ(E′′, E′). Moreover, through σ(E′′, E′) (resp. β(E′′, E′)) it is denoted the weak
(resp. strong) topology of the dual pair ⟨E′, E′′⟩ on E′′. Through Tn(E

′) it is
denoted the natural topology on E′′, i.e. the topology of uniform convergence on
equicontinuous sets of the adjoint space E′.

In this section, we study the second adjoint mapping to a homomorphism in
the mentioned topologies of second dual spaces. The conditions are obtained un-
der which the second adjoint is again a homomorphism, regardless of whether the
adjoint mapping is a strong homomorphism. Let us first give simple statements
about the second adjoint to a weak homomorphism, which are derived from the
known results.

Proposition 2.7.15. Let A be a weakly continuous map LCS (E, T1) in LCS
(F,T2). Then the following statements are valid:

a) The second adjoint mapping A′′ is a weak homomorphism, i.e. a homomor-
phism of the space (E′′, σ(E′′, E′)) in the space (F ′′, σ(F ′′, F ′)) if and only if
the image A′(F ′) is σ(E′, E′′) closed in (E′, σ(E′, E′′)), where σ(E′, E′′) is the
weak topology of the dual pairs ⟨E′, E′′⟩ on E′.
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b) If A is a weak homomorphism of the space E into the space F , then A′′ is a
weak homomorphism of the space (E′′, σ(E′′, E′)) in the space (F ′′, σ(F ′′, F ′)).
Further, there is an example of a weakly continuous mapping that is not weakly
open, and the second adjoint map is a weak homomorphism.

c) An image A′′(E′′) is σ(F ′′, F ′) closed if and only if A′ is a weak homomor-
phism of the space (F ′, σ(F ′, F ′′)) in the space (E′, σ(E′, E′′)).

d) If A is a weak homomorphism of the space E into the space F whose ad-
joint map is strong homomorphism, then A′′ is a weak homomorphism of the space
(E′′, σ(E′′, E′)) in the space (F ′′, σ(F ′′, F ′)) with a closed image. Moreover,
the following equalities hold: A(E)′′ = (KerA′)⊥ = A(E)⊥⊥ = A′′(E′′) and
(E/KerA)′′ = (KerA⊥)′ = E′′/KerA′′ = (A′(F ′))′.

Proof. a) The adjoint mappingA′ to the weakly continuous mappingA is strongly
continuous, i.e. is continuous in some topologies which are compatible with the
dual systems ⟨F ′, F ′′⟩ and ⟨E′, E′′⟩. Therefore, A′ is a continuous mapping of the
space (F ′, σ(F ′, F ′′)) in the space (E′, σ(E′, E′′)) and its adjoint mapping A′′ is
weakly continuous. To complete the proof of statement a), it is enough to apply
Theorem 2 from ([83], p. 5) in the case of the dual pairs ⟨E′′, E′⟩ and ⟨F ′′, F ′⟩ and
the mapping A′′.

b) From the condition it turns out that A′ is the weakly continuous mapping of
the space (F ′, σ(F ′, F ′′)) into the space (E′, σ(E′, E′′)) with a σ(E′, E) closed
image ofA′(F ′). But since onE′ the inequality σ(E′, E) ≤ σ(E′, E′′) holds, then
A′(F ′) is σ(E′, E′′) closed in E′. By statement a), A′′ is a weak homomorphism.

In Section 2.7.4, there will be an example of the weakly continuous mapping
k2 (see Example 3), whose second adjoint k

′′
2 is a weak homomorphism, but k2 is

not weakly open. This shows that it is not fair the converse of statement b).
c) It was proved above that A′ is a continuous mapping of the space

(F ′, σ(F ′, F ′′)) in (E′, σ(E′, E′′)). It remains to apply Theorem 2 from ( [83],
p. 5) for dual pairs ⟨F ′, F ′′⟩ and ⟨E′, E′′⟩ and mapping A′.

d) By assumption, A′ is a strong homomorphism, i.e. A′ is a homomor-
phism in some topologies compatible with the dualities ⟨F ′, F ′′⟩ and ⟨E′, E′′⟩.
Therefore, A′′ is the homomorphism of the space (E′′, σ(E′′, E′)) in the space
(F ′′, σ(F ′′, F ′)) with a closed image. Further, by definition and by Theorem 2.7.8,
we have that

A(E)′′ =
(
A(E)′, β(A(E)′, A(E))

)′
= (F ′/KerA′, β(F ′, F )/KerA′)′

= (KerA′)⊥ = A(E)⊥⊥,

where A(E)⊥⊥ is σ(F ′′, F ′)-closure of A(E) in F ′′. Since A′′(E′′) = (KerA′)⊥,
where A′′(E′′) means σ(F ′′, F ′)-closure of the set A′′(E′′) and A′′(E′′) is weakly
closed, we have A′′(E′′) = (KerA′)⊥.
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Theorem 2.7.16. Let A be a weak homomorphism of the LCS E into the LCS F
with the closed image whose adjoint mapping A′ is a strong homomorphism. Then
the following statements are equivalent:

a) The second conjugate mapping A′′ is strong homomorphism of the space
(E′′, β(E′′, E′)) in the space (F ′′, β((F ′′, F ′)).

b) The equalities β((A′(F ′)′, A′(F ′)) = β(E′′, E′)/KerA′′ on (A′(F ′)′ =
E′′/KerA′′ and β((F ′/KerA′)′, F ′/KerA′) = β(F ′′, F ′) ∩ A′′(F ′′) on
(E′/KerA′)′ = A′′(F ′′) are valid, where A′(F ′) is considered in the induced
topology β(E′, E) ∩ A′(F ′), and the quotient space F ′/KerA′ is considered in
the quotient topology.

c) The following equalities are valid: β((E/KerA)′′, (E/KerA)′) =
β(E′′, E′)/KerA′′ to (E/KerA)′′ = E′′/KerA′′ and β(A(E)′′, A(E)′) =
β(F ′′, F ′)∩A′′(F ′′) toA(E)′′ = A′′(E′′), where β((E/KerA)′′, (E/KerA)′) is
the strong topology of the space (E/KerA)′′ and β(A(E)′′, A(E)′) is the strong
topology of the space A(E)′′.

Proof. a) ⇐⇒ b) follows from Theorem 2.7.1, applying it to the strong homomor-
phism A′ of the space (F ′, β(F ′, F )) in the space (E′, β(E′, E)).

a) =⇒ c). Let A′′ be the strong homomorphism, then by virtue of statement b)
and by the definition of a strong second dual space, we have(

A(E)′′, β(A(E)′′, A(E)′)
)
=
(
(F ′/KerA′)′, β((F ′/KerA′)′, F ′/KerA′))

)
= ((KerA′)⊥, β(F ′′, F ′) ∩ (KerA′)⊥) = (A′′(E′′), β(F ′′, F ′) ∩A′′(E′′))

and(
(E/KerA)′′, β((E/KerA)′′, (E/KerA)′)

)
= ((KerA⊥)′, β((KerA⊥)′,KerA⊥))

=
(
((A′(F ′))′, β((A′(F ′))′, A′(F ′))

)
= (E′′/KerA′′, β(E′′, E′)/KerA′′).

c) =⇒ a). Since A is the weak homomorphism, then the spaces
(
(E/KerA)′′,

β((E/KerA)′′, (E/KerA)′)
)

and
(
A(E)′′, β(A(E)′′, A(E)′)

)
are isomorphic.

From here, by condition, we obtain that (E′′/KerA′′, β(E′′, E′)/KerA′′) and
(A(E)′′, β(A(E)′′, A(E)′) are isomorphic, i.e. A′′ is a strong homomorphism.

It should be noted that when studying the second conjugate to the homomor-
phism the following diagram can be applied:
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((E/KerA)′′, β((E/KerA)′′, (E/KerA)′))
A5−→ (A(E)′′, β(A(E)′′, A(E)′))

↗ A1 ↖ A2 ↓ A 7x
y(E′′, β(E′′, E′)) −→ (E′′/KerA′′, β(E′′, E′)/KerA′′)

A4−→(A′′(E′′), β(F ′′, F ′) ∩A′′(E′′))

↘ A3 ↙ A 9 ↑ A 8

((A′(F ′), β(E′, E) ∩A′(F ′))′β
A6−→ ((F ′/KerA′, β(F ′, F )/KerA′)′β

where A1–A9 denotes continuous identity mappings. In particular, under the a
priori conditions of Theorem 2.7.16 one can prove that all mappings A1–A9 are
continuous algebraic isomorphisms and the mappings A1, A5, A6 and A9 are topo-
logical isomorphisms. Theorem 2.7.16 states that A4 is a topological isomorphism
if and only if the operators A3 and A8, respectively A2 and A7, are topological
isomorphisms. This implies, in particular, that A4 may not be topological isomor-
phism when A5 and A6 are topological isomorphisms.

Corollary 1. Let k be a homomorphism of the (DF )-space E on the (DF )-space
F such that (k′(F ′), β(E′, E)∩ k′(F ′)) is a distinguished Fréchet space. Then k

′′

is the strong homomorphism (E′′, β(E′′, E′)) on (F ′′, β(F ′′, F ′)).

Corollary 2. Let A be a homomorphism of the Fréchet space E in the Fréchet
space F such that A′ is strong homomorphism. Then A′′ is a strong homomor-
phism.

The validity of this statement follows from the fact that all spaces mentioned in
the diagram are Fréchet spaces. It is not known whether Corollary 2 holds without
the requirement that A′ is strongly homomorphic.

The linear operator A : (E,T1) → (F,T2) is called an almost open mapping
of LCS (E,T1) in LCS (F,T2) if the T2-closure of the image A(U) of each T1-
neighborhood U is T2-neighborhood in A(E).

Theorem 2.7.17. Let A be continuous and almost open operator of LCS (E,T1)
in LCS (F,T2). Then the second adjoint mapping A′′ is the almost weakly open
in natural topologies, i.e. σ(F ′′, F ′)-closure of the A′′ image of each Tn(E

′)-
neighborhood of the space E′′ is Tn(F ′)-neighborhood in F ′′.

Proof. Let us prove that for each T1-neighborhood of U , the σ(F ′′, F ′)-closure
of the A′′-image U◦◦ = U

σ (E′′,E′) is a Tn(σ(F
′′, F ′)-neighborhood in F ′′. By

virtue of Theorem 4 ( [83], p. 25), the equality A′(M2) = M1 ∩ A′(F ′) is valid,
where M1 and M2 are equicontinuous sets in E′ and F ′. Therefore, for U◦ there
is M ∈ M2, M ⊂ V ◦, where V is T2-neighborhood such that A′(V 0) ⊃
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A′(M) = U◦ ∩ A′(F ′). Since A′ is a strongly continuous mapping, A′ is con-
tinuous mapping of the space (F ′, σ(F ′, F ′′)) in the space (E′, σ(E′, E′′)). Pass-
ing in polars inE′′ in the above inclusion, we get that (A′(V ◦))◦ =A

′′(−1)(V ◦◦) ⊂
U◦◦ +A′(F ′)⊥

σ (E′′,E′)
, where the latter means σ(E′′, E′)-closure of the setU◦◦+

A′(F ′)⊥. It follows from this that

V ◦◦ ∩A′′(E′′) = A′′(U◦◦+KerA′′)
σ(F ′′,F ′)⊂ A′′(U◦◦ +KerA′′) = A′′(U◦◦),

i.e. A′′ is almost σ(F ′′, F ′)-open in natural topologies.

It should be noted that if under the conditions of Theorem 2.7.17 A was even
homomorphism (A will be such when E is a Ptak space, i.e. B-complete), then,
generally speaking, it is impossible assert more than in Theorem 2.7.17. However,
we present the particular case when this is possible.

Corollary 1. LetA be a continuous and almost open mapping of LCS (E,T1) into
LCS (F,T2). Further, let for any T1-neighborhood U , the inclusion

A′′(U00 +KerA′′)
σ (E′′,E′) ⊂ nUA

′′(U00) be true, where U00 is the bipolar of
the set U in E′′ and nU ∈ N. Then A′′ is a homomorphism in natural topologies,
i.e. A′′ is a homomorphism of the space (E′′,Tn(E

′)) in the space (F ′′,Tn(F
′)).

Proof. From the proof of Theorem 2.7.17 and the conditions, it turns out that for
every T1-neighborhood U , there is a T2-neighborhood V , for which the following
inclusion holds: V ◦◦ ∩A′′(E′′) ⊂ nUA

′′(U◦◦).

Corollary 2. Let A be a continuous and almost open mapping of LCS (E,T1) to
LCS (F,T2) and natural topology Tn(E

′) of the space E′′ is compatible with the
duality ⟨E′′, E′⟩, then A′′ is a homomorphism in natural topologies.

Indeed, in this case the σ(E′′, E′)-closure of the set U◦◦ + KerA′′ coincides

with the closure in the natural topology and therefore (U◦◦ +KerA′′)
σ (E′′,E′) ⊂

KerA′′ + 2U◦◦, i.e. A′′(U◦◦ +KerA′′)
σ (E′′,E′) ⊂ 2A′′(U◦◦).

This result generalizes Theorem 4 from ([83], p. 11). It should be noted that if
the spaces (E,T1) and (F,T2) are quasi-barreled, then natural topologies coincide
with strong topologies on E′′ and F ′′. Therefore, in this case, in Corollaries 1 and
2 we can talk about strong homomorphisms.

Proposition 2.7.18. Let A be a homomorphism of the LCS (E,T1) in the LCS
(F,T2) such that (E/KerA)′′ = E′′/KerA′′. Then the second adjoint mapping
A′′ is a homomorphism in natural topologies if and only if

((E/KerA)′′,Tn(KerA⊥)) = (E′′/KerA′′,Tn(E
′)/KerA′′).
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It is known that the second adjoint to the continuous mapping is continuous
in natural topologies. Next, for each neighborhood U of the space E, the inclu-
sion k′′(U00) ⊂ k(U)00 holds, where k : E → E/KerA is the canonical map.
Therefore, between two topologies on (E/KerA)′′ = E′′/KerA′′ the inequality
Tn(E

′)/KerA′′ ≥ Tn(KerA⊥) is true. From the homomorphism of A and from
the condition it follows that A(E)′′ = A′′(E′′). It is also easy to prove that the
topologies on these spaces Tn(F

′/KerA′) and Tn(F
′) ∩ A′′(F ′′) coincide. So,

due to the above said, the following diagram holds:

((E/KerA)′′, Tn(E/KerA)′)
//
(A(E)′′, Tn(A(E)′))oo

��
(E′′/KerA′′, Tn(E

′)/KerA′′) //

OO

(A′′(E′′), Tn(F
′) ∩A′′(E′′))

OO
↗

(E′′, Tn(E
′))

↘

↘

(F ′′,Tn(F
′))

↗

where the vertical and horizontal arrows indicate the above mentioned mappings.
From here our statement follows similar to the above reasoning.

It should be noted that there is an example of a Fréchet space E and of the
canonical homomorphism k: E →E/Ker k for which (E/Ker k)′′ ⊃ E′′/Ker k′′

and this inclusion is proper. Indeed, let E = (l1)N and F be a closed subspace of
E such that on F⊥ two strong topologies give different dual spaces [65]. We then
have that if k: E → E/F , then

(k(E))′′ = (E/F )′′ = ((E/F )′, β((E/F )′, E/F ))′ ̸⊇ (F⊥, β(E′, E) ∩ F⊥)′

= E′′/Ker k′′.

It is not known whether in this example the second conjugate mapping k′′

would be a strong homomorphism.

2.7.4 Notes on some homomorphisms of Fréchet spaces, (DF )-spaces, strict
(LF )-spaces and their adjoint mappings

Example 1. It is well known the sufficiently complicated example of Fréchet–
Montel space (E,T) from [65] (see also [83], p. 22), a quotient space of which
is isomorphic to the Banach space l1. Let k : E → l1 be a canonical ho-
momorphism, i.e. the quotient topology T/Ker k coincides with the topology
of the norm of the space l1. It is known that k is strong homomorphism, i.e.
β(E,E′)/Ker k = β(l1, l∞). By virtue of results of Theorem 2.7.1, we find that
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k is also Tb∗-homomorphism (corollary of Theorem 2.7.3), Tk-homomorphism
(Corollary 1 of Theorem 2.7.4) and T×-homomorphism. However, k is not a Tc-
homomorphism, since Tc(E

′)/Ker k = β(E,E′)/Ker k = β(l1, l∞) ̸= Tc(l
∞).

It is known [65] that the conjugate mapping k′ is not a strong monomorphism,
therefore,

((E/Ker k)′, β((E/Ker k)′, E/Ker k)) = (l∞, β(l∞, l1))

̸= (k′(l∞), β(E′, E) ∩ k′(l∞)).

Further, as is known, the topology β(E′, E) = Tc(E
′) induces on k′(l∞) =

Ker k⊥ the topology of uniform convergence on all relatively compact subsets
E/Ker k = l1. From here it also turns out that (l∞,Tc(l1)) = (k′(l∞),Tc(E) ∩
k′(l∞)), i.e. k′ is a Tc-monomorphism by Corollary 1 of Theorem 2.7.13. From
Theorem 2.7.14 it follows that k′ is not TI -monomorphism, since in topology
TI(E)∩k′(l∞) = Tc(E)∩k′(l∞) the space k′(l∞) is not bornological space, and
((E/Ker k)′,TI(E/Ker k))= l∞. k′ is monomorphism of the space (l∞, σ(l∞, l1))
in the space (E′, σ(E′, E)) with σ(E′, E)-closed image Ker k⊥, but k′ is no longer
a monomorphism of the space (l∞, σ(l∞, (l∞)′)) in the space (E′, σ(E′, E)),
since σ(l∞, l1) < σ(l∞, (l∞)′). Therefore, although k′′ is a weak homomorphism
of the space (E′′, σ(E′′, E′)) = (E, σ(E,E′)) in ((l∞)′, σ((l∞)′, l∞))) by virtue
of statement c) of Proposition 2.7.15, it no longer has a σ((l∞)′, l∞)-closed image
in (l∞)′. From Corollary 2 of Theorem 2.7.17 we also obtain that k′′ is strong
homomorphism of the Fréchet space E′′ = E in ((l∞)′, β((l∞)′, l∞)) = (l∞)′

with a strongly closed and weakly dense image.

Example 2. Consider the bornological (DF )-space (F,T). By virtue of Theorem
5 ([82], p. 403), it is represented in the form of inductive limit of the increasing se-
quence of normed spaces {(Fn, ∥·∥n)} with respect to the map Inm : (Fn, ∥·∥n) →
(Fm, ∥ · ∥m) (n ≤ m). Then the space (F,T) is isomorphic to the quotient space⊕
n∈N

Fn/H of the sums
⊕
n∈N

Fn over a closed subspace H spanned by elements of

the form x− Inm(x), where x ∈ En (n ∈ N). Let k : E =
⊕
n∈N

Fn → E/H = F

be a canonical homomorphism, then k is a Tb∗-homomorphism (corollary of Theo-
rems 2.7.3). Further, if the space (F,T) is barrelled, then k will be a strong homo-
morphism (corollary of Theorem 2.7.2). k is also a Tk-homomorphism (Corollary
1 of Theorem 2.7.4), since bornological space is a Mackey space by virtue of The-
orem 1 ([82], p. 379). Then the operator k is also T×-homomorphism.

The adjoint mapping k′ is a strong monomorphism by Corollary 1 of The-
orem 2.7.2. Using the results of Section 2.7.2, one can prove that k′ is also a
monomorphism in some other topologies of dual spaces. In particular, k′ is a
Tk-monomorphism and a TI -monomorphism. The second adjoint mapping k′′
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is a strong homomorphism if and only if the space (H⊥, β(E′, E) ∩ H⊥) =(
(E/H)′, β((E/H)′, (E/H))

)
is a distinguished Fréchet space. The example

given in [6] shows that the space (H⊥, β((E/H)′, E/H)) is not always dis-
tinguished. Therefore, there is an example of canonical homomorphism of the
bornological (DF )-space whose second adjoint is no longer a strong homomor-
phism, although a strong homomorphism is its first adjoint mapping. By virtue of
Proposition 14 from [65], we also obtain that if (F,T) is bornological (DF )-space
satisfying the strict Mackey condition, then the mapping k′′ is a strong homomor-
phism and so is its arbitrary adjoint mapping. The same result occurs if (F,T) is a
strict (LB)-space.

Example 3. Let (F,T) be a non-bornological (DF )-space and F1 = (F,T×),
where T× is the associated bornological topology ((F,T) can be quasi-barreled).
By virtue of the results of Example 2, we have that

F1 = (F,T×) = (E/Ker k1,T1/Ker k1),

where (E,T1) is the sum of normed spaces and k1 :E→(E/Ker k1,T1/Ker k1)=
F1 is canonical mapping. Obviously, k′1 is a strong monomorphism with the weakly
closed image k′1(F

′
1) = Ker k⊥1 . We also define the mapping k2 : E → F by the

equality k2x = k1x for all x ∈ E. The mapping k2 is continuous mapping of the
bornological (DF )-space (E,T1) on the (DF )-space (F,T), which is not open.
The mapping k2 will not be a weak homomorphism if the space (F,T) is not a
Mackey space, since then by Corollary 1 of Theorem 2.7.4, it would be a homo-
morphism.

Let I : (F,T×) → (F,T) be the identity mapping, then k2 = I ◦ k1. Further,
k′2 = k′1 ◦ I ′ is a monomorphism of the space (F ′, σ(F ′, F )) into (E′, σ(E′, E)),
but k′2(F

′) is not σ(E′, E)-closed in E′ and therefore not coincides with its
σ(E′, E)-closure Ker k⊥2 = Ker k⊥1 = k′1(F

′
1) inE′. Let us prove that if k′2(F

′) ̸⊆
k′1(F

′
1) ( [65], see also [82], p. 388), then k′2(F

′) is strongly closed in k′1(F
′
1),

i.e. (F ′, β(F ′, F )) is closed in (F ′1, β(F
′
1, F1)) and it is a closed subspace of the

space (E′, β(E′, E)). Let {Bn} be the fundamental sequence of bounded sets in
(F,T) and Bn,1 = I−1(Bn), i.e. Bn = I(Bn,1). It is obvious that {Bn,1} is
again the fundamental sequence in (F,T×). Moving in the polar F ′, we obtain
that B◦n = I(Bn,1)

◦ = I
′(−1)(B◦n,1), i.e. I ′(B◦n) = B◦n,1 ∩ I ′(F ′). This means

that β(F ′1, F1) induces the topology β(F ′, F ) on F ′ and therefore F ′ is closed in
(F ′1, β(F

′
1, F1)), i.e. I ′ is a strong monomorphism with a strongly closed image in

F ′1. Hence, the mapping I is an example of a continuous mapping of the (DF )-
spaces onto the same space whose dual is a strong monomorphism.

Example 4. It is well known that the Fréchet space (E,T1) is isomorphic to the
closed subspace of the product of Banach spaces (F,T2). Let J : (E,T1) →
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(F,T2) be a specified monomorphism. The adjoint mapping J ′ is a strong ho-
momorphism if and only if (E,T1) is distinguished. In this case, J ′′ is also a
strong monomorphism. At the same time, J ′′ has a weakly closed image and, by
virtue of statement d) of Theorem 2.7.15, the equalities J(E)′′ = J(E)⊥⊥ =
(Ker J ′)⊥ = J ′′(E′′) are valid. By statement c) of Theorem 2.7.16, (J(E)′′,
β((F ′/Ker J ′)′, J(E)′) = (J ′′(E′′), β(F ′′, F ′)∩J ′′(E′′)). If consider as (E,T1)
a distinguished Fréchet space whose second adjoint is not distinguished [24], then
J ′′′ will no longer be a strong homomorphism.

Now, let (E,T) be the nondistinguished Fréchet space from [65]. As is known,
in this case J ′ is not a strong homomorphism, but J ′′ is a strong monomorphism
with the strongly but not weakly closed image. Indeed, due to the properties of the
monomorphisms J and J ′′, we have that J(E)′′ =

(
J(E)′, β(J(E)′, J(E)))′ =

(F ′/Ker J ′, β(J(E)′, J(E))
)′⊂(F ′/Ker J ′, β(F ′, F )/Ker J ′)′=(Ker J ′)⊥=

J ′′(E′′). Moreover, this inclusion is proper since E′ = F ′/Ker J ′ is bornological
in the factor topology β(F ′, F )/Ker J ′ = β(F ′, F )×. In the topologies β(E′, E)
it is not such because, due to [65], on E′ there is a linear functional that is not
strongly continuous, but bounded on every bounded set, i.e. continuous in the
quotient topology.

Example 5. Let now (F,T) = s · lim
→

(Fn,Tn) be strict (LF )-space. Then the

space (F,T) is isomorphic to the quotient space
⊕
n∈N

Fn/H of the sum E=
⊕
n∈N

Fn

over the closed subspace H spanned by elements of the form x − Inmx, where
x ∈ Fn, Inm : Fn → Fm is the identity mapping (n ≤ m). Let k :E → E/H =
s · lim

→
(Fn,Tn) be a canonical homomorphism. Then k is a strong homomor-

phism by virtue of the corollary of Theorem 2.7.2, and by virtue of the corollary
of Theorem 2.7.4 k is a Tk-homomorphism. The adjoint mapping k′ is a strong
homomorphism. Indeed, every bounded set of the quotient space is contained in
some Fn and, therefore, is contained in the canonical image of some bounded set
from E. This is equivalent to the fulfilling the conditions of Theorem 2.7.8.

Using the similar reasoning, one can prove that k′ is Tk and Tc-homomorphism.
It is more difficult to determine whether the second adjoint mapping k′′ is a strong
homomorphism. By virtue of statement c) Theorem 2.7.16 k′′ is a strong homo-
morphism if and only if(

(E/Ker k)′′, β((E/Ker k)′′, (E/Ker k)′)
)

= (E′′/Ker k′′, β(E′′, E′) /Ker k′),

i.e. (F ′′, β(F ′′, F ′))=(E′′/Ker k′′, β(E′′, E′)/Ker k′′). Since (E′′, β(E′′, E′))=⊕
n∈N

(F ′′n , β(F
′′
n , F

′
n)), then this is equivalent to the space (F ′′, β(F ′′, F ′)) being
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barreled or bornological, i.e. so that (F ′′, β(F ′′, F ′)) = s · lim
→

(F ′′n , β(F
′′
n , F

′
n))

by virtue of [65]. Example of the strict (LF )-spaces constructed in [23] shows that
(F ′′, β(F ′′, F ′)) is not always barrelled and bornological, i.e. k′′ is not always a
strong homomorphism.

2.7.5 Sufficient conditions for openness and strong openness of a weakly
open operator

In the work of F. Browder [29], open operators with closed graph are studied, which
he again called as homomorphisms. We will apply here our results to obtain the
conditions of strong openness of weakly open operator, i.e. conditions under which
the implication e) ⇒ d) in Theorem 2.1 from [29] is true.

Theorem 2.7.19. Let T : E → F be a weakly open operator of the LCS (E,T1)
in the LCS (F,T2) with the dense domain D(T ) and closed kernel KerT . T is
strongly open if the following conditions are fulfilled:

a) on the quotient spaceD(T )/KerT the topologies (β(E,E′)∩D(T ))/KerT
and β(D(T )/KerT,KerT⊥) coincide;

b) on the image ImT , the topologies β(F, F ′) ∩ ImT coincide and β(ImT ,
F ′/ ImT⊥) coincide.

Proof. It is well known that T is weakly open if and only if in its canonical
expansion the linear bijection Ť : (D(T )/KerT, σ(E,E′) ∩ D(T )/KerT ) →
(ImT, σ(F, F ′)∩ImT ) is weakly open. Due to the properties of the weak topology
on the quotient space D(T )/KerT , the topologies σ(F, F ′) ∩ D(T )/KerT and
σ(D(T )/KerT , KerT⊥) coincide. Also, on ImT the topologies σ(F, F ′)∩ImT
and σ(ImT , F ′/ ImT⊥) coincide. Therefore, Ť is weakly open as a mapping

Ť : (D(T )/KerT, σ(D(T )/KerT, KerT⊥)) → (ImT, σ(F, F ′) ∩ ImT ),

i.e. Ť−1 is weakly and therefore strongly continuous as a mapping

Ť−1 : β(ImT, F ′/ ImT⊥) → (D(T )/KerT, β(D(T )/KerT, KerT⊥)).

Taking into account conditions a) and c) we obtain the validity of the following
diagram:

(D(T )/KerT, β(E,E′) ∩D(T )/KerT )

��

(ImT, β(F, F ′) ∩ ImT )

��
(D(T )/KerT, β(D(T )/KerT, KerT⊥))

OO

(ImT, β(ImT, F ′/ ImT⊥)),

OO

oo
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where the arrows indicate the continuous mappings. From here we get that T is
strongly open.

It should be noted that to prove the converse statement to Theorem 2.7.19, i.e.
to prove the coincidence of the above topologies on D(T )/KerT and ImT for
strongly and weakly open operator T , in the a priori conditions of Theorem 2.7.19
one must additionally require that T is a weak homomorphism. Indeed, in this case,
due to the well-known inequalities between strong topologies onD(T )/KerT and
ImT , we obtain the validity of the following diagram:

(D(T )/KerT, β(E,E′) ∩D(T )/KerT )

��

(ImT, β(F, F ′) ∩ ImT )
Ťoo

(D(T )/KerT, β(D(T )/KerT, KerT⊥))
Ť //

(ImT, β(ImT, F ′/ ImT⊥)),

OO

oo

where the operators indicated by arrows are continuous. It follows that two identi-
cal operators in the diagram are isomorphisms, i.e. the above strong topologies on
D(T )/KerT and ImT coincide.

Let us now apply Theorem 2.7.2 to prove the sufficient conditions for a weakly
open operator to be open and strongly open.

Theorem 2.7.20. Let T : E → F be a weakly open linear operator of LCS (E,T1)
in LCS (F,T2). If the space (ImT, T2 ∩ ImT ) is Mackey space, then T is open.
If, moreover, the graph of the operator G(T ) is barrelled, then the operator T is
strongly open.

Proof. For the linear operator T , consider the continuous operator S : G(T ) → F ,
defined by the equality S(e, Te) = Te, e ∈ D(T ). According to ( [29], Theorem
2.2), T is weakly (resp. strongly) open if and only if S is weakly (resp. strongly)
open. Therefore, to prove our statement it is sufficient to prove that S is a strong
homomorphism. Really, we have the following expansion of the operator S =
JŠK:

(G(T )/KerS, (T1×T2)/KerS)
Š // (ImT,T2∩ImT )

id1 //
(ImT, τ(ImT, F ′/ ImT⊥))oo

Š

��

OO

(G(T )/KerS, τ(G(T ), G(T )′)/KerS)

id2

OO

id3 //
(G(T )/KerS, τ(G(T )/KerS,KerS⊥))oo

where each operator indicated by arrows is continuous. Indeed, id1 is an isomor-
phism due to the fact that T2 ∩ ImT is a Mackey topology. id2 is continuous due
to the fact that the original topology is weaker than the Mackey topology. id3 is an
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isomorphism due to the fact that the quotient topology τ(G(T ), G(T )′)/KerS of
the Mackey topology coincides with the Mackey topology τ(G(T )/KerS,KerS⊥)
on G(T )/KerS. Š1 is the isomorphism due to the fact that weak isomorphisms
are also isomorphisms in Mackey topologies. From this it already turns out that S
is a homomorphism of the space (G(T ), (T1 × T2) ∩ G(T )) in (F,T2), i.e. T is
open.

Further, barreledness of the space (G(T ), (T1 × T2) ∩G(T )) means the coin-
cidence of the topologies (T1 ×T2)∩G(T ) and β(G(T ), G(T )′) on G(T ). Next,
from the fact that S is a homomorphism, it follows that the spaces (G(T )/KerS,
(T1 × T2)/KerS) and (ImT , T2 ∩ ImT ) are barrelled and therefore (T1 ×
T2)/KerS) = β(G(T )/KerS,KerS⊥) and T2 ∩ ImT = β(ImT, F ′ / ImT⊥).
This means that T is strong open.

This theorem shows that the conditions for validity of the implication e) =⇒ d)
in ([29], Theorem 2.1) can be weakened and make it less burdensome.

Let A : E → F be a linear operator, where E and F are Fréchet spaces, the
quotient space F/ImA is called the co Kernel of the operator A and is denoted by
cokerA. In the future, dimensions will play an important role

α(A) = dimkerA and β(A) = dim cokerA,

the last of which is called the defective number of the operator A. The defective
number β(A) is finite if and only if the space ImA⊥ ⊂ F ′ (called the defective
space of the operator A) is finite-dimensional, in which case both dimensions are
the same.

In the case of a dense domain of definition of D(A), the following statement
holds.

The numbers β(A) and α(A∗) are both finite or infinite at the same time, and
if they are finite, then

β(A) = α(A∗). (2.7.1)

An ordered pair of numbers (α(A), β(A)) is called the d-characteristic of the
operator A. If at least one of the numbers α(A) and β(A) is finite, then the differ-
ence IndA = α(A)− β(A) is called the index of the operator A.

An operator A is said to have finite d-characteristic or finite index if both α(A)
and β(A) are finite.

A closed normally solvable operator A is called a Noetherian or Φ-operator if
its d-characteristic is finite.

The set of all Φ-operators A : E → F is denoted by Φ(E,F ).

Corollary. Let E and F be Fréchet spaces and T : E → F be a weakly open
linear Φ-operator. Then T is open and strongly open.
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Proof. The space (ImT,T2 ∩ ImT ) is a Mackey space since (ImT,T2 ∩ ImT )
is a Fréchet space. Therefore, T is open. Since the graph is closed, we also obtain
that T is strongly open.



C H A P T E R 3

Linear problems with a sequence of problem elements sets

This chapter deals with the linear problems with a sequence of problem elements
sets. In this regard, a generalization of Minkowski functional is given. Next, in
terms of strong proximality in the Hilbert spaces, the definition of an interpolation
spline with non-adaptive information with respect to the known metrics is given.
Questions about the existence of an interpolation spline in Fréchet spaces, that
is, strong best approximations in subspaces of finite codimension, are studied. The
well known theorems of James and Bishop–Phelps are generalized. It is proved that
an interpolation spline for arbitrary information of cardinality 1 exists if and only if
the space is reflexive quojection (strictly regular). The classes of reflexive Fréchet
spaces for which interpolation splines do not exist in subspaces of codimension 1
are indicated. The classes of reflexive Fréchet spaces in which interpolation splines
exist for information of any cardinality are also indicated.

3.1 Definition of a spline and spline algorithm in Fréchet spaces

Let F1 be a linear space, G be a metrizable LCS, S : F1 → G be a linear solution
operator, and {Vn} be a non-increasing sequence of absolutely convex subsets of
the space F1, i.e. V1 ⊇ V2 ⊇ · · · ⊇ Vn ⊇ · · · . Consider the sets

Kr = rVn, where r ∈ In =

{
[1,∞[ for n = 1,

[2−n+1, 2−n+2[ for n ≥ 2.

Let µ{Vn} be the functional defined on F1 as

µ{Vn}(f) = inf{r > 0; f ∈ Kr}. (3.1.1)

If V1 = V2 = · · · = Vn = · · · = F , then Kr = rF and µ{Vn} coincides with the
Minkowski functional µF of F . Further, we will call the functional µ{Vn} as the

165
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Minkowski functional for the sequence {Vn}. We give the following properties of
this functional (3.1.1):

1. It is clear that µ{Vn}(f) ≥ 0, f ∈ F1.
2. If f1, f2 ∈ F1, then µ{Vn}(f1 + f2) ≤ µ{Vn}(f1) + µ{Vn}(f2). To prove

this fact, we first note that Kr +Ks ⊂ Kr+s. Consider the following three special
cases: a) r ∈ [2−n, 2−n+1[ and s ∈ [2−m, 2−m+1[, where 1 ≤ n ≤ m. Then
r+ s ∈ [2−n+2−m, 2−n+1+2−m+1[⊂ [2−n, 2−n+1[∪[2−n+1, 2−n+2[. If r+ s ∈
[2−n, 2−n+1[, thenKr+Ks = rVn+1+sVm+1 ⊂ rVn+1+sVn+1 = (r+s)Vn+1 =
Kr+s. If r+s ∈ [2−n+1, 2−n+2[, thenKr+Ks = rVn+1+sVm+1 ⊂ (r+s)Vn =
Kr+s; b) Let r ∈ [1,∞[ and s ∈ [2−m, 2−m+1[, m ∈ N, then r + s ∈ [1,∞[,
and we have Kr +Ks = rV1 + sVm+1 ⊂ (r + s)V1 = Kr+s; c) If r, s ∈ [1,∞[,
then it is clear that Kr +Ks ⊂ Kr+s. Now, let µ{Vn}(f1) = r and µ{Vn}(f2) = s.
Then for a sufficiently small ε > 0 we will have f1 ∈ Kr+ε/2 and f2 ∈ Ks+ε/2,
i.e. µ{Vn}(f1 + f2) ≤ r + s + ε for sufficiently small ε > 0 and, consequently,
µ{Vn}(f1 + f2) ≤ r + s = µ{Vn}(f1) + µ{Vn}(f2).

3. If ∩r∈R+Kr ̸= {0}, then Kerµ{Vn}(·) ̸= {0} and µ{Vn}(f−g) = d(f, g) is
a translation invariant submetric on F1. If ∩r∈R+Kr = {0}, then Kerµ{Vn}(·) =
{0} and µ{Vn}(f − g) = d(f, g) is a metric on F1. Really, it is easy to see that if
x0 ∈ ∩r∈R+Kr and x0 ̸= 0, then µ{Vn}(x0) = 0.

We denote the Minkowski functional of Kr by qr(·). It is clear that if r ∈ In,
then qr(·) = r−1∥ · ∥n, where ∥ · ∥n is the Minkowski functional for Vn.

Let F1 = Kerµ{Vn} +Kerµ⊥{Vn}, where the second summand is the algebraic
complement linear subspace of Kerµ{Vn} in F1. For any f, g ∈ F1, f = f1 + f2
and g = g1 + g2, where f1, g1 ∈ Kerµ{Vn} and f2, g2 ∈ Kerµ⊥{Vn}. Define
E = Kerµ⊥{Vn} and for f2, g2 ∈ E, d(f2, g2) = µ{Vn}(f − g). If µ{Vn}(f2) = 0,
then f2 ∈ Kerµ{Vn} and f2 = 0. The functional d(f2, g2) = µ{Vn}(f − g) is
a metric on E and E is a linear metrizable LCS. Define a linear operator T as
Tf = f2. In fact, T is an algebraic projection of the space F1 onto the subspace
Kerµ⊥{Vn}. It follows that

d(Tf, Tg) = d(f2, g2) = µ{Vn}(f − g). (3.1.2)

The Minkowski functional of Kr is denoted by qr(·). It is clear that if r ∈ In,
then qr(·) = r−1∥ · ∥n, where ∥ · ∥n is the Minkowski functional for Vn. If r > 0,
qr is the Minkowski functional of the set {Tx ∈ E; d(Tx, 0) ≤ r}.

Let I : F1 → Rm be a non-adaptive information of cardinality m and y ∈
I(F1). T : F1 → E is the above-mentioned linear operator. An element σ = σ(y)
is called a spline interpolatory y (briefly, a spline) if and only if

(i) I(σ) = y,
(ii) d(Tσ, 0) = inf{d(Tz, 0); z ∈ F1 and I(z) = y} = r,
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(iii) qr(Tσ) = inf{qr(Tz); z ∈ F1 and I(z) = y} if r > 0, where qr is the
Minkowski functional of the set {Tx ∈ E; d(Tx, 0) ≤ r}.

The above definition deals with the problem of existence of minimum of func-
tionals on the set {z ∈ F1; I(z) = y} the closedness of which can be asserted,
since the space F1 is, in general, only linear. This is also the case in the classical
definition [11]. Let us prove that

qr(Tx) = qr(x), x ∈ F1, r > 0. (3.1.3)

By the definition of the functional µ{Vn}, we find that if µ{Vn}(x) ≤ r, then x ∈
Kr+ε for all ε > 0, i.e. x ∈ (r+ε)Vn, when r ∈ In. This implies that ∥x∥n ≤ r+ε
for arbitrary ε > 0, i.e., ∥x∥n ≤ r. Analogously, we conclude that if ∥x∥n ≤ r,
then µ{Vn} ≤ r. That is, µ{Vn} ≤ r ⇔ ∥x∥n ≤ r. Further, we have that qr(Tx) =
inf{α > 0, d(Tx/α, 0) ≤ r} = inf{α > 0, µ{Vn}(Tx/α) ≤ r}. Let α0 be
an arbitrary number with the property α0 > qr(Tx). Then d(Tx/α0) ≤ r, i.e.
µ{Vn}(Tx/α0) ≤ r and ∥Tx/α0∥ ≤ r. This means that ∥x/α0∥n ≤ r, i.e.,
qr(x) ≤ α0. That is, qr(x) ≤ qr(Tx). On the other hand, if β is an arbitrary
number such that x/β ∈ Kr, then ∥x/β∥n ≤ r. So, ∥Tx/β∥n ≤ r. This means
that µ{Vn}(Tx/β) ≤ r, that is, d(Tx/β, 0) ≤ r. Therefore, qr(Tx) ≤ qr(x).
Thus, (3.1.3) is proved.

Let F1 be a linear space and µ be a nonnegative functional for which the sets
{x ∈ F1; µ(x) ≤ r}, r ∈ R+, are absolutely convex. Denote by qr the Minkowski
functional of this set. We say that a subspace M ⊂ F1 is strongly proximal in F1

with respect to µ if for arbitrary x ∈ F1, there exists h∗ ∈M such that inf{µ(x−
h), h ∈ M} = µ(x − h∗) = r, and if r > 0, then inf{qr(x − h), h ∈ M} =
qr(x−h∗). We call such h∗ ∈M the strong best approximation element for x ∈ F1

in M . We call a subset M of the space F1 strongly proximal if for each x ∈ F1 in
M , there is an element of the strong best approximation. The definition of strong
proximality was introduced in [4].

Theorem 3.1.1. Let y ∈ I(F1), T : F1 → E be the above mentioned linear
operator and I be a non-adaptive information of a cardinality m ∈ N. Then
there exists a generalized spline interpolatory y if and only if the subspace Ker I
is strongly proximal in F1 with respect to the functional µ{Vn}.

Proof. First, we assume that Ker I is strongly proximal in F1 with respect to the
functional µ{Vn}. Let f be an arbitrary element belonging to the set I−1(y). Then
we have

inf{µ{Vn}(f − h) : h ∈ Ker I} = µ{Vn}(f − h∗) = r

and, if r > 0, then

inf{qr(f − h) : h ∈ Ker I} = qr(f − h∗)
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for some h∗ ∈ Ker I . Denote σ = f − h∗. By the property (3.1.2) of the metric d,
we have

inf{µ{Vn}(f − h) : h ∈ Ker I} = µ{Vn}(f − h∗) = r = µ{Vn}(σ)

= d(Tσ, 0) = inf{d(Tz, 0); z ∈ F1, I(z) = y}.

From the above and (3.1.3), we have

inf{qr(f − h) : h ∈ Ker I} = qr(f − h∗) = qr(Tσ)

= inf qr(Tz); z ∈ F1, I(z) = y}.

Conversely, let f be an element in F1, If = y and σ be a generalized spline
interpolatory y. We represent an element z ∈ I−1(y) in the form z = f − h,
where h ∈ Ker I , and consider the element h∗ = f − σ ∈ Ker I . It is clear that
σ = f − h∗ satisfies (i)–(iii). Therefore, h∗ is a strongly best approximation for f
in Ker I.

In the sequel, we will assume that F1 is an LCS with a non-increasing se-
quence of absolutely convex closed zero-neighborhoods {Vn}. In particular, such
a sequence of absolutely convex closed neighborhoods exists if F1 is a metrizable
LCS. In this case, T is an identity operator and the space (E, d) is the linear metric
LCS in which linear operations are continuous. The existence of such a metric in
the strict (LF)-space is proved in Section 2.6. The generalization of this result for
strict inductive limits of LCS, on which there exists metrics, is proved by S. Dierolf
and K. Floret [10]. In that case, T is a continuous imbedding from F1 into E.

If, moreover, {Vn} is a local basis of non-increasing sequence of neighbor-
hoods of zero for some topology, then µ{Vn}(f − g) = d(f, g) is the continuous
metric generating the topology defined by the sequence {Vn}. This functional is
quasiconvex, i.e., the sets {x : µ{Vn}(x) ≤ r}, r ∈ R+, are absolutely convex
and coincide with Kr. Topological boundary ∂Kr = {x ∈ F1; qr(x) = 1} of Kr

coincides with the metric boundary {x ∈ F1; µ{Vn}(x) = r} for r ∈ int In and
they, in general, differ for r = 2−n+1 (n ∈ N) (see Section 2.5).

Below we will often replace an arbitrary translation invariant metric d by quasi-
norm | · | (i.e., we will replace d(x, y) by |x− y|).

Let ∥ · ∥n be the Minkowski functional of Vn. The definition of the functional
µ{Vn} for the sequence {Vn} coincides with the quasinorm of the metric (2.5.12)
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and has the following form:

|x| =



∥x∥1, when ∥x∥1 ≥ 1 ,

2−n+1, when ∥x∥n ≤ 2−n+1 and
∥x∥n+1 ≥ 2−n+1 (n ∈ N),

∥x∥n+1, when 2−n ≤ ∥x− y∥n+1 < 2−n+1 (n ∈ N),
0, when x = 0 .

(3.1.4)

It should be noted that in (3.1.4), under ∥·∥n we mean the Minkowski functional
for Vn, and we will keep this in mind throughout what follows. Since qr(·) =
r−1∥ · ∥n for r ∈ In , we find that for the metric (3.1.4), in terms of the above
notation, σ = f − h∗ is a spline interpolatory y if and only if I(σ) = y,

d(f,Ker I) = d(f, h∗) = r = d(σ, 0) = |σ|, when r ∈ int In (n ∈ N) (3.1.5)

and

E(f,Ker I, Vn) := inf{∥f − h∥n; h ∈ Ker I}
= ∥f − h∗∥n = ∥σn∥ ≤ r, when r = 2−n+1 (n ∈ N). (3.1.6)

For V1 = V2 = · · · = F , we have proven that Kr = rF, | · | = µF (·), and the
interpolation spline coincides with the classical one.

The number r, mentioned in the definition of a spline interpolatory (3.1.5),
does not depend on the choice of f ∈ F1, I(f) = y, d(f,Ker I) = r. Indeed, if

I(f1) = I(f2) = y, f2 − f1 = z ∈ Ker I, d(f1,Ker I) = d(f1, h
∗
1)

and
inf{qr(f1 − h); h ∈ Ker I} = qr(f1 − h∗),

we have
d(f2,Ker I) = d(f2, h

∗
1 + z) = d(f1, h

∗
1)

and
inf{qr(f2 − h); h ∈ Ker I} = qr(f2 − h∗1 + z) = qr(f1 − h∗1).

Proposition 3.1.2. Let E be a metrizable LCS with a non-decreasing sequence of
seminorms {∥ · ∥n}, with metrics (3.1.4), and M be a convex subset of E. Then the
following statements hold:

a) If r ∈ intIn (n ∈ N), then the equalities d(x,M) = r = |x − h∗| and
inf{∥x − h∥n; h ∈ M} = ∥x − h∗∥n = r, where h∗ is some element of M , are
equivalent.

b) If d(x,M) = r = 2−n+1 (n ∈ N) and inf{∥x − h∥n; h ∈ M} = ∥x −
h∗∥n = λ for some h∗ ∈M , then d(x,M) = d(x, h∗).
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Proof. a) Let d(x,M) = |x − h∗| = r ∈ intIn (n ∈ N) for some h∗ ∈ M.
From the definition of the metric (3.1.4) it follows that d(x,M) = |x − h∗| =
∥x− h∗∥n = r. Let us prove that ∥x− h∗∥n = inf{∥x− h |n; h ∈ M}. Assume
the opposite that s = ∥x − h1∥n < ∥x − h∗∥n = r for some h1 ∈ M . Then,
according to the properties of the metric (3.1.4), we have d(x, h1) = ∥x−h1∥n < r
if s ∈ In and d(x, h1) ≤ 2−n+1 < r if s < 2−n+1. Thus, d(x, h1) < r, which
is impossible. Analogously, we can show that the inequality inf{∥x − h∥n; h ∈
M} = ∥x − h∗∥n = r ∈ intIn, h∗ ∈ M, implies that d(x,M) = |x − h∗| = r.
Thus, part a) is proved.

To prove b), let d(x,M) = r = 2−n+1 and inf{∥x − h∥n; h ∈ M} = ∥x −
h∗∥n = λ ≤ 2−n+1, where h∗ ∈M . Let us show that ∥x−h∗∥n+1 = s ≥ 2−n+1.
If we assume that s < 2−n+1, then d(x, h∗) ≤ max(s, 2−n) < 2−n+1 = r, which
is impossible. Thus, ∥x − h∗∥n ≤ 2−n+1 and ∥x − h∗∥n+1 ≥ 2−n+1. According
to (3.1.4), this means that d(x, h∗) = 2−n+1 = r.

It should be noted that for the metric (3.1.4), the element of the best approxi-
mation with respect to the metric may not have a similar property with respect to
qr(·) for r ∈ 2−n+1 (n ∈ N) and therefore, with respect to ∥ ·∥n (see the following
examples).

Example 3.1.1. Now we give an example showing that if d(f,G) = d(f, g0) =
1, then g0 may not be an element of the best approximation with respect to the
seminorm ∥ · ∥1. Let E = C(R) be the Fréchet space of continuous real-valued
functions with the topology of compact convergence on R, which is given by the
sequence of seminorms ∥f∥n = max{|f(t)|; t ∈ [−n, n]}, n ∈ N. Let f(t) = t2

and let G = P2 be the subspace of polynomials of degree at most 1. According to
the classical Chebyshev theorem,

inf{∥f −m∥1, m ∈ P2} = inf{max{|t2 − a1t− a2|, t ∈ [−1, 1]}, a1, a2 ∈ R}
= max{|T2(t)|/2; t ∈ [−1, 1]} = max{|t2 − 1/2|; t ∈ [−1, 1]}

= ∥t2 −m0∥1 = 1/2,

where T2(t) = 2t2 − 1 is the Chebysheff polynomial of the first kind and m0(t) ≡
1/2 is the unique best approximation of f with respect to the seminorm ∥ · ∥1. So,
∥t2 −m∥1 ≥ 1/2 for all m ∈ P2. In addition, we have

inf{∥f −m∥2, m ∈ P2}
= inf{max{|t2 − a1t− a2|, t ∈ [−2, 2]}, a1, a2 ∈ R} ≥ ∥t2 − 2∥2 = 2.

This means that ∥t2 −m∥2 > 1 for all m ∈ P2. Consider the element m ∈ P2 for
which 1/2 < ∥t2 −m∥1 ≤ 1. From the definition of the metric (3.1.4), it follows



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 171

that the inequalities ∥t2−m∥2 ≥ 1 and ∥t2−m∥1 ≤ 1 are valid for the subspace P2

and, therefore, d(t2,m) = 2−1+1 = 1. This means that if 1/2 ≤ ∥t2 −m∥1 ≤ 1,
then m ∈ P2 is an element of the best approximation with respect to the metric,
but no element will be the element of the best approximation with respect to the
seminorm ∥ · ∥1. Only m0(t) = 1/2 ∈ P2 is the element of the best approximation
with respect to d and ∥ · ∥1 simultaneously.

Example 3.1.2. Let us now give an example of a subspace G ⊂ C(R) and x ∈
C(R)\G such that d(x,G) = d(x, g0) = 2−1 and

inf{∥x− g∥2; g ∈ G} = ∥x− g0∥2 = 0.

Indeed, letG = P3 be a subspace of algebraic polynomials, whose degree does not
exceed 2. Let us define the function f(t) as follows:

f(t) =


t2, when |t| ≤ 2,

0, when |t| ≥ 3,

linear in the intervals [−3,−2] and [2, 3].

Let us prove that d(f,P3) = inf{d(f,m); m ∈ P3} = 2−1. Indeed, if
g0(t) = t2 ∈ P3, then ∥f − g0∥2 = 0, that is, f − g0 ∈ intV2. Further, it is easy to
prove that ∥f − g0∥3 = 9, that is, f − g0 ∈ intV2\2intV3. By the definition of the
metric d, we have that d(f, g0) = 2 and, therefore, inf{d(f, g); g ∈ P3} ≤ 2−1.
Let us assume that d(f,G) = r ∈]2−2, 2−1[. Then, by virtue of Proposition 3.1.2,
we have that inf{qr(f − g); g ∈ P3} = 1, where qr = r−1∥ · ∥3 is the Minkowski
functional for Kr. From here we get

inf{∥f − g∥3; g ∈ P3} = r ∈ [2−2, 2−3[.

But, on the other hand, by virtue of the well-known Chebyshev theorem (Cheby-
shev alternance) we have

inf{∥f − g∥3 g ∈ P3} = ∥f −m0∥3 = 2,

where m0(t) = 2. In particular, this follows from the following equalities:

f(−3)− 2 = −(f(−2)− 2) = f(0)− 2 = −(f(2)− 2) = f(3)− 2.

This means that 8 ̸= 9 ·4 and, therefore, d(f,P3) = 2−1, but inf{q2−1(f−g); g ∈
P3} = inf{∥f − g∥2; g ∈ P3} = 0.

By virtue of Theorem 3.1.1, the definition of a spline for the metric (3.1.4) takes
the following form: let I be non-adaptive information, y ∈ I(F1), I(f) = y and
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d(f,Ker I) = r for some f ∈ F1. Then σ = f − h∗ will be called a generalized
interpolation spline if

d(f,Ker I) = d(f, h∗) = r, when r ∈ int In (n ∈ N)

and
E(f,Ker I, Vn) = µVn(f − h∗), when r = 2−n+1 (n ∈ N),

where Vn = {f ∈ F1; ∥f∥n ≤ 1} is a non-increasing sequence of neighborhoods
of zero, participating in the definition of the metric (3.1.4). If V1 = V2 = · · · = F ,
then Kr = rF , |f | = µF (f) and the interpolation spline for the metric coincides
with the classical interpolation spline ([158], p. 95).

The above definition of a spline is equivalent to the following: let us assume
that y ∈ I(F1), I(f) = y for some f ∈ F1 and d(f,Ker I) = r ∈ In. σ = f −h∗

will be called a interpolation spline if

E(f,Ker I, Vn) = µVn(f − h∗), d(f,Ker I) = r ∈ In.

So, to find the interpolation spline σ(y), we find the classical interpolation spline
for the set F = Vn in the case r ∈ int In. This means that the interpolation spline
σn depends on n for different y. More precisely, σ(y) = σn(y) when I(f) = y
and d(f,Ker I) = r ∈ int In.

The interpolation spline σ(y) does not depend on n in the case where the finite
codimension subspace Ker I has an orthogonal complement in F1 with respect to
the topology generated by the sequence of hilbertian seminorms {∥ · ∥n}. This
follows from the fact that in this case the best approximation in Ker I does not
depend on n and is the same for all seminorms ∥ · ∥n. In what follows, we will
mainly consider just such cases.

For metrics (2.5.2) and (2.5.4), the equalities d(f,G) = d(f, h∗) = r and
inf{qr(f − h) : h ∈ G} = qr(f − h∗) = 1 are equivalent for an arbitrary closed
subset G of the space F1, that is, for these metrics the concepts of proximality and
strong proximality coincide.

Lemma 3.1.3. Let (E, d2) be a metrizable LCS with the metric (2.5.4) andG ⊂ E.
Then for f /∈ G, the equalities

inf{d2(f − g) : g ∈ G} = r > 0 (3.1.7)

and
inf{qr(f − g) : g ∈ G} = 1 (3.1.8)

are equivalent.
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Proof. Let us assume that the equality (3.1.3) is satisfied, but

inf{qr(f − g); g ∈ G} = λ. (3.1.9)

Let λ < 1. We take ε > 0 such that λ + ε < 1. For such ε, there is gε ∈ G such
that qr(f − gε) < λ + ε < 1. This implies the inequality d(f, gε) < r, which
contradicts (3.1.7). Let now λ > 1. Since the metric d2 has the property (A), then
by [6], for the above r > 0 and λ > 1, there exists ε > 0 such that Kr+ε ⊂ λKr.
For such ε > 0, there is gε ∈ G such that d(f, gε) < r + ε. From this we obtain
that f − gε ∈ intKr+ε, that is, qr(f − gε) < λ, which contradicts the equality
(3.1.5). Therefore, λ = 1 and (3.1.4) is true.

Let us now assume that (3.1.8) and ε > 0 are true. Then there exists gε such
that qr(f − gε) < 1 + ε/r. As is known [5], if r ∈ [2−(n0+1), 2−n0 [, then

qr = max
n≤n0

1− 2nr

2nr
pn(f).

From here we get that when n ≤ n0,

1− 2nr

2nr
pn(f − gε) < 1 +

ε

r

and
2−npn(f − gε) < rpn(f − gε) + r + ε.

Let us divide the last inequality by 1+pn(f−gε). We find that for each n ≤ n0,

2−npn(f − gε)

1 + pn(f − gε)
< r +

ε

1 + pn(f − gε)
< r + ε.

That’s why

max
n≤n0

2−npn(f − gε)

1 + pn(f − gε)
< r + ε.

Since

sup
n>n0

2−npn(f − gε)

1 + pn(f − gε)
< 2−(n0+1) ≤ r < r + ε,

we have d(f, gε) < r+ε. Therefore, for ε > 0, we find gε ∈ G such that d(f, gε) <
r + ε. From this we obtain the validity of the equality (3.1.5), since it is obvious
that inf{d(f, g) : g ∈ G} ≥ r. Using similar reasoning, one can also prove the
equivalence of the equalities (3.1.3) and (3.1.4) for the metric (2.5.2).
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Consider the definition of a spline in the case of a normlike metric given by
G. Albinus [5]. Assume that information is generated by continuous on F1 linear
functionals. Then Ker I is closed in F1 and the distance d(f,Ker I) = r > 0.
From the properties of this metric it follows that inf{qr(f − h); h ∈ Ker I} = 1
[5]. As is known, qr is equivalent to some seminorm from the given sequence
{∥ · ∥n}. The functional corresponding to this information is continuous with re-
spect to this seminorm. Its kernel is closed, since the distance from f to this kernel
with respect to the seminorm is positive, namely 1. If it were not closed, it would
be everywhere dense and the distance will be zero. Thus, in the definition of a
spline with respect to the metric, we always arrive at such a seminorm with respect
to which the functional corresponding to this information is continuous. Thus, in
the cases under consideration, the definition of a generalized spline needs the re-
quirement of the existence of the best approximation in Ker I only with respect to
the metric.

Consider the case when F1 = E is a metrizable LCS whose topology is gen-
erated by a non-increasing sequence of neighborhoods Vn of zero. Denote the
Minkowski functional of Vn by ∥ · ∥n, i.e., Vn = {f ∈ E : ∥f∥n ≤ 1}. Let
Xn be the normed space Xn = (E/Ker ∥ · ∥n , ∥̂ · ∥n), where ∥̂ · ∥n is the as-
sociated norm. If instead of F we consider the set Vn for each n ∈ N, then the
canonical maps Kn : F1 → Xn will be analogies of the operator T : E → X and
Vn = {f ∈ E : ̂∥Kn(f)∥n ≤ 1} .

Let F1 be an LCS with a non-increasing sequence of neighborhoods of zero
{Vn}, i.e. {Vn} generates a metrizable topology on F1. This topology can be
metrized using the translation-invariant metric d and with absolutely convex balls
Kr = {x ∈ F1; d(x, 0) ≤ r}. We denote the resulting linear metric space by
(F1, d). In what follows, qr(·) denotes the Minkowski functionals of the balls Kr

and | · | denotes the quasinorm of the metric d.
For metrics (2.5.2) and (2.5.4), the equalities d(f,G) = d(f, h∗) = r and

inf{qr(f − h); h ∈ G} = qr(f − h∗) = 1 are equivalent for an arbitrary closed
subset G of the space F1, i.e. for these metrics, the concepts of proximality and
strong proximality coincide.

Let us now consider this problem in the case of the metric (2.5.8).

Proposition 3.1.4. Let (E,T) be a Fréchet space with a sequence of seminorms
{pn}, where p1 ̸= 0 and 2pn ≤ pn+1 (n ∈ N). Let also G ⊂ E be its closed
convex subset. Then for f ∈ E\G and r ∈ In, where In is defined according to
(2.5.7), the equality inf{qr(f − g); g ∈ G} = 1 implies the equality d(f,G) =
inf{d(f, g); g ∈ G} = r. If, in addition, d(f,G) = r ∈ int In, then the converse
is also true.
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Proof. Let for some r ∈ [2−n, 2−n+1[ we have

inf{qr(f − g; g ∈ G} = inf{λ ∈ R+; g ∈ G and λ−1(f − g) ∈ Kr} = 1.

Then for an arbitrary number ε > 0, there exist gε ∈ G and λε ∈ [1, 1+ε[ such that
λ−1ε (f − g) ∈ 2nrVn+1. Further, for sε = rλε, we obtain that sε ∈ [r, r + εr[ and
f − gε ∈ 2nrλεVn+1 = 2nsεVn+1. Moreover, for arbitrary ε > 0, we can assume
that sε ∈ [r, 2−n+1[ and, therefore, f − gε ∈ Ksε . This means that the inequalities

d(f,G) = inf{s ∈ R+; g ∈ G and f − g ∈ Ks}
≤ inf{s ∈ [2−n, 2−n+1[; g ∈ G and f − g ∈ Ks} ≤ r

are valid. If we assume that d(f,G) < r, then we immediately obtain a contradic-
tion. Therefore, d(f,G) = r.

Let us now prove the converse statement. Let

d(f,G) = inf{s ∈ R+; g ∈ G and f − g ∈ Ks} = r ∈ ]2−n, 2−n+1[ (n ∈ N).

Then from the condition we get

inf{s ∈ [2−n, 2−n+1[; g ∈ G and f − gε ∈ 2nsVn+1}
= r ∈ ]2−n, 2−n+1[ (n ∈ N).

This means that for an arbitrary ε > 0, there exist sε ∈ [r, rε[,where rε = min(r+
ε, 2−n+1), and gε ∈ G such that f − gε ∈ Ksε = 2nsεVn+1. Therefore, for
λε =

sε
r ∈ [1, 1 + ε

r [ we get

f − gε ∈ 2nλεrVn+1, i.e. λ−1ε (f − gε) ∈ 2nrVn+1 = Kr.

Thus, there is an inequality

inf{qr(f − g); g ∈ G} = inf{λ ∈ R+; g ∈ G, λ−1(f − g) ∈ Kr} ≤ 1.

Since r ̸= 2−n, the strict inequality is excluded and our statement is proved. The
case r ∈ [1,∞[ is treated similarly.

Corollary. Let (E,T) be a metrizable LCS with the metric (2.5.8), G ⊂ E be its
closed convex subset and f ∈ E\G. g0 ∈ G is an element of the best approx-
imations of f in G with respect to the metric and d(f, g0) = r ∈]2−n, 2−n+1[
(n ∈ N) (resp. d(f, g0) = r > 1) if and only if inf{pn+1(f − g); g ∈ G} =
pn+1(f−g0) = 2nr (n ∈ N) (resp. inf{p1(f−g; g ∈ G} = p1(f−g0) = r > 1).
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It should be noted that if d(f,G) = r = 2−n+1(n ∈ N), then inf{qr(f −
g); g ∈ G} ≤ 1. Indeed, if we assume that inf{qr(f − g); g ∈ G} = λ >
1, then there exists ε > 0 such that Kr+ε ⊂ λKr. On the other hand, for the
specified ε > 0, there is an element gε ∈ G such that d(f, gε) < r + ε, i.e.
f−gε ∈ intKr+ε ⊂ intλKr. So, qr(f−gε) < λ. This contradicts our assumption.
Therefore, λ ≤ 1.

If a spline exists and is unique, then the spline algorithm φs : I(F1) = Rm →
G is formally written also as the equality (1.2.2):

φs(y) = S(σ(y)), y ∈ I(F1) . (3.1.10)

3.2 Existence of splines in Fréchet spaces

Let us now turn to the question of the existence of splines in the case when F1 is a
metrizable LCS. Let us note first of all that in the case of non-adaptive information
I , a spline exists if and only if the subspace Ker I is strongly proximal in F1 with
respect to the metric. As noted in Section 3.1, in the case of normlike metrics
(2.5.2) and (2.5.4), the strong proximality coincides with the ordinary proximality.

This section explores the approximation properties of some classes of sub-
spaces of Fréchet spaces. The well-known theorems of James and Bishop-Phelps
for the case of Fréchet spaces are generalized. We also obtain the conditions for the
existence of interpolary splines for a non-adaptive information of any cardinality
m ∈ N (the case m = 1 is considered separately).

3.2.1 Generalization of James’ Theorem for Fréchet spaces. Condition for
the existence of a spline in the case of information of cardinality 1

It is well known ([74] and Theorem 1.3.1) that for a Banach spaceE, the following
statements are equivalent:

a) the space E is reflexive;
b) every linear continuous functional x′ ∈ E′ attains its norm on the unit ball

of the space E;
c) every closed hypersubspace (i.e. a subspace of the codimension 1) of the

space E is proximal;
d) the space E has the proximality property, i.e. every closed subspace of E is

proximal;
e) restriction of any linear continuous functional x′ ∈ E′ on each closed sub-

space attains its norm on the unit ball of this subspace;
f) in the space E = F1 with the unit ball F , there exists an interpolation spline

for non-adaptive information of any cardinality.
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The study of the question whether these properties hold for the Fréchet spaces
is much more closely related to the study of topological and geometrical properties
of these spaces. To this topic the following works are devoted: [3–5, 53, 185, 193,
198]. Namely, in [53], it was shown that the famous James’s Theorem is no longer
valid for Fréchet spaces. More precisely, an example of a reflexive, but not totally
reflexive space of the Fréchet-Montel type was built, in which for any normlike
metric there are non-proximal closed hypersubspace. In [185], it was proved that
in Fréchet spaces from the proximality of all closed hypersubspaces, generally
speaking, does not follow the proximality of all non-normed closed subspaces.
In [3] (see also [5] and [4]), it was proved that the Fréchet nuclear space of all
number sequences ω = RN (CN ) has the proximality property.

The proximality of closed hypersubspaces in Fréchet spaces under approxima-
tion by normlike metrics has been studied in [53, 185, 193]. We will present here
the necessary and sufficient condition for proximality of all closed hypersubspaces
with respect to normlike metrics (2.5.2), (2.5.4) and metric (2.5.8).

Theorem 3.2.1. Let (E,T) be a Fréchet space with an increasing sequence of
seminorms {pn} and a normlike metric d1 (resp. d2) given by the formula (2.5.2)
(resp. (2.5.4)). Then the following statements are equivalent:

a) every linear continuous functional x′ ∈ K
(1)o
r (resp. K(2)o

r ) attains on K(1)
r

(resp. K(2)
r ) its upper bound, where K(1)

r (K
(2)
r ) is the ball of the metric d1 (resp.

d2).
b) every closed hypersubspace is proximal in (E,T) with respect to the metric

d1 (resp. d2).
c) the space (E,T) is a reflexive quojection and (E,T)=s·lim

←
(E/Ker pn, p̂n).

d) the space E′β = s · lim
→

Ker p⊥n is a reflexive strong (LB)-space.

e) every closed hyperspace is strongly proximal in (E,T) with respect to the
metric d1 (resp. d2).

Proof. a) ⇒ b). Let H be a closed hypersubspace in (E,T), f ∈ E\H and
d1(f,H) = r. It is known (Lemma 3.1.3) that in this case the equality

inf{q(1)r (f − h); h ∈ H} = 1

is valid, where q(1)r is the Minkowski functional for K(1)
r . Then for the associated

norm q̂
(1)
r on the quotient space E/Ker qr the following equality is also true:

inf{q̂(1)r (πrf − πrh); h ∈ H} = 1,

where πr : E → E/Ker q
(1)
r is the canonical mapping ofE toEr = (E/Ker q

(1)
r ,

q̂
(1)
r ).
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Due to the well-known result on the characterization of the element of the best
approximation [190], there exists F ′ ∈ E′r such that

sup{|⟨πrz, F ′⟩|; z ∈ K(1)
r } = 1;

⟨πrh, F ′⟩ = 0, when h ∈ H,

|⟨πrf, F ′⟩| = 1.

Then the equality F = F ′ ◦ πr defines a linear continuous functional on (E,T)
satisfying the following conditions:

sup{|⟨z, F ⟩|; z ∈ K(1)
r } = 1,

|⟨f, F ⟩| = 1,

⟨h, F ⟩ = 0, when h ∈ H.

Since F ∈ K
(1)o
r , by condition, F attains its upper bound, i.e. there exist α0 ̸= 0

and h0 ∈ H such that

|⟨α0f + h0, F ⟩| = q(1)r (αf + h0) = 1.

Obviously, then |α0| = 1 and, therefore,∣∣∣〈f +
h0
α0
, F
〉∣∣∣ = 1 = q(1)r

(
f +

h0
α0

)
.

In this case, d1(f,H) = d1(f, − h0
α0
), i.e. for f ∈ E in H there is an element of

best approximation. This means that the hypersubspace H is proximal in (E,T)
with respect to d1.

b) ⇒ c). Let us first prove that under the conditions of statement b) for any
normlike metric d the quotient spaces E/Ker qn are reflexive Banach spaces ac-
cording to the norms q̂r. To do this, we will show that every closed in the normed
space (E/Ker qn, q̂r) hypersubspace is proximal with respect to the norm q̂r.
This follows from the fact that, by virtue of the well-known James’s Theorem,
the linear continuous functional F ′ ∈ (E/Ker qn, q̂r)

′ attains its upper bound
on the unit ball πrKr of the space (E/Ker qn, q̂r) if and only if Hr = {πrh ∈
πr(H); ⟨πrh, F ′⟩ = 0} is proximal in (E/Ker qn, q̂r). ButF ′ ∈ (E/Ker qn, q̂r)

′

attains its upper bound on the unit ball πrKr of space (E/Ker qn, q̂r) if and only
if F = F ′ ◦πr attains the upper bound on Kr. On the other hand, due to [53], from
the proximality of all closed hypersubspaces we obtain that every linear continu-
ous functional x′ ∈ K0

r attains its upper bound. If we now apply the normability
condition from [75] to the case of Fréchet space E/Ker qn and neighborhood in
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the quotient topology πrKr, we obtain that (E/Ker qn, q̂r) is a reflexive Banach
space.

Obviously, the proved statement is also true for the metric d1. Indeed, the
metric d1 has the property (B) with respect to the sequence of seminorms {pn}.
In the case of the metric d1, this means that for r ∈ [1,∞[, the seminorms q(1)r

are equivalent to p1, and for r ∈ [2−n, 2−n+1], the seminorms q(1)r are equiv-
alent to pn+1 (n ∈ N). Therefore, the quotient space E/Ker pn is reflexive
Banach space according to the norm p̂n for each n ∈ N. Therefore, (E, T) =
s · lim
←

(E/Ker pn, p̂n) is a reflexive quojection.

c) ⇔ d) follows from Corollary 2 of Theorem 2.3.2.
c) ⇒ a). The proximality of all closed hypersubspaces with respect to metric

d1 follows from ([185], p. 144, Theorem 1). Likewise, this theorem is also proven
for the metric d2.

c) ⇒ e) follows from Lemma 3.1.3.

Corollary. In the space Lploc(Ω) (1 < p < ∞), where Ω is an open domain in
Rl, all closed hypersubspaces are strongly proximal with respect to the normlike
metrics d1 and d2.

Indeed, it is easy to check that if Ω =
⋃
n∈N

Ωn, Ωn ⊂ int Ωn+1 (n ∈ N) and

pn(f) =

(∫
Ωn

|f(t)|pdt
)1/p

,

then the quotient space Lploc(Ω)/Ker pn is isomorphic to the Banach space Lp(Ωn)
which is the space of p-summable functions on Ωn.

Theorem 3.2.2. Let (E,T) be a Fréchet space with the sequence of seminorms
{pn}, where p1 ̸= 0 and 2pn ≤ pn+1 (n ∈ N). Then the following statements are
equivalent:

a) each closed hypersubspace is proximal in E with respect to the metric d
defined by the formula (2.5.8);

b) each continuous linear functional x′ ∈ K0
r (r > 0) attains its supremum on

Ks (s ≤ r), where K0
r is the polar of Kr in the dual space E′;

c) the space (E,T) is a reflexive quojection and (E,T)=s·lim
←

(E/Ker pn, p̂n);

d) the space E′β = s · lim
→

Ker p⊥n is a reflexive strict (LB)-space;

e) each closed hypersubspace is strongly proximal in (E,T) with respect to the
metric d defined by the formula (2.5.8).
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Proof. a) ⇒ b). Let x′ ∈ K0
r (r > 0), s ≤ r be some positive number, H =

{x ∈ E; ⟨x, x′⟩ = 0} and x0 ∈ E such that ⟨x0, x′⟩ ≠ 0. It follows from this
that qr(x0) ̸= 0 and therefore qs(x0) ̸= 0. Next, from the condition we obtain that
0 < l = inf{qs(x0 − h);h ∈ H}. Without loss of generality, we can assume that
l = 1. By virtue of Proposition 3.1.4 and by condition, for some h0 ∈ H we will
have d(x0, H) = d(x0, h0) = s. Therefore, qs(x0 − h0) = inf{qs(x0 − h);h ∈
H)} = 1. From the well-known result on the characterization of the element of
the best approximation [190], we obtain that there exists a functional F ∈ K0

s

satisfying the conditions ⟨x0, F ⟩ = 1 and ⟨h, F ⟩ = 0, when h ∈ H, i.e. F = λx′

for some λ. It follows that x′ also attains on Ks its upper bound.
b) ⇒ c) From the condition we obtain that every linear continuous functional

x′ ∈ E′K0
r
(r ∈ In), where E′K0

r
is a Banach space, spanned by K0

r , attains its
upper bound on Kr. But, as is known (see Section 1.4), the Banach spaces E′K0

r

and (E/Ker qn, q̂r)
′ are isometric and this isometry is realized by restriction on the

space (E/Ker qn, q̂r)
′ of adjoint algebraic isomorphism k

′
n : (E/Ker qn, q̂r)

′ →
Ker q⊥r ⊂ E′. Therefore, the following equalities hold:

⟨knx, F ⟩ = ⟨x, k′nF ⟩ = ⟨x, x′⟩, x ∈ E, F ∈ (E/Ker qn, q̂r)
′.

It follows from here that x′ ∈ E′K0
r

attains its upper bound at Kr if and only if

F ′ = k
′(−1)
n x′ attains its upper bound on kn(Kr) = {knx ∈ E/Ker qn; q̂r(knx) ≤

1}, i.e. on the unit ball of the space (E/Ker qn; q̂r). If now apply the normability
condition from [75] to the Fréchet space E/Ker qn and the norm q̂r, then we ob-
tain that the quotient space E/Ker qn is a reflexive Banach space according to the
norm q̂r. It remains to note that for r ∈ In, the space (E/Ker qn, q̂r) is isomor-
phic to the space (E/Ker pn, p̂n). Therefore, (E,T) = s · lim

←
(E/Ker pn, p̂n) is

reflexive quojection.
c) ⇔ d) was already proved in the proof of Theorem 3.2.1.
c) ⇒ a) Let H be a closed hypersubspace of the space E, f ∈ E\H and

d(f,H) = r ∈ In. Then, as was proved above, we have

inf{qr(f − h);h ∈ H} = λ ≤ 1.

If λ ̸= 0, then we get that kn(H) is closed hypersubspace in a reflexive Banach
space (E/Ker qn, q̂r). Therefore, there exists h0 ∈ H such that

inf{q̂r(kn(f − h);h ∈ H} = q̂r(kn(f − h0)) = λ.

Further, if r ∈ int In, then λ = 1 and d(f,H) = d(f, h0) = r. If r = 2−n+1 and
0 ≤ λ < 1, then for some h1 ∈ H we obtain that f − h1 ∈ intVn. Let us assume
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that f − h1 ∈ 2 intVn+1, then we get d(f, h1) ≤ 2−npn+1(f − h1) < r, which
is impossible. This means that f − h1 ∈ intVn\2 intVn+1 and d(f, h1) = r =
2−n+1, i.e. h1 is the best approximation of f in H with respect to the metric d.

e) ⇒ a) obviously.
c) ⇒ e). Let again H be a closed hyperspace of E, f ∈ E \H and d(f,H) =

r ∈ In. When proving implication c) ⇒ a), it was proved that

inf{q̂r(Kn(f − h); h ∈ H} = λ ≤ 1.

Let {Knhm} be a minimizing sequence, i.e.

inf{q̂r(Knf −Knh); h ∈ H} = lim
m→∞

q̂r(Knf −Knhm) = λ.

Then the sequence {Knhm} is bounded in the reflexive Banach space
(E/Ker pn, p̂n) and therefore some of its subsequences converges to the element
Knh0 ∈ Kn(H). If λ = 0, then p̂n(Knf −Knh0) = 0 and f − h ∈ Ker pn. The
element h0 is a strong best approximation for f in H , which is proved similarly to
the proof of implication c) ⇒ a).

Corollary. The Fréchet space (E,T) with the generating sequence of absolutely
convex neighborhoods {Vn} is reflexive quojection if and only if every linear con-
tinuous functional x′ ∈ V 0

n (n ∈ N) attains its upper bound on Vn.

This corollary is a generalization of James’s Theorem.
Applying of these results, we obtain conditions for the existence of interpola-

tion splines.

Theorem 3.2.3. Let F1 be a Fréchet space and F be a closed absolutely convex
neighborhood of zero of the space F1. For each y ∈ R and non-adaptive informa-
tion I(f) = L(f) of cardinality 1, an interpolation spline exists if and only if the
space (F1, µF ), where µF is the Minkowski functional for F, is isomorphic to the
reflexive Banach space.

Proof. From the conditions of the theorem it follows that µF is a continuous semi-
norm on F1. If we assume that µF is the norm on F1, then from conditions for
the existence of an interpolation spline for each y ∈ R and L ∈ F ′1 we obtain
that every linear and bounded on F functional attains its upper bound on it. Now,
applying ([75], Theorem 1), we find that (F1, µF ) is a reflexive Banach space. Let
us say now that µF is a continuous seminorm on F1. Let us consider the subspace
KerµF and the quotient space F1/KerµF with the associated norm µ̂F defined
by the equality µ̂F (kx) = µF (x), where k : F1 → F1/KerµF is a canonical
mapping. The normed space (F1/KerµF , µ̂F ) is something other than the space
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(X, ∥ · ∥) from [158]. From the definition of the norm µ̂F and from the existence
of an interpolation spline in F1 for arbitrary y ∈ R and information I(f) = L(f),
we obtain that the interpolation spline also exists in the space (F1/KerµF , µ̂F )
for arbitrary y ∈ R and information Î(f) = L̂(kf), where L̂(kf) = L(f) for
each f ∈ F1. But the quotient space F1/KerµF is itself Fréchet space. If we
again apply ([75], Theorem 1) for the space F1/KerµF and the norms of µ̂F , we
obtain that the space (F1/KerµF , µ̂F ) is isomorphic to a reflexive Banach space.
It remains to note that the spaces (F1/KerµF , µ̂F ) and (F1, µF ) are isomorphic.

The converse statement can be easily obtained from Theorem 1.3.1, since
Ker I = KerL and it is either dense or closed. In the closedness case that takes
place in our case, due to the reflexivity of the space (F1/KerµF , µ̂F ), the subspace
KerL is proximal with respect to µ̂F .

Theorem 3.2.4. Let F1 be a Fréchet space generating with a sequence of non-
increasing absolutely convex neighborhoods of zero {Vn}. Then the following
statements are equivalent:

a) F1 is a reflexive quojection.
b) For each y ∈ R and non-adaptive information I(f) = L(f) of cardinality

1, an interpolation spline exists for every absolutely convex neighborhood Vn of
the space F1.

c) Vn = Bn+KerµVn
, where Bn is absolutely convex and weakly compact set

in F1.

Proof. a) ⇒ b). According to the theorem, the quotient spaces (F1/Ker µVn , µ̂Vn)
are reflexive Banach spaces for each n ∈ N. From Theorem 3.2.2 we immediately
obtain the validity of statement b).

b) ⇒ c). From Theorem 3.2.2 it follows that the spaces (F1/KerµVn , µ̂Vn) are
reflexive Banach spaces for each n ∈ N. From Corollary 1 of Theorem 2.3.2 we
obtain that the strong dual space (F1/KerµVn , µ̂Vn)

′ is isomorphic to the Banach
space Kerµ⊥Vn , which is considered in the induced topology of strongly conjugate
space. This topology is generated by polar of the set V 0

n (see also the proof of
Corollary 1 of Theorem 2.3.1). That’s why there are bounded sets Bn (n ∈ N) in
the space F1 such that V 0

n = B0
n ∩ Kerµ⊥v . If in this equality we go to polar in

the space F1, then, due to the reflexivity of the space F1, we obtain the equality
Vn = Bn +KerµVn .

c) ⇒ a) is proved similarly to the proof of implications c) ⇒ a) of Theorems
2.3.2.

It should also be noted that, by virtue of Corollary 2 of Theorem 2.3.2, in the
statement c) of Theorem 3.2.4, the set Bn can be chosen to be independent of
n ∈ N.
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Theorem 3.2.5. Let F1 be a Fréchet space with a generating sequence of non-
increasing absolutely convex neighborhoods of zero {Vn}, with normlike metrics
(2.5.2), (2.5.4) and metric (2.5.12). For any y ∈ R and non-adaptive information
I(f) = L(f) of cardinality 1, the spline exists if and only if the space F1 is reflexive
quojection.

The proof of this theorem actually follows from the proofs of Theorems 2.3.1
and 2.3.2. Consequently, a generalization of James’s Theorem to the case of
Fréchet spaces gives a necessary and sufficient condition for the existence of a
spline in the case of non-adaptive information of cardinality 1.

3.2.2 Reflexive Fréchet spaces with non-proximal hypersubspaces

Let us give examples of reflexive Fréchet spaces for which there is non-adaptive
information I(f) = L(f) of cardinality 1 such that the spline does not exist for
some y0 ∈ R.

Let us first point out on the projective limit of reflexive Banach spaces, which
has a non-proximal hypersubspace with respect to metrics d1 and d2. Consider
the non-normable projective limit of reflexive Banach spaces (E,T) with a non-
increasing generating sequence of strictly convex norms {∥ · ∥n}. In [189], it was
proved that in this case the norms q(2)r , r ∈ ]0, 1/2[, are also strictly convex. If all
closed in (E,T) hypersubspaces are proximal with respect to the metric d2, then,
due to [185], the space (E,T) turns out to be normable with respect to some norm
∥ · ∥n0 , n0 ∈ N, which is impossible. A similar result is valid for the metric d1.

In particular, this property is possessed by the countably normed space
W p,∞(R), which was introduced in [189]. W p,∞(R) is the space of all functions
having generalized derivatives of all orders such that f (s) ∈ Lp(R). For the space

W p,∞(R), the representation W p,∞(R) =
∞⋂
n=0

Wn
p (R) is true, where Wn

p (R) is

the Sobolev space for n ∈ N. The topology of this space is determined using the
sequences of strictly convex norms

∥f∥p,n = ∥f∥p + · · · ∥f (n−1)∥p, n ∈ N,

where

∥f∥p =
( ∞∫
−∞

|f(t)|pdt
)1/p

.

Embedding theorems for this space in Sobolev spaces can be found in Section 2.6.
From the reasoning given in Section 3.2, it also follows that with respect to d1

and d2 non-proximal closed hypersubspaces have:
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1. Reflexive Fréchet spaces in which total bounded sets do not exist. This
follows from the fact that in its strong dual space there are no continuous norms.

2. Reflexive Fréchet spaces on which there exist continuous norms.
3. Spaces of Fréchet-Montel type, non-isomorphic to the space ω.
Now we select a class of projective limits of reflexive Banach spaces in which

for any normlike metric d there exist nonproximal hypersubspaces. Let (E,T) be
a nuclear Fréchet space, non-isomorphic to ω, with an arbitrary normlike metric d.
It is well known that each nuclear space is represented in the form of the projective
limit of a sequence of Hilbert spaces. On the other hand, if in (E,T) all closed
hypersubspaces are proximal with respect to the normlike metric d, then as was
established in the proof of implication b ⇒ c) of Theorem 3.2.1, quotient spaces
E/Ker qn are Banach in the associated norm q̂r. But, since the quotient spaces of
nuclear spaces are nuclear, E/Ker qn will be finite-dimensional and (E,T) will
turn out to be isomorphic space ω, which is impossible. In particular, the space ω
is not isomorphic to the nuclear space of all infinitely differentiable functions on
the line E(R).

There is an example of a reflexive Fréchet space F1 (even space (FM)), quo-
tient space F1/KerµF of which is not complete with respect to the norm µ̂F .
Therefore, in such spaces there will always be absolutely convex neighborhoods F
and non-adaptive information of cardinality 1, for which there are no interpolation
splines. Similar examples of reflexive Fréchet spaces are specified in Section 3.2.
Moreover, if F1 is a nuclear Fréchet space, non-isomorphic to the space ω = RN ,
then for any neighborhood F of zero there is a non-adaptive information of cardi-
nality 1, for which interpolation splines do not exist.

3.3 Generalization of the Bishop–Phelps theorem for quojections

Here we generalize the well-known Bishop-Phelps theorem into an approximate
form for the metric (2.5.8). In particular, simple characterizations of proximal
hypersubspaces in function spacesC(T ), L 1

loc(R) are given, where T is a separable
locally compact space, countable at infinity. In the works [19, 122], the following
theorem was proved.

Theorem 3.3.1. Let (E,T) be a quejection with a non-increasing generating se-
quence of closed neighborhoods of zero Vn = 2−n+1B + Ker pn, where B is a
closed, bounded absolutely convex subset in E and pn are the Minkowski function-
als for Vn. Then the following statements are valid:

a) The set P of all functionals x′ ∈ E′ attaining its upper bound on each Vk
(k ≥ n) as soon as x′ ∈ E′V 0

n
(E′V 0

n
is the Banach space spanned on the polar
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V 0
n of the neighborhood Vn), is everywhere dense in the strongly conjugate strict

(LB)-space E′β.
b) Closed hypersubspaceH = Kerx′ = {h ∈ E; ⟨h, x′⟩ = 0}, where x′ ∈ E′,

is proximal in E with respect to the metric (2.5.8) if and only if x′ ∈ P.

Proof. a) As is known, the quotient space E/Ker pn is Banach space according to
the associated norm p̂n. Passing on to polars in E′ in the given equality, we obtain
that V 0

n = 2n−1B0 ∩ Ker p⊥n , where Ker p⊥n is a weakly closed subspace of E′

orthogonal to Ker pn. It follows that Ker p⊥n , considered in the induced topology
of the space E′β , coincides with the Banach space E′V 0

n
. Therefore, in the future we

will consider Ker p⊥n with unit ball V 0
n and the corresponding norm ∥·∥′n, assuming

that it is isometric to the space (E/Ker pn, p̂n)
′. Note that the indicated isometry

is carried out by the mapping k
′
n, which is conjugate to the mapping kn. From the

above it follows that x′ ∈ Ker p⊥n attains its upper bound on Vn, i.e. is supporting
to Vn if and only if F = k

′(−1)
n x′ is supporting to V̂n = knVn = 2−n+1kn(B).

On the other hand, one can directly verified that if x′ ∈ Ker p⊥n is supporting to
Vn, then it is supporting to B and, therefore, to each Vk (k ≥ n). Denote by Pn
the set of functionals x′ ∈ Ker p⊥n that are supporting to Vn. Then Pn ⊂ Pn+1

and P =
⋃
n∈N

Pn. From the Bishop-Phelps Theorem it follows that k
′(−1)
n (Pn) is

everywhere dense in (E/Ker pn, p̂n)
′ and therefore Pn is everywhere dense in

(Ker p⊥n , ∥ · ∥′n). Let us now prove that P is everywhere dense in the space E′β =

s · lim
→

Ker p⊥n , i.e. in the strong inductive limit of the sequences of Banach spaces

{(Ker p⊥n , ∥·∥′n)}. Let x′0 ∈ E′, then x′0 ∈ Ker p⊥n0
for some n0 ∈ N. By Corollary

1 of Proposition 2.2.2, in the strict (LB)-space E′β there is a neighborhood basis U
such that for each neighborhood ofU ∈ U its Minkowski functional pU is the norm
on E′, inducing on each Ker p⊥n the topology of the norm ∥ · ∥n. Therefore, for any
neighborhood U ∈ U , there exists a′ ∈ Pn0 such that x′0 − a′ ∈ U ∩Ker p⊥n0

⊂ U.
b) Let x′ ∈ P, x′ ∈ E′

V 0
n+1

\E′V 0
n

, f ∈ E\H, where H = Kerx′ and d(f,H) =

r ∈ [ 2−m, 2−m+1[. Obviously, then m ≥ n. By Proposition 3.1.2 we have that
inf{qr(f − h);h ∈ H} = λ ≤ 1. As noted when proving implication a) ⇒ b) of
Theorem 3.2.2, there is a linear continuous functional F on E with the following
properties: sup{|⟨z, F ⟩|; z ∈ Kr} = 1, ⟨f, F ⟩ = λ and ⟨h, F ⟩ = 0 for all h ∈ H.
From these conditions we obtain that F = µx′. Without loss of generality, we can
assume that µ = 1. By condition, x′ attains its upper bound at every Kr, where
r < 2−n+1. Therefore, there exist α0 ̸= 0 and h0 ∈ H such that

⟨α0f + h0, x
′⟩ = 1 = qr(α0f + h0)
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and therefore 〈
f +

h0
α0
, x′
〉
=

1

α0
= λ = qr

(
f +

h0
α0

)
.

Let us now consider two cases: 2−m < r < 2−m+1 and r = 2−m. In the
first case we obtain that λ = 1, i.e. d(f, h1) = r and h1 = −h0

λ0
is the best

approximation element for f ∈ E in H with respect to the metric (2.5.8).
Let now r = 2−m. If in this case λ = 1, then the statement is proved in a

similar way. If λ < 1, then f − h1 = f + h0/α0 ∈ intVm+1. Let us assume
that f − h1 ∈ 2 intVm+2, then we obtain that d(f, h1) = 2−m−1pm+2(f − h1) <
2 · 2−m−1 = 2−m, which is impossible. Hence, f − h1 ∈ intVm+1\ int 2 Vm+2

and d(f, h1) = 2−m = r, i.e. h1 is the best approximation of f in H .
Let us now prove the converse statement. Let x′ ∈ E′

V 0
n+1

\E′V 0
n

and H =

Kerx′ be proximal in E with respect to the metric (2.5.8). It should be proved
that x′ ∈ P, i.e. x′ attains its upper bound on each neighborhood Vk (k ≥ n +
1) and on each Kr (r < 2−n+1). Let r ∈ [ 2−m, 2−m+1[, where m ≥ n and
sup{|⟨z, x′⟩|; z ∈ Kr} = δ. Without loss of generality, we can assume that δ = 1.
Next, we choose f0 ∈ E such that ⟨f0, x′⟩ ̸= 0, then qr(f0) ̸= 0. Therefore, we
also have that inf{qr(f0 − h);h ∈ H} = l > 0. Without loss of generality, we can
again assume that l = 1. By virtue of Proposition 3.1.4, we obtain d(f0, H) = r.
By assumption, there exists h0 ∈ H such that d(f0, h0) = r. Then it is obvious
that

qr(f0 − h0) = inf{qr(f0 − h);h ∈ H} = 1.

By virtue of the applied result, we obtain that there exists F ∈ E′ such that
sup{|⟨z, F ⟩|; z ∈ Kr} = 1, ⟨f0, F ⟩ = 1 = qr(f0 − h0) and ⟨h, F ⟩ = 0 for
all h ∈ H. From this we obtain that F = µx′ and it attains its upper bound on Kr.
Therefore, x′ ∈ P. The case x′ ∈ E′

V 0
1

is considered similarly.

In [39], we gave a description of the set P for known quojections, generalizing
the results from [214] and [122]. From here we obtain that the following is valid.

Proposition 3.3.2. Let T =
⋃
n∈N

Tn be a separated locally compact space count-

able at infinity and CR(T ) be the quojection of all real continuous functions on
T with the sequence of seminorms pn(f) = 2n−1max{|f(t)|; t ∈ Tn} and the
metric (2.5.8). Then the following statements are valid:

a) The set P ⊂ C ′R(T ) = MC(T ) consists of Radon measures µ with compact
support for which µ+ and µ− have disjoint supports.

b) The closed hypersubspace Kerµ is proximal in CR(T ) with respect to the
metric (2.5.8) if and only if µ ∈ P.
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Proposition 3.3.3. Let L1
loc(R) be a quojection with the sequence of seminorms

pn(f) =

n∫
−n

|f(t)|dt

and the metric (2.5.8). Then the following statements are valid.
a) The set P ⊂ (L1

loc(R))
′ = L∞0 (R) for the space L1

loc(R) consists of all
F ∈ L∞0 (R) attaining its essential supremum on a set of positive measure, where
L∞0 (R) is the space of all (equivalent classes) measurable and essentially bounded
real functions on R equal to zero outside of some compact interval.

b) The closed hypersubspace KerF is proximal in L1
loc(R) with respect to the

metric (2.5.8) if and only if F ∈ P.

The Bishop–Phelps Theorem shows that in the case of quojections the set P
of all non-adaptive information I(f) = L(f) of cardinality 1, for which a spline
exists for any y ∈ R, is everywhere dense in the strong topology of the dual strict
(LB)-space.

3.4 Sufficient conditions for the existence of splines of any cardinality

It is well known that every Fréchet space (E,T) is isomorphic to a closed sub-
space of the product of the sequence of Banach spaces, i.e. to trivial quojection.
Therefore, the closed subspace of a quojection, generally speaking, is not even dis-
tinguished. Let G be a distinguished closed subspace of the quojection E. From
the characterization of the strong dual to the subspace [65], we obtain that if G is a
quojection, then the quotient space E′β/G

⊥ of the strict (LB)-space E′β is a strict
(LB)-space.

Therefore, by virtue of Theorem 2.3.3, we have that every closed subspace
of reflexive quojections (E,T) is quojection if and only if each quotient space of
strictly (LB)-space E′β is a strict (LB)-space. By [16], if the Fréchet space (E,T)
is not isomorphic to B × ω, where B is is a Banach space, then it has a nuclear
Koethe subspace. On the another hand, each closed subspaceG of the spaceB×ω
is either of the same shape, or is isomorphic to a Banach space, or isomorphic to
the space ω. It follows that every closed subspace of a quojection E is a quojection
if and only if E is isomorphic to the space B × ω, where B is a Banach space.
This, in turn, is equivalent to the fact that each quotient space E′β over a weakly
closed subspace is strict (LB)-space.

Theorem 3.4.1. Let (E,T) be a non-normed Fréchet space with the sequence of
seminorms {pn}, where p1 ̸= 0 and 2pn ≤ pn+1 (n ∈ N). Then the following
statements are equivalent:
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a) Each nonnormable closed subspace of the space E is proximal with respect
to the metric (2.5.8).

b) Each continuous linear functional x′ ∈ K0
r (r > 0) attains its supremum on

Ks (s ≤ r), and its restriction to any nonnormable closed subspaceG of the space
(E,T) attains its supremum on Ks ∩G.

c) For the space (E,T) and each of its nonnormable closed subspace G, the
quotient spaces

(E/Ker pn, p̂n) (n ∈ N) and (G/Ker pn,G, p̂n,G), n ∈ N,

are reflexive Banach spaces.
d) For the space E′β = s · lim

→
(Ker p⊥n , ∥ · ∥′n), where ∥ · ∥′n is the Minkowski

functional for V 0
n and for each nonnormed subspaceG of the spaceE, the equality

G′β = s · lim
→

(Ker p⊥n , ∥ · ∥′n)/(Ker p⊥n ∩G⊥)

is true.
e) The quotient spaces (E/Ker pn, p̂n) (n ∈ N) are reflexive Banach spaces

and for an arbitrary nonnormable closed subspace G, the sets kn(G) are closed
in (E/Ker pn, p̂n) (n ∈ N), where kn : E → E/Ker pn are canonical homomor-
phisms.

Proof. a) ⇒ b). The first part of b) follows from Theorem 3.2.2. Let G be a
nonnormable closed subspace of the spaceE, x′ ∈ K0

r and s ≤ r. Let pm (m > 1)
(resp. p1) be the first seminorm in the sequence {pm}, whose restriction to G is
not identically zero. Let us show that this is equivalent to the equality sup{|g|; g ∈
G} = 2−m+2 (m > 1) (resp. sup{|g|; g ∈ G} = ∞). Indeed, if 2−m+1 < l <
2−m+2, then for g′ ∈ G with pm(g′) = 1 we have

ql(2
m−1lg′) = 2−m+1l−1 · 2m−1 · l pm(g′) = 1,

i.e. |2m−1lg′| = l. Further, if there exists an element g0 ∈ G such that |g0| >
2−m+2, then g0∈K2−m+2 and pm−1(g0) > 1, which contradicts the choice of
number m. The converse assertion is easily proved, and we omit the proof. Hence
G ⊂ Ks for any r ≥ s ≥ 2−m+2, the restriction of x′ to G is identically equal to
zero, and x′ attains its supremum at the element 0 ∈ G ∩Ks.

Assume now that 2−m+1 ≤ s < 2−m+2 and that g1 ∈ G is such that ⟨g1, x′⟩ ≠
0. Then pm(g1) ̸= 0. Consider the closed subspace HG ⊂ E defined by the equal-
ity HG = H ∩G, where H = Kerx′. Obviously, g1∈̄HG and G = [g1]+HG, i.e.,
G is the topological sum of the one-dimensional space [g1] spanned by g1 and the
subspace HG. It follows by assumption that the closed hypersubspace H is also
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closed with respect to the seminorms qs. This also gives us that HG is closed in
G with respect to the restriction of qs to G, which means that inf{qs(g1 − h);h ∈
HG} = l > 0. We can assume that l = 1. By the assumption, this implies that
d(g1, HG) = d(g1, h0) = s for some h0 ∈ HG, i.e. qs(g1 − h0) = 1. If we now
repeat the arguments in the proof of the implications of a) ⇒ b) in Theorem 3.2.2,
we get that the restriction of x′ to G attains its supremum on Ks ∩ G. The case
when s ∈ [2−n+1, 2−n+2[, where n > m, is handled similarly.

b) ⇒ c) is proved by repeating the arguments in the proof of b) ⇒ c) in Theo-
rem 3.2.2.

c) ⇒ d) By the assumptions,

E′β = s · lim
→

(E/Ker pn, p̂n)
′ = s · lim

→
(Ker p⊥n , ∥ · ∥′n)

and the representation G′β = s · lim
→

(G/Ker pn,G, p̂n,G)
′ is valid for each non-

normable closed subspace G ⊂ E. But the space (G/Ker pn,G, p̂n,G) is isometric
to the subspace kn(G) of the quotient space (E/Ker pn, p̂n), and this isometry
is implemented by the correspondence kn,G(g) → kn(g), where kn,G : G →
G/Ker pn,G is the canonical mapping. Indeed, the equalities p̂n,G(kn,G(g)) =
pn,G(g) = pn(g) = p̂n(kn,G) are valid and therefore kn(G) is closed subspace
in (E/Ker pn, p̂n). Further, kn(G)′ = (E/Ker pn)

′/kn(G)
⊥. But, as noted in

the proof of statement c) of Theorems 2.3.1, (E/Ker pn, p̂n)
′ = Ker p⊥n , where

Ker p⊥n is considered in the induced topology, which coincides with the topology
∥ · ∥′n with the unit ball V 0

n . Next, kn(G)⊥ = k
′(−1)
n (G⊥) = Ker p⊥n ∩ G⊥ and

G′β = s · lim
→

Ker p⊥n /(Ker p⊥n ∩G⊥).
d) ⇒ e) From the conditions we immediately obtain that every closed non-

normable subspace G is a quojection. Indeed, it follows from statement a) of
Theorem 2.3.2. This means that the quotient spaces (G/Ker pn,G, p̂n,G) are re-
flexive Banach spaces and therefore, by virtue of the above, kn(G) are closed in
(E/Ker pn, p̂n) (n ∈ N).

e) ⇒ a) Suppose that G is a closed nonnormable subspace of E, x ∈ E\G and
d(x,G) = r ∈ [ 2−n, 2−n+1[. Then, by virtue of corollary of Proposition 3.1.4, the
following equality is true:

inf{pn+1(x− g); g∈ G} =

{
2nr, when r ∈ ] 2−n, 2−n+1[,

λ (λ ≤ 1), when r = 2−n

= inf{p̂n+1(kn+1(x− g); g ∈ G}.

Since kn+1(G) is closed in the reflexive Banach space (E/Ker pn+1, p̂n+1),
by assumption, kn+1(G) is proximal with respect to the norm p̂n+1. This implies
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that there exists an element g0 ∈ G such that

qr(x− g0) =

{
1, when r ∈ ] 2−n, 2−n+1[,

λ (λ ≤ 1), when r = 2−n.

Repeating now the arguments in the proof of c) ⇒ a) in Theorem 3.2.2, we get
that G is proximal in E with respect to the metric (2.5.8). The proof of Theorem
3.4.1 is complete.

Corollary 1. Let a Fréchet space (E,T) satisfy one of the equivalent conditions
of Theorem 3.4.1. Then each of its normable subspaces is also proximal in E with
respect to the metric (2.5.8).

Indeed, let G be a closed normable subspace of (E,T) with respect to the
seminorm pn0 , i.e. the set G ∩ {x ∈ E; pn0(x) ≤ 1} is a bounded neighborhood
in G. Then pn,G is a norm on G and (G/Ker pn,G) is a Banach space isomor-
phic to the closed subspace kn(G) of the space (E/Ker pn, p̂n) for n ≥ n0. For
the proximality of G, it suffices to prove that kn(G) is closed in (E/Ker pn, p̂n)
also for n < n0. To do this, we consider the closed subspace G1 of E defined by
G1 = k−1n0

kn0(G), where kn0 : E → (E/Ker pn0 , p̂n0) is the canonical map-
ping. The subspace G1 is nonnormable, since it contains the subspace Ker pn0

and kn0(G1) = kn0(G). Further, kn = πnm ◦ km (m ≥ n), where πnm :
(E/Kerm, p̂m) → (E/Ker pn, p̂n) is the canonical homomorphism. This implies
that kn(G) = πnn0 ◦ kn0(G1) = kn(G1) (n ≤ n0), and the assertion is proved in
view of the fact that kn(G1) is closed in (E/Ker pn, p̂n).

Corollary 2. A Fréchet space (E,T) has the proximality property with respect to
the metric (2.5.8) if and only if it is isomorphic to the space B × ω, where B is a
reflexive Banach space.

The validity of this consequence follows from the reasoning which were given
before the formulation of Theorem 3.4.1 and Corollary 1.

Theorem 3.4.1 with its consequences is valid for normlike metrics d1 and d2.
In particular, the proximality property has the Fréchet space l2 × ω.

It should be noted that the space ω is the unique Fréchet space with the prox-
imality property, which does not have infinite-dimensional Banach subspace. In-
deed, it is well known that every infinite-dimensional subspace of ω is isomorphic
to the space ω. In particular, this follows from Theorem 3.4.1, since every infinite-
dimensional subspace of the space ω is nuclear and quojection.

Let now (E,T) be an arbitrary Fréchet space with the proximality property
that does not have an infinite-dimensional Banach subspace, and G be its arbitrary
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infinite-dimensional subspace. By virtue of Theorem 3.4.1, G is a quojection and
therefore on G there is no continuous norm. It follows from [16] that G contains
a subspace isomorphic to the space ω. But every infinite-dimensional subspace G
of ω contains a subspace isomorphic to the space ω only if E itself is isomorphic
space ω [16].

By an insignificant modification of the above reasoning, it can be shown that
Theorem 3.4.1 remains valid if in its equivalent statements the requirement “every
closed nonnormed subspace” is replaced by the requirement “every closed sub-
space”.

It should also be noted that when proving the implication a) ⇒ b) of Theorem
3.4.1, we asserted the closedness of the subspace HG in G with respect to the
restriction of the seminorm qs to G. Since G is a nonnormed Fréchet space, we
cannot assume that every its closed subspace is closed under some half-norms.
More precisely, due to the results of [37], in any nonnormed Fréchet space, there
is a closed subspace, not closed with respect to some seminorm.

Let us now prove that for the constructed by us metric we have a positive an-
swer to the following question: does a metric exist on a metrizable space E =∏
k∈N

(Ek, ∥ · ∥k), where (Ek, ∥ · ∥k) are normed spaces with respect to which the

product G =
∏
k∈N

Gk of proximal in (Ek, ∥ · ∥k) subspaces Gk is proximal.

Indeed, let us define the topology of the space E using the sequences of semi-
norms

pn(x) = 2n−1
n∑
k=1

∥xk∥k, x = {xk} ∈ E, n ∈ N.

From the proximality ofGk in Ek it follows thatG is closed in E. Let x = {xk} ∈
E\G and d(x,G) = r ∈ [ 2−n, 2−n+1[ , then we have

inf{pn+1(x− g); g ∈ G} = 2n inf

{ n+1∑
k=1

∥xk − gk∥k; g = {gk} ∈ G

}

= 2n
n+1∑
k=1

∥xk − g∗k∥k = pn+1(x− g∗) =

{
2nr, when r ∈] 2−n, 2−n+1[ ,

λ (≤ 1), when r = 2−n,

where g∗ = {g∗k} ∈ G and g∗k is the best approximation of xk in Gk with respect
to the norm ∥ · ∥k (k = 1, . . . , n + 1), and g∗k ∈ Gk are arbitrary elements (k =
n + 2, . . . ). Therefore, d(x, g∗) = r and G is proximal in E with respect to the
metric d.
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3.4.1 Fréchet spaces with proximal hypersubspaces, but having non-proxi-
mal subspaces

From Theorem 3.4.1 it follows that the problem of finding a Fréchet space with
proximal hypersubspaces, but having non-proximal subspaces, is equivalent to
finding a reflexive quojection whose some subspace is not a quojection. In turn,
this is equivalent to finding a reflexive strict (LB)-space, some quotient space of
which is not strict (LB)-space, i.e. that part of question 3, posed in [43], which is
solved negatively in [65]. That is why the mentioned counterexamples from [65]
and [185] are identical and have the following form: let G be the nuclear Fréchet
space, which is not isomorphic to the space ω. The space G is identified with
the subspace of the product of Hilbert spaces E =

∏
n∈N

Hn, and the space G′β is

identified with the quotient space ⊕Hn/G
⊥ of direct sum

⊕
n∈NHn of sequence

of Hilbert spaces that are not strict (LB)-spaces. Consequently, in the space E,
every closed hypersubspace is proximal, but E has a nonproximal subspace. In
particular, such is some hypersubspace of the space G. In connection with the task
3 from [43], it turns out that the reflexive strict (LB)-space has a quotient space
that is not strict (LB)-space if and only if it is not isomorphic to the space B × ϕ,
where B is a reflexive (B)-space, and ϕ = ω′ is the space of all finite sequences.

Product (Lp(R))N (1 < p < ∞) of a sequence of reflexive Banach spaces,
isomorphic to the space Lp(R), is reflexive quojection. In the work [191], it was
proven that the countably normed space W p,∞(R) is isomorphic to the subspace
(Lp(R))N .

The given examples show that defined on these spaces any linear continuous
functional x′ ∈ K0

r attains on Ks (s ≤ r) its supremum, but in these spaces there
is a nonnormed closed subspaceG such that for some s ≤ r the restriction of some
x′ to G no longer attains on Ks ∩G its supremum.

From Theorems 3.2.2 and 3.4.1 it follows that the following statements are
true:

(i) In the strict Fréchet–Hilbert spaces E every closed hypersubspace is proxi-
mal with respect to normlike metrics (2.5.2) and (2.5.4) and metrics (2.5.8).

(ii) In Fréchet–Hilbert spacesE every closed subspace is proximal with respect
to the mentioned metrics if and only if it is isomorphic to the space ω or l2 × ω.

From these statements it turns out that in the space (l2)N every closed hyper-
subspace is proximal with respect to the mentioned metrics. However, it contains
nonproximal closed nonnormed subspaces. Let us now present a sufficient condi-
tion of proximality of closed subspaces of quojections.

Let E be a quojection with a sequence of seminorms {pn}, where 2pn ≤ pn+1

(n ∈ N) and p1 ̸= 0. Consider E with the metric (2.5.8). An important property
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of this metric is that in the case of Fréchet–Hilbert spaces the seminorms qr, which
are Minkowski functionals for balls of this metrics Kr, are again generated by
semiinner products, which, by virtue of (2.5.9), differ from the given ones only by
positive factors. Let G be a closed subspace of the space E. Let us consider the
quantity sup{d(f,G); f ∈ E}. It is equal either to ∞, or 2−m+2 for some m ≥ 2.
This follows from the simple fact that if d(f, g) = r ∈ In for some f ∈ E and
g ∈ G, then sup{d(f,G); f ∈ E} ≥ sup In. From here we get the equality

sup{d(f,G); f ∈ E} = rm =

{
∞, when m = 1,

2−m+2, when m ≥ 2.

Proposition 3.4.2. Let E be a reflexive quojection with the sequence of seminorms
{pn}, where 2pn ≤ pn+1 (n ∈ N), p1 ̸= 0, and metric (2.5.8). Let also G be a
closed subspace ofE and sup{d(f,G); f ∈ E} = rm. If the set kn(G) is closed in
(E/Ker pn, p̂n) for n ≥ m, where kn : E → E/Ker pn is a canonical mapping,
then G is proximal in E with respect to the metric d.

Proof. Let f ∈ E\G and d(f,G) = r ∈ In, then, by virtue of Proposition 3.1.4,
the equality

inf{pn(f − g); g ∈ G} =

{
2n−1r, when r ∈ int In,

λ ≤ 1, when r = 2−n+1 (n ∈ N)

is true. Since r < rm and hence n ≥ m, then kn(G) is closed in the reflexive
Banach space (E/Ker pn, p̂n) and is proximal in it with respect to the norm p̂n.
Now, repeating the reasoning, which was given in the proof of implication c) ⇒ a)
of Theorem 3.2.2, we find that G is proximal in E with respect to the metric d.

Similar reasoning can be used to prove this proposition for normlike metrics d1
and d2.

Corollary. Let E be a strict Fréchet–Hilbert space with the sequence of Hilbert
seminorms {pn}, where 2pn ≤ pn+1 (n ∈ N), p1 ̸= 0, (E/Ker pn, p̂n) = Hn,
subspace G = G1 + Ker ps, where Hm−1 ⊂ G1 ⊂ Hm, G1 is a closed subspace
of the spaces (Hm, pm,Hm), H0 = {0} and s ≥ m, s ∈ N. Then G is proximal in
E with respect to the metric (2.5.8).

Proof. Consider the case when G = G1 + Ker ps (s ≥ 1), where G1 is a closed
subspace of the space H1. Due to Corollaries of Theorem 2.4.3, G is a prequotient
subspace of space E. Since the restriction of kn to Hn is an isomorphism of Hn

onto (E/Ker pn, p̂n) for any n, then kn(G1) is closed in (E/Ker pn, p̂n) for any
1 ≤ n ≤ s. Let Ms be the topological complement of Hs to Hs+1, then Ms ⊂
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G and G1 + Ms is closed subspace of the space Hs+1. Obviously, ks+1(G) =
ks+1(G +Ms) = π−1s,s+1(ksG1). By the similar reasoning it will be proved that
kn(G) is closed in (E/Ker pn, p̂n) for n > s + 1. Further, since inf{p̂1(k1f0 −
k1g); g ∈ G1} = 1 for some f0 ∈ H1 ⊂ E, we have sup{d(f,G); f ∈ E} =
r1 = ∞. According to Proposition 3.4.2, G is proximal in E with respect to the
metric d. The proof of the general case is immaterial differs from the considered
one and we omit it.

It is not known what the situation is in the case of non-adaptive information
of the cardinality greater than one, since it is not known whether the arbitrary
subspace of finite codimension of quojection is proximal. This issue has not even
been solved in case of arbitrary strict Fréchet–Hilbert spaces. However, from the
results of Section 3.4 it turns out that if F1 = X×ω,whereX is a reflexive Banach
space, then for any neighborhood of zero F of the space F1, the representation
F = B+KerµF is valid, and for any non-adaptive information of any cardinality,
there are interpolation splines. A similar statement is true for an arbitrary closed
subspace of the space X × ω.

3.4.2 Proximality of finite-dimensional subspaces in metrizable locally con-
vex spaces

Let (E, d) be a metric space, G ⊂ E, f ∈ E\G and {gk} be a sequence of
elements from G such that

lim
k→∞

d(f, gk) = d(f,G).

The sequence {gk} is said to be minimizing for f in G with respect to the metric d.
Recall thatG is called approximate compact in (E, d) if each minimizing sequence
{gk} is compact inG, i.e. from {gk} we can extract a convergent subsequence. Ap-
proximate compactness and proximality of finite-dimensional subspaces in metriz-
able locally convex spaces with respect to the metrics (2.5.1), (2.5.2) and (2.5.4)
have been discussed in [189, 191, 205]. Let us now present some results regarding
the metric (2.5.8).

Proposition 3.4.3. LetE be a metrizable LCS with a sequence of seminorms {pn},
where 2pn ≤ pn+1 (n ∈ N) and p1 ̸≡ 0. Then each of its finite-dimensional
subspaces G is proximal in E with respect to the metric (2.5.8).

Proof. Let f ∈ E\G, d(f,G) = r, then as it was proved above, we have

inf{qr(f − g); g ∈ G} =

1, when r ∈
⋃
n∈N

int In,

λ, when r = 2−n+1 (n ∈ N),
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where 0 ≤ λ ≤ 1. If the restriction of qr onG is a norm, thenG is closed inE with
respect to the norm qr. Therefore, using the reasoning, which are well known for
normed spaces, we obtain the existence of the best approximation g0 with respect
to qr and, therefore, with respect to the metric (2.5.8).

If the restriction of qr on G is not a norm, then G ∩ Ker qr = G1 ̸= {0}. Let
us decompose G as the sum of G1 and the subspace M . Let {gk} be minimizing
sequence for f in G with respect to qr, i.e. lim

k→∞
qr(f − gk) = λ. Let us represent

each gk = g
(1)
k +mk, where g(1)k ∈ G1 and mk ∈ M. Then we have lim

k→∞
qr(f −

gk) = lim
k→∞

qr(f−mk). The sequence {mk} is bounded inG and therefore from it

one can identify a subsequence converging to some elementm0 ∈ G. As is known,
m0 will then be the best approximation for f in G with respect to the metric d.
Together with m0, the best approximation for f in G with respect to qr and with
respect to the metric (2.5.8) is also each element of the formm0+g,where g ∈ G1.
Example 2 from Section 3.1 shows that λ can be zero for r = 2−n+1 (n ∈ N). In
this case f −m0 ∈ Ker qr.

Proposition 3.4.4. LetE be a metrizable LCS with a sequence of seminorms {pn},
where p1 ̸≡ 0, 2pn ≤ pn+1 (n ∈ N), and the metric (2.5.8), G be its finite-
dimensional subspace and sup{d(f,G); f ∈ E} = rm. G is approximately com-
pact in E with respect to the metric (2.5.8) if and only if the restriction of the
seminorm pm to G is a norm.

Proof. Let {gk} be a minimizing sequence for f in G with respect to the metric d
and

lim
k→∞

d(f, gk) = d(f,G) = r ∈ In. (3.4.1)

Obviously, n ≥ k and therefore the restriction of pn to G is the norm. From the
condition we obtain that for every ε > 0, there is kε ∈ N such that d(f, gk) < r+ε
for k ≥ kε, i.e. f − gk ∈ intKr+ε. If r + ε ∈ In, then f − gk ∈ 2n−1r(1 +
ε
r ) intVn and therefore qr(f −gk) = 2−n+1r−1pn(f −gk) < 1+ ε

r , when k > kε.
So, the sequence {gk} is bounded by the seminorm qr. Hence, due to the finite
dimensionality of G and from the fact that the restrictions of qr to G are norms, it
follows the existence of a subsequence {gkj} converging to some element g0 ∈ G.
Namely, g0 is the best approximation for f in G.

Now, let G be approximately compact, r ∈ int In (n ≥ m) and for some
y ∈ G (y ̸= 0), the equality qr(y) = 0 be valid. Then, by condition, for some
f ∈ E, we have that d(f,G) = r and therefore inf{qr(f − g; g ∈ G} = 1. Due
to the finite-dimensionality of G, there exists g0 ∈ G such that qr(f − g0) = 1.
Moreover, for arbitrary number λ, the following equality holds: qr(f−g0−λy) = 1
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and therefore d(f, g0 + λy) = r = d(f,G). If we now take the minimizing with
respect to the metric sequence gk = g0 + ky, k ∈ N, then it doesn’t be compact.

It should be noted that for known normlike metrics, every minimizing with
respect to the metric sequence is also minimizing for the corresponding Minkowski
functional. By virtue of Proposition 3.1.4, this statement is true in the case of
the metric (2.5.8) for the minimizing sequence {gk} satisfying (3.4.1) for r ∈
int In. The example given after Proposition 3.1.4 shows that there is a sequence
of approximately compact subspace, minimizing with respect to the metric that is
not the same for the corresponding seminorm.

Note 3.4.1. In the work [5], the problem of the best approximation of a fixed func-
tion f ∈ C(R) in the subspace Gm of polynomials whose degree does not exceed
m − 1, with respect to the metric (2.5.4), is studied. It reduces to the problem
of uniformly best approximation the restriction of a function f on some segment
[a′, b′] ⊂ R by a subspace Gm with an upper semi-continuous weight function. At
the same time, this weight function has a rather complex form and depends on the
distance f to Gm.

We studied the same problem in the Fréchet spaceC(]a, b[) of continuous func-
tions on open interval ]a, b[ with respect to the metric (3.1.4) and generalized the
known results of the best approximation theory [78]. Due to the properties of this
metric, it is proved that if d(f,Gm) ̸= 2−n+1 (n ∈ N), this distance is equal to
the best uniform approximation Em(f ;Gm; [a′, b′]) of the restriction f on a cer-
tain segment [a′, b′] ⊂]a, b[, without a weight function. Moreover, the polynomial
of the best approximation with respect to the metric d is also the polynomial of
the best uniform approximation on some [a′, b′]. It should be noted that a′ and b′

depend on f and m, and ↓ limm→∞ a
′ = a, ↑ limm→∞ b

′ = b.
In Section 3.1, Example 2 is given showing that if f ∈ C(R), d(f,G2) =

d(f, g0) = 1, then g0 is not the best uniform approximation element on the segment
[−1, 1] with respect to the seminorm || · ||1.

Some results obtained for the space C(]a, b[) are extended to the space C(T )
of continuous functions, where T is a locally compact space countable at infinity.

3.5 On interpolation splines in the Fréchet space of differentiable locally in-
tegrable functions

In this section, we present sufficient conditions for the existence of interpolation
splines in the Fréchet–Hilbert space of differentiable locally integrable functions
W 2,k
loc (R). To this end, we present the sufficient conditions for non-adaptive infor-

mation I such that the finite defect subspace Ker I would be strongly proximal and
the subspace Ker I has an orthogonal complement in the space W 2,k

loc (R).
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Theorem 3.5.1. Let on the Fréchet–Hilbert space of k-differentiable (k is fixed))
and in square locally integrable functions F1 = W 2,k

loc (R) an increasing (with
respect to n) sequence of seminorms be given:

∥f∥2,kn =

(∑
s≤k

n∫
−n

|f (s)(t)| dt
)1/2

, n ∈ N, (3.5.1)

Un = {f ∈ W 2,k
loc (R); ∥f∥

2,k
n ≤ 1}, I : F1 → Rm is non-adaptive information

I(f) = [L1(f), L2(f), . . . , Lm(f)] of cardinality m, where Li ∈ F ′1, i = 1,m.
Then the following statements are valid:

a) If m = 1, then for any y ∈ R and arbitrary non-adaptive information in the
space W 2,k

loc (R), there is an interpolation spline.
b) If k = 0, then for arbitrary y ∈ Rm and arbitrary non-adaptive information

I(f) = [L1(f), L2(f), . . . , Lm(f)], where the functionals Li are generated by the
functions gi of the space L2[−1, 1], in the space W 2,0

loc (R) = L2
loc(R) there is an

interpolation spline.
c) If the closed subspace Ker I is a quojection, then for arbitrary y ∈ Rm and

arbitrary non-adaptive information in the space W 2,k
loc (R), there exists an interpo-

lation spline.

Proof. a) Let

B =
{
f ∈W 2,k

loc ; ∥f∥
2,k
n =

(∑
j≤k

∞∫
−∞

|f (j)(t)|2dt
)1/2

≤ 1
}
.

It is easy to prove that Up,kn ⊂ B+Ker ∥ ·∥2,sn for any n ≥ 2. Therefore, according
to Theorem 2.3.1, the space W 2,k

loc (R) is a reflexive quojection. For m = 1, the
hyperspace Ker I is strongly proximal in the space W 2,k

loc (R) (see Theorem 3.2.1)
and therefore an interpolation spline exists (see Theorem 3.2.3).

b) For k = 0, we have W 2,0
loc (R) = L2

loc(R). Let m = 2 and I(f) =
[L1(f), L2(f)], where Li ∈ F ′1, i = 1,2. It is known (see Theorem 2.4.1) that
L2
loc(R) = L2

0[−n, n]+̇ Ker ∥·∥2,0n , where L2
0[−n, n] is the subspace of those func-

tions from L2
loc(R) that are extended to the entire axis by zero. It is also known

(see Theorem 2.4.1) that F ′1 = (L2
loc(R))

′ = L2
0(R) =

∞⋃
n=1

L2
0[−n, n]. In the case

when the linear continuous functionals L1 and L2 are generated by the functions
g1 and g2 from L2

0[−1, 1], we will have that Ker I = KerL1 ∩ KerL2 will be a
closed subspace of codimension 2 in L2

0[−1, 1] and therefore a closed subspace in
L2
loc(R).
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Let us assume that f ∈ L2
loc(R). Consider the distance d(f,Ker I) = r.

Note that due to the properties of Ker I , r can be an arbitrary positive number.
When r ∈ int In (n ∈ N), by Theorem 3.1.4, we also have that inf{∥f − h∥2,0n ;
h ∈ Ker I} = r ∈ int In. Since Ker I is a closed set in L2

0[−1, 1], it is also
closed in L2

0[−n, n] for any n and therefore proximal, too. This means that for
some h0 ∈ Ker I we obtain ∥f − h0∥2,0n = r.

If r = 2−n+1 (n ∈ N), then, according to Proposition 3.1.4, we will have
inf{∥f − h∥2,0n ; h ∈ Ker I} = λ ≤ r = 2−n+1. If 0 < λ ≤ r, there again
exists h1 ∈ Ker I , which is the best approximation for f in Ker I with respect
to the norm ∥ · ∥2,0n , i.e. ∥f − h1∥2,0n = λ. If λ = 0, we get inf{∥f − h∥2,0n ;
h ∈ Ker I} = 0. This means that f is a continuation of some function from Ker I
outside [−n, n], i.e. f − h1 ∈ Ker ∥ · ∥2,0n for some function h1 from Ker I .

Let us show that if 0 ≤ λ ≤ ∥f − h1∥2,0n < 2−n+1 for some function h1 ∈
Ker I , then h1 is again the best approximation for f with respect to the metric d.
Indeed, let us assume that ∥f−h1∥2,0n+1 < 2−n+1. Then, according to the definition
of the metric (2.5.12), we also obtain that d(f, h1) ≤ ∥f−h1∥2,0n+1 < 2−n+1, which
is impossible, that means ∥f − h1∥2,0n+1 ≥ 2−n+1. Therefore, again according to
the definition of the metric (2.5.12), we obtain that d(f, h1) = 2−n+1 = r and
therefore h1 and h2 are the best approximations for f in Ker I with respect to the
metric d.

The general case when I(f) = [L1(f), . . . , Lm(f)] is a non-adaptive informa-
tion of cardinality m, where the functionals Li ∈ F ′1 are generated by the func-
tions from L2

0[−1, 1], does not significantly differ from the considered one and we
omit it.

c) If the closed subspace Ker I is a quojection, then for arbitrary y ∈ Rm and
non-adaptive information in the space W 2,k

loc (R), there exists a spline. To verify
this, let us prove that the subspace Ker I is strongly proximal in W 2,k

loc (R) with
respect to the metric d. Let us assume that f ∈W 2,k

loc (R) and d(f,Ker I) = r ∈ In.
Then we also get

inf{∥f − h∥2,kn ; h ∈ Ker I} = λ ≤ r. (3.5.2)

As noted above, if r ∈ int In, then λ = r, and if r = 2−n+1 (n ∈ N),
then 0 ≤ λ ≤ r = 2−n+1. Let kn : W 2,k

loc (R) → W 2,k
loc (R)/Ker ∥ · ∥2,kn be

a canonical mapping and ∥ ·̂ ∥2,kn be an associated norm on the quotient space
W 2,k
loc (R)/Ker ∥ · ∥2,kn , which is defined according to the equality ∥knf∥2,kn =

∥f∥2,kn for any function f ∈ W 2,k
loc (R). In this notation (3.5.2) can be rewritten

as follows:
inf{∥knf − knh∥2,kn ; h ∈ Ker I} = λ < r.
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It is known that the subspace kn(Ker I) is isometric to the normed space
(Ker I/Ker ∥ · ∥2,kn,Ker I), where ∥ · ∥2,kn,Ker I is the restriction of ∥ · ∥2,kn on Ker I .
Since Ker I is a quojection, we obtain that kn(Ker I) is a closed subspace in
W 2,k
loc (R)/Ker ∥ · ∥2,kn in the topology ∥ ·̂ ∥2,kn and therefore is also proximal. The

rest of the proof is similar to case b).

Theorem 3.5.2. Let us assume that F1 = L2
loc(R) is considered with a sequence of

seminorms (3.5.1) and with non-adaptive information I(f) = [L1(f), . . . , Lm(f)],
where Li ∈ F ′1, i = 1, 2, . . . ,m. If the functionals Li are generated by the func-
tions gi from the space L2

0[−1, 1], then the subspace Ker I has an orthogonal com-
plement in L2

loc(R).

Proof. Let G1 = Ker I ∩ L2
0[−1, 1]. By condition, G1 is a closed subspace in

the Hilbert space L2
0[−1, 1]. Therefore, G1 has an orthogonal complement G⊥1

in L2
0[−1, 1], which is finite-dimensional. It is also known [6] that the space

L2
loc(R) can be represented as the topological sum of L2

0[−1, 1] and Ker ∥·∥2,01 , i.e.
L2
loc(R) = L2

0[−1, 1]+̇Ker ∥ · ∥2,01 . It is easy to prove that Ker ∥ · ∥2,01 ⊂ Ker I .
Let us show that L2

loc(R) can be represented as an orthogonal sum of Ker I and
G⊥1 . Due to the above, we obtain L2

loc(R) = G1 + G⊥1 + Ker ∥ · ∥2,01 . We must
prove that G1+Ker ∥ · ∥2,01 = Ker I . It is clear that G1+Ker ∥ · ∥2,01 ⊂ Ker I and
G1 +Ker ∥ · ∥2,01 is a closed subspace in L2

loc(R).
Let f ∈ Ker I . Then f = g + z, where g ∈ L2

0[−1, 1] and z ∈ Ker ∥ · ∥2,0,1.
We also have that g = g1 + g2, where g1 ∈ G1 and g2 ∈ G⊥1 . From this we obtain
f = g1 + g2 + z = g2 + y, where g2 ∈ G⊥1 and y ∈ Ker I (y = g1 + z). It
remains to prove that (g1, y)

2,0
n = 0 for all n ∈ N. This follows from the fact that

(g2, y)
2,0
n = (g2, g1 + z)2,0n = (g2, g1)

2,0
n + (g2, z)

2,0
n = 0 + 0 = 0.

An example of a one-dimensional subspace that has no orthogonal complement
in L2

loc(R) is constructed in [84].

3.6 Definition of a central algorithm and condition for centrality of a spline
algorithm in the Fréchet spaces

Let us introduce the definition of a central algorithm for the solution operator S :
F1 → G, where F1 is a linear space with a non-increasing sequence of absolutely
convex subsets {Vn} of the space F1, and G is an LCS with the metric (3.1.4). Let
I be non-adaptive information of cardinality m ≥ 1, y = I(F1) = Rm, I(f) = y
d(f,Ker I) = r ∈ In, that is, f ∈ Vn\Vn+1 for some n ∈ N. The quantity

en(φ, I, y) = sup{d(S(f), φ(y)); f ∈ I−1(y) ∩ Vn}
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we call the local error of the algorithm φ at point y. Let rn(I, y) denote the local
radius of non-adaptive information I at point y, which is defined by the equality

rn(I, y) = rad (S(I−1(y) ∩ Vn)).

Here the radius of the setM ⊂ G is defined similarly to the case of a normed space
according to the equality rad(M) = inf{sup{d(a, g); a ∈ M}; g ∈ G}. The
Chebyshev center c ∈ G of the set M ⊂ G is defined by the equality rad(M) =
sup{d(a, c), a ∈ M}. It is easy to see that rn(I, y) = inf{en(φ, I, y) : φ ∈
Φ}, where Φ is the set of all algorithms. Global radius rn(I) of non-adaptive
information I is defined by

rn(I) = sup{rn(I, y); y ∈ I(Vn)}.

Let y ∈ I(F ) ⊂ Rm, that is, y ∈ I(Vn) for some n ∈ N. Let us assume that
the sets S(I−1(y) ∩ Vk) have the Chebyshev center c = c(y) for all y ∈ I(F ) and
k ≤ n if y ∈ I(Vn). This means that for all k ≤ n,

rad(S(I−1(y) ∩ Vk) = inf{sup{|S(f)− g|; f ∈ I−1(y ∩ Vk)}; g ∈ G})
= sup{|S(f)− c(y)|; f ∈ I−1(y) ∩ Vk}.

In this case, we call the algorithm φc(y) = c(y), y ∈ I(F ), central. If G is a
normed space,V1 = V2 = · · · = F , | · | = qF (·), then this definition of centrality
coincides with the classical definition.

The algorithm is called optimal error algorithm if

en(φ
∗, I) = inf{en(φ, I); φ ∈ Φ} ,

where Φ is the set of all algorithm and n ∈ N.
The n-th global error of the algorithm φ will be called

en(φ, I) = sup{e(φ, I, y); y ∈ I(Vn)} .

Due to the remark made in ( [158], p. 49) regarding to the optimal algorithm
φ∗, we have the inequalities

en(φ
∗, I, y) ≥ rn(I, y) for each y ∈ Rm and en(φ∗, I) ≥ rn(I) .

Similar to the classical case for the central algorithm, in the Fréchet space the
following equalities are also valid:

en(φ
c, I, y) = rn(I, y) and en(φ

c, I) = rn(I)
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Consider a metrizable LCS whose topology is determined by some non-de-
creasing sequence of seminorms {∥ · ∥n}. Later, by d∗ we will denote one of
the following metrics: 1) metric defined by (3.1.4); 2) normlike metric (2.5.2)
constructed by Albinus; 3) supremum metric defined by the formula d(x, y) =

supn∈N
∥x−y∥n

2n(1+∥x−y∥n) ; 4) metric (2.5.1) constructed by Mazur.

Proposition 3.6.1. LetG be a metrizable LCS with the metric d∗ and let the closure
Ā of A ⊂ G be symmetric with respect to some element p ∈ G. Then p is the
Chebyshev center for A.

Proof. Consider the case where d∗ is the metric defined according to (3.1.4) and
assume that p is not the Chebyshev center of the set A. Then there is an element
u of G such that sup{|a − u| : a ∈ A} < sup{|a − p| : a ∈ A}, where | · | is a
quasinorm of the metrics (3.1.4). Let us select x ∈ A such that

|a− u| < |x− p| for all a ∈ Ā . (3.6.1)

Let |x− p| = r ∈ In for some n ∈ N. If r ∈ intIn, then |x− p| = ∥x− p∥n. Let
|a0 − u| = r1 for some a0 ∈ A and r1 ∈ In1 , n1 ≥ n. If r1 ∈ intIn1 , then r1 =
∥a0 − u∥n1 . In this case, according to (3.6.1), we obtain ∥a0 − u∥n1 < ∥x − p∥n
and ∥a0 − u∥n ≤ ∥a0 − u∥n1 < ∥x− p∥n. So,

∥a0 − u∥n < ∥x− p∥n . (3.6.2)

Let now |a0−u| = r1 = 2−n1+1 ∈ In1 , n1 ≥ n. From the properties of the metric
(3.1.4) it follows that ∥a0−u∥n1 ≤ 2−n1+1. Therefore, ∥a0−u∥n ≤ ∥a0−u∥n1 ≤
r1 = 2−n1+1 < r = ∥x− p∥n and the inequality (3.6.2) is true.

Let us now consider the case when |x − p| = r = 2−n+1 ∈ In and r1 ∈
intIn1 , n1 > n. Then |a0 − u| = r1 = ∥a0 − u∥n1 ≥ ∥a0 − u∥n+1 and therefore
∥a0 − u∥n+1 < 2−n+1. From the properties of the metric (3.1.4) it follows that
∥x − p∥n ≤ 2−n+1 ≤ ∥x − p∥n+1. It turns out that ∥a0 − u∥n+1 < 2−n+1 ≤
∥x− p∥n+1 and (3.6.2) is valid for n+ 1.

It remains to consider the case when r = 2−n+1 ∈ In and r1 = 2−n1 , n1 ≥ n.
Then we have ∥a0 − u∥n+1 ≤ ∥a0 − u∥n1+1 ≤ r1 = 2−n1 < r = 2−n+1 ≤
∥x− p∥n+1 and hence (3.6.2) is also valid in the case n+ 1.

Now let d∗ be a normlike, supremum, or Mazur-constructed metric. Then
(3.1.4) is valid for some n ∈ N. Indeed, if we assume that (3.6.2) is not true,
then ∥a− u∥n ≥ ∥x− p∥n for all n and a ∈ A. From the properties of the metrics
under consideration it follows that |a− u| ≥ |x− p| for all a ∈ A, but this contra-
dicts the inequality (3.6.1). Let x = p + h. For x ∈ A and Ā is symmetric with
respect to p, Ā also includes p− h. If k = n or k = n+ 1, we have

2∥h∥k = ∥2h∥k = ∥(p+ h− u)− (p− h− u)∥k
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≤ ∥(p+ h)− u∥k + ∥(p− h)− u∥k < 2∥x− p∥k = 2∥h∥k ,

and it turns out to be a contradiction.

Suppose that the topology of the Fréchet space E is given by a sequence of
hilbertian seminorms {∥ · ∥n}, that is, each seminorm ∥ · ∥n is generated by the
semiinner product (x, y)n and Vn = {x ∈ E; ∥x∥n ≤ 1}. In such spaces the
concept of orthogonality is naturally introduced in Section 2.4: elements x, y ∈ E
are called orthogonal if (x, y)n = 0 for all n ∈ N.A subspaceM has an orthogonal
complement M⊥ in E if each element x ∈ E can be represented as a sum x =
y+z, where y ∈M, z ∈M⊥ and (y, z)n = 0 for each n ∈ N. In other words, this
means that in the subspaces M and M⊥ each element x ∈ E has a unique element
of the best approximation y and z, respectively, with respect to all seminorms ∥·∥n,
generated by (·, ·)n.

Theorem 3.6.2. Let E be a Fréchet space with a non-decreasing sequence of
hilbertian seminorms {∥ · ∥n}, Vn = {x ∈ E : ∥x∥n ≤ 1} and with met-
ric (3.1.4). Let Kn : E → E/Ker ∥ · ∥n be the canonical mapping Xn =

(E/Ker ∥ · ∥n , ∥̂ · ∥n) and G be a metrizable LCS, S : E → G be a linear
operator, and I be non-adaptive information of cardinality m ≥ 1. Then the fol-
lowing statements are valid:

a) IfKn(Ker I) is closed in the Hilbert spaceXn, n ∈ N, then Ker I is strongly
proximal in E with respect to the metric (3.1.4), and for any y ∈ I(E) there is a
spline σ interpolatory y.

b) If, moreover, the subspace Ker I has an orthogonal complement in E, then
for any y ∈ I(E) there exists the unique spline σ interpolatory y such that (σ, h)n =
0 for any n ∈ N and h ∈ Ker I . If y ∈ I(V1), then σ is a center of all sets I−1∩Vk
for which these intersections are nonempty. The corresponding spline algorithm
φs(y) = S(σ) is linear and central.

Proof. a) For y ∈ I(E), there exists f ∈ E such that I(f) = y. The subspace
Ker I is strongly proximal in E and for this f there exists a strongly best approxi-
mation element h∗ in Ker I . Then σ = f − h∗ is a spline interpolatory y.

b) If y = 0, then likewise σ = 0 and item b) is trivial. For any nontrivial y ∈
I(E) and information I , we take f such that I(f) = y. Since the subspace Ker I
possesses an orthogonal complement in E, there exists the unique representation
f = h∗ + σ and (h∗, σ)n = 0 for any n ∈ N, where h∗ ∈ Ker I and σ ∈
Ker I⊥. This means that ⟨Knh

∗,Knσ⟩n = 0 for any n ∈ N, where ⟨·, ·⟩n is
the inner product in the space Xn, generating the associative norm ∥̂ · ∥n. Kn(σ)
is orthogonal to Kn(Ker I) in Xn for any n ∈ N and σ is a best approximation
element for f in Ker I⊥ with respect to the ∥ · ∥n for any n ∈ N. It is clear that
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I(σ) = y. Let us prove that σ is a spline interpolatory y. Let d(f,Ker I) = r ∈ In
for some n ∈ N, then

inf{∥Knf −Knh∥n , h ∈ Ker I} = ∥Knf −Knh
∗∥n = ∥σ∥n = λ.

If r ∈ int In, then, according to Proposition 3.6.1, λ = r = d(f, h∗) and σ is
a spline interpolatory y. If r = 2−n+1 (n ∈ N), then again by Proposition 3.6.1,
d(f, h∗) = r and σ is a spline interpolatory y. If r = 2−n+1 and λ = 0, then
f − h0 ∈ Vn for some h0 ∈ Ker I . Indeed, in this case there exists a minimized
sequence {hk} such that limk→∞ ∥Knf −Knhk∥n = λ = 0. Since Kn(Ker I) is
closed in Xn, we have Knf ∈ Kn(Ker I), i.e., f ∈ Ker I . But this is out of the
question and hence λ = 0 is impossible.

We obtain that f − h0 ∈ Vn. Assuming now that f − h0 ∈ 2 intVn+1, we
will have d(f, h0) ≤ 2 · 2−n∥f − h0∥n+1 < 2−n+1 = r, but this is impossible.
Therefore, ∥f − h0∥n ≤ 2−n+1 and ∥f − h0∥n+1 ≥ 2−n+1. This implies that
f − h0 = r = 2−n+1.

From the above-said it follows that if some element σ ∈ E satisfies the equal-
ities I(σ) = y and (σ, h)n = 0 for any n ∈ N and h ∈ Ker I , then σ is a spline
interpolatory y.

Build now a linear spline algorithm. Towards this,we apply the method conside-
red in ([158], p. 79). Let σi be the unique spline interpolatory ei={0, . . . , 1, . . . , 0}
for the information I(f) = [L1(f), . . . , Lm(f)] with linearly independent linear
functionals Li(f) such that Kn(σi) is orthogonal to Kn(Ker I) in Xn for any n ∈
N, i.e., (h, σi)n = 0 for all n ∈ N. Consider the expression σ =

∑m
i=1 Li(f)σi.

Then Kn(σ) will be orthogonal to Kn(Ker I) in Xn for all n ∈ N and σ will be a
spline interpolatory y. It is clear that φs(I(f)) =

∑m
i=1 Li(f)Sσi will be a linear

algorithm. It should also be noted that the operator y → σ, acting from the finite
dimensional space I(E) to the finite dimensional space (Ker I)⊥, is linear. It re-
mains to prove that φs is central, i.e., the center of the set S(I−1(y)∩Vn0) for each
y ∈ I(Vn0) is S(σ), where σ is the above-mentioned unique spline interpolatory y.
The existence of such spline σ was proven above. We have now to prove that if g is
an arbitrary element of I−1(y) ∩ Vn0 , then 2σ − g ∈ I−1(y) ∩ Vn0 . This fact may
be proved just in the same way as in ([158], p. 97). Really, for h = σ − g ∈ Ker I
we have

∥ ̂Kn0(2σ − g)∥n0 = ∥ ̂Kn0(σ + g)∥n0 =

√
∥K̂n0(σ)∥2n0

+ ∥K̂n0(h)∥2n0

= ∥K̂n0(h)∥n0 = ∥g∥n0 ≤ 1 ,

that is, 2σ − g ∈ I−1(y) ∩ Vn0 . Therefore, the set S(I−1(y) ∩ Vn0) is symmetric
with respect to φs(y) = S(σ), i.e., rad(S(I−1(y) ∩ Vk)) = inf{sup{|S(f) −
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y|; f ∈ I−1(y) ∩ Vk}; y ∈ G} = sup{|S(f) − S(σ)|; f ∈ I−1(y) ∩ Vk}, for
all k ≤ n0. From the above and from Proposition 3.6.1 it follows that the spline
σ interpolatory y is the center of the set I−1(y) ∩ Vn0 , i.e., rad(I−1(y) ∩ Vk) =
inf{sup{|f − q|; f ∈ I−1(y) ∩ Vk}; q ∈ E} = sup{|f − q|; f ∈ I−1(y) ∩ Vk}
for all k ≤ n0.



C H A P T E R 4

Central spline algorithms of projection (least squares and
Ritz) methods in Fréchet–Hilbert spaces and its
applications

4.1 Linear equations in Fréchet spaces

Consider an equation
Au = f , (4.1.1)

where A : D(A) ⊂ G → E is a linear operator that maps an everywhere dense
subset D(A) of a Fréchet space G into a Fréchet space E. The main results have
been obtained in the case when the topology E is given by a non-decreasing se-
quence of hilbertian norms {∥ · ∥n}, i.e. ∥x∥n = (x, x)

1/2
n for each x ∈ E, where

(·, ·)n is the inner product on E for each n ∈ N. Such spaces are, for example, the
complete countable-Hilbert spaces or the nuclear Fréchet spaces with continuous
norms that are well known in the theory of generalized functions from Section 2.6
(an example of a nuclear space with continuous norm that is not countable-Hilbert
is constructed in [51]).

Linear equations in Fréchet spaces (and also in more general locally con-
vex spaces) have been carefully studied in many monographs (see, for example,
[83, 134]). However, approximate methods for the solution of linear equations in
these spaces, as far as we know, have not been studied up to now. In [134], the
approximation methods in countable-normed spaces are considered, based on the
continuity of embeddings of such spaces in Banach spaces. But there are Fréchet
spaces that do not have this property.

In this chapter, we use the metric (2.5.8) to generalize the classical least squares
method [99] for the approximate solution of the equation (4.1.1) in the Fréchet
space. Namely, in the classical case of Hilbert spaces, approximate solutions are
found by minimizing the discrepancy with respect to the inner product on some
finite-dimensional subspace. In the case of Fréchet space, approximate solutions

205
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are found by minimizing the discrepancy on the mentioned subspace with respect
to this metric, which in the case of Hilbert spaces coincides with the metric gener-
ated by the inner product. Therefore, due to the above-mentioned property of the
metric (2.5.8), the approximate solution again satisfies the system of linear alge-
braic equations.

This chapter examines the symmetric and self-adjoint operators in Fréchet–
Hilbert spaces. For such operators, the well-known Theorems of von Neumann
(Theorem 4.2.2), Hellinger–Toeplitz (part a) of Theorem 4.2.2) and Friedrichs,
Stone, Wintner (Theorem 4.2.3) are generalized. Fréchet–Hilbert spaces provide
natural extensions of symmetric and self-adjoint operators, which are important in
quantum mechanics and mathematical physics. In particular, the position operator,
momentum operator, harmonic oscillator operator and others continue from the
space L2(R) into strict Fréchet–Hilbert spaces in various ways. Continued opera-
tors, in many cases, turn out to be continuous. The well-known Ritz method (The-
orem 4.3.4) is generalized for operator equations in Fréchet–Hilbert spaces and
some estimates are given. A natural definition of the operator A∞ is given, which
is essentially used in what follows. According to this generalization, D(A∞)
takes on a new meaning. The centrality of the Ritz method in the Fréchet space
D(A∞) (Theorem 4.4.5) is proved. This result is used for the approximate so-
lution of strongly degenerate elliptic operators, for the Sturm–Liouville problem,
the Laplace-Beltrami operator, etc. The extended Ritz method is used to approxi-
mate solution of the equation (4.4.7) in the space D(A∞). The eigenfunctions of
the operator A are chosen as basis functions and it is proved that the subspaces
spanned by the first m eigenvectors have an orthogonal complement in the Fréchet
space D(A∞). This means that approximate solutions do not depend on the num-
ber of norms generating the topology of the space D(A∞). The convergence of
a sequence of approximate solutions to the exact solution is proved in the space
D(A∞), the topology of which is stronger than the topology of the original Hilbert
space (Theorem 4.4.7). It is proved that the algorithm given in Theorem 4.4.5 is
both a central and a spline algorithm. For the harmonic oscillator operator, the
space D(A∞) coincides with the Schwartz space S(R) of rapidly decreasing func-
tions. Therefore, if we take the eigenfunctions of this operator as basis functions,
i.e. the Hermite functions, then the sequence of approximate solutions converges
to the exact solution in the space S(R), the topology of which is stronger than the
topology of the Sobolev space.
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4.1.1 Method of least squares for operator equation in the Fréchet–Hilbert
spaces

Let E and G be Fréchet spaces with fixed non-decreasing sequences of seminorms
{∥ · ∥n} and {|·|}n, respectively. A linear operator T : E → G is called continuous
if for any seminorm | · |n there is a seminorm ∥ · ∥k and a number cn > 0 such that

|Tx|n ≤ cn∥x∥k for every x ∈ E.

The space of all linear continuous operators fromE toG is denoted byL(E,G).
By analogy with [?], for the operator T ∈ L(E,G), we introduce the function
σT : N → N , which characterizes the continuity of T . The function σT is defined
using the equality

σT (n) = inf {σ ∈ N; sup {|Tx|n; ∥x∥σ ≤ 1} <∞} . (4.1.2)

According to ( [11], see also [129]), a linear operator is called tame if there
exist ℓ ∈ N and a constant cn > 0 such that

|Tx|n ≤ cn∥x∥n+ℓ for every x ∈ E, (4.1.3)

i.e. in this case σT (n) ≤ n + ℓ for some ℓ ∈ N. The operator T is called isomet-
rically tame if ℓ = 0. The set of all such operators is denoted by L0(E,G). The
tame operators are defined similarly in the case of incomplete metrizable locally
convex spaces E and G. The invertibility of the operator A : G → E means that
for any seminorm | · |n on G there exist a seminorm ∥ · ∥σ′(n) and Cn > 0 such that

|g|n ≤ Cn∥Ag∥σ′(n) , (4.1.4)

where σ′(n) is a function characterizing the continuity of the inverse operatorA−1.
A linear operator A : G → E is said to be tame invertible if it has an in-

verse tame operator. The tame invertibility of the operator A means that for any
seminorm | · |n on G there exist ℓ ∈ N and a constant Cn > 0 such that

|g|n ≤ Cn∥Ag∥n+ℓ for every g ∈ G.

A linear operator T is called a tame isomorphism if T is bijective and T and
T−1 are tame. Two sequences of seminorms generating the topology of the spaceE
are said to be tame equivalent if the identity map is a tame isomorphism. Examples
of tamely equivalent and nonequivalent sequences of seminorms are given in [129].
You can also find examples of tame isomorphisms there.

There are examples of Fréchet spaces E and operators T ∈ L(E,G) for
which σT (n), generally speaking, differs from n. The set of all operators T from
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L0(E,G) for which cn does not depend on n is denoted by LF (E,G) [25]. For
E = G, these operator classes were defined in [84] and denoted by L0(E) and
LF (E), respectively. As was proven in [85], L0(E) is a complete m-convex alge-
bra, and LF (E) is a Banach algebra.

A Fréchet space is called tame if there exists an increasing function S : N →
N such that for every continuous operator T , the inequality σT (n) ≤ S(n) holds
for all n starting from some, where σT (n) are defined by equality (4.1.2). This
is equivalent to the fact that there exist the increasing functions Sk (k ∈ N) such
that for each operator T there exists k0 such that σT (n) ≤ Sk0(n). Obviously, this
definition does not depend on the choice of the sequence of seminorms generating
the topology of the Fréchet space.

There are examples of the Fréchet space E and operators T ∈ L(E,F ) for
which σT (n), generally speaking, differs from n. The set of all operators T from
L(E,G) for which σT (n) = n is denoted by L0(E,G). And the set of operators
for which Cn does not depend on n is denoted by LF (E,G). For E = G, these
classes of operators were defined in ( [100], p. 59) and were denoted by L(E),
L0(E) and LF (E), respectively.

4.1.2 Definition of approximate solution and convergence of its sequence

We study the equation (4.1.1) with linear operators A : G → E, for which
A−1 ∈ L(E,G) and (4.1.4) is fulfilled.

By analogy with the definition of an A-complete sequence in Banach spaces
[99], we introduce the following definition: a sequence of the above-mentioned
basis functions {gi} from G is called A-complete in a Fréchet space E if for any
ε > 0 and g ∈ D(A) there exist n0 = n0(g, ε) and α1, . . . , αn0 such that∣∣∣∣Ag − n0∑

i=1

αiAgi

∣∣∣∣ < ε ,

i.e. A(G) ⊂ ∪∞m=1A(Gm), whereME means the closure of the setM inE, where
| · | is the quasinorm of the metric (3.1.4) on G.

In particular, if {gi} is a basis of the Fréchet space G belonging to the set
D(A), then the sequence {Gm} is limit dense in G.

Let us denote by J the discrepancy for the equation (4.1.1), i.e. the functional
defined by the equality

J(g) = d(Ag, f) = |Ag − f | .

We will also denote by Jn(g) the discrepancy with respect to the norm ∥Ag−f∥n.
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An approximate solution of the equation (4.1.1) will be called

um =
m∑
i=1

αigi ∈ Gm

if it provides a minimum of the discrepancy Jn(g), where n is chosen from the
relation

inf{J(g); g ∈ Gm} ∈ In.

Lemma 4.1.1. If in the notation introduced above the equality inf{Jn(g); g ∈
M} = r holds for some subset M ⊂ G and r ∈ In, then inf{J(g); g ∈ M} = r.
If also r ∈ In, and r ̸= 2−n+1 (n ∈ N), then the converse is also true.

There are examples which show that if inf{J(g); g ∈ M} = 2−n+1 (n ∈ N),
then inf{Jn(g); g ∈ M} = s < 2−n+1. Such examples in the case of the identity
operatorA = I, i.e. for the best approximation problem, were given in Section 3.1.

Corollary. The following statements hold:
a) If inf{J(g); g ∈M} = r ∈ int In (n ∈ N), then

inf{Jn(g); g ∈M} = inf{J(g); g ∈M} . (4.1.5)

b If inf{J(g); g ∈M} = 2−n+1 (n ∈ N), then

inf{Jn(g); g ∈M} ≤ inf{J(g); g ∈M} .

Lemma 4.1.2. Suppose the topology of a Frecher space E is induced by a non-
decreasing sequence of hilbertian norms {∥ · ∥n} and the homogeneous equation
Ag = 0 has a unique solution, that is, A is injective. Then an approximate solution
um ∈ Gm for (4.1.1) can be constructed for each m ∈ N using the equation

inf{Jn(g); g ∈ Gm} = Jn(um) (4.1.6)

provided that
inf{J(g); g ∈M} ∈ In,

and it is defined in a unique manner.

Proof. Let m ∈ N and inf{J(g); g ∈ Gm} = r ∈ In. If r ∈ int In, then, using
Lemma 4.1.1, we also have that for some um ∈ Gm,

inf{Jn(g); g ∈ Gm} = Jn(um) .

The norm ∥·∥n is generated by the inner product (·, ·)n.We remark that the positive
function Jn(g) attains its minimum on Gm at some point um if and only if its
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square J2
n(g) attains its minimum at this point. But as is well known ([99], p. 57),

J2
n(g) attains its minimum at the function um =

∑m
i=1 a

(m)
i gi, with coefficients

that satisfy the system

m∑
i=1

a
(m)
i (Agi, Agk)n = (f,Agk)n, k = 1, . . . ,m . (4.1.7)

Since A is injective, it follows that the functions Ag1, . . . , Agm are linearly inde-
pendent for anym ∈ N. It is well known that the necessary and sufficient condition
for the linear independence of the system {Agi}mi=1 is that the Gram determinant
does not vanish: det(Agi, Agk)n = G(Ag1, . . . , Agm)n ̸= 0, where n = n(m).
Hence, the determinant of the system is not zero, (4.1.7) has a unique solution for
anym ∈ N. If now r = 2−n+1 (n ∈ N), then we have also found the solution of the
system (4.1.7) and the solution um ∈ Gm, satisfies (4.1.6). Moreover, by Lemma
4.1.1, Jn(um) ≤ r. If Jn(um) = r, then again applying Lemma 4.1.2 we have that
J(um) ≤ r. So, suppose that Jn(um) < r, that is, ∥Aum−f∥n < r = 2−n+1. This
implies that Aum − f ∈ intKr = intVn. We assume that Aum − f ∈ 2 intVn+1.
Then we find that

J(um) ≤ 2−npn+1(Aum − f) < 2−n · 2 = 2−n+1 = r,

which is not possible. This means that Aum − f ∈ intVn\ int 2Vn+1 and |Aum −
f | = J(um) = 2−n+1. The fact that the approximate solutions um (m ∈ N) are
unique is obvious. This completes the proof of Lemma 4.1.2.

For completeness we will explain the method of construction of the approxi-
mate solution um.Having solved the system of linear equations (4.1.7), we can find
the unique solution of the extremal problem (4.1.6). Therefore, the main difficulty
is in finding the number l that satisfies r = inf{J(g); g ∈ Gm} ∈ Il. Let p(m)

n =

inf{pn(Ag−f); g ∈ Gm}. It is well known that p(m)
n =

√
G(f,Ag1, . . . , Agm)n
G(Ag1, . . . , Agm)n

.

Finding l is equivalent to satisfying the following inequalities:

1 < p
(m)
1 <∞ for r ∈ int I1 ,

1 < p
(m)
l < 2 for r ∈ int Il, l ≥ 2 ,

p
(m)
l ≤ 1 and p

(m)
l+1 ≥ 2 for r = 2−l+1 (l ∈ N) .

For r ∈ int Il (l ∈ N), the fact that these are equivalent follows from the corollary
to Lemma 4.1.1. We will prove the equivalence for r = 2−l+1 (l ∈ N). Let
r = inf{J(g); g ∈ Gm} = 2−l+1. Then, in view of the proximality of the finite
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dimensional subspace AGm in the metrizable space E with respect to the metric
(3.1.4), for some g1 ∈ Gm the equality J(g1) = 2−l+1 holds. Therefore it follows
that pl(Ag1 − f) = q2−l+1(Ag1 − f) ≤ 1 and so p(m)

l ≤ 1. Now assume that
p
(m)
l+1 < 2. Then for some g2 ∈ Gm we have pl+1(Ag2 − f) = p

(m)
l+1 < 2, that is,

∥Ag2−f∥l+1 < 2−l+1.We at once see that |Ag2−f | < 2−l+1, and this contradicts
our assumption.

Now let p(m)
l ≤ 1 and p(m)

l+1 ≥ 2. It follows that for some g3 ∈ Gm we have
r = inf{J(g); g ∈ Gm} = |Ag3 − f | ≤ 2−l+1. If we assume that strict inequality
holds here, then we find that p(m)

l+1 < 2, which contradicts our assumption. Thus,

to find l, we must verify that the inequalities listed above hold for p(m)
n . In some

cases, we cannot verify them for all p(m)
n (1 ≤ n ≤ l). For instance, if we have

established that 2−n+1 < p
(m)
1 < 1 for some n ∈ N, then it follows from the

inequality 2n−1∥ · ∥1 ≤ pn(·) that Ag − f∈Vn = K2−n+1 for all g ∈ Gm and so
2−n+1 < r < 1.

Next, we find p(m)
[n/2]. If p(m)

[n/2] < 1, then 2−n+1 < r < 2−[n/2]+1. If, in addition,

p
(m)
[n/2]+1 ≥ 2, then r = 2−[n/2]+1. If p(m)

[n/2] > 1, this implies that 2−[n/2]+1 < r <

1. Next, we consider p(m)
[n/4] or p(m)

[3n/4]. By continuing this process we refine the

intervals we have obtained and, finally, we find l such that r ∈ int Il or p(m)
l ≤ 1

and p(m)
l+1 ≥ 2. In the first case r = 2−l+1p

(m)
l , and in the second r = 2−l+1.

Having found the approximate solution um ∈ Gm, to find the approximate
solution um+1 in Gm+1, we verify that the above set of inequalities holds just for
p
(m+1)
n (n ≥ l), and so on.

A natural question arises: does the sequence of approximate solutions {um}
converges to the exact solution u0 of equation (4.1.1). This is the case for the
above class of operators.

Theorem 4.1.3. Suppose that the topology of the Fréchet space E is induced by a
non-decreasing sequence of inner products {(·, ·)n}, A is an injective operator and
u0 is the exact solution of the equation (4.1.1). If the sequence of basis functions
{gi} isA-complete and there exists a continuous inverse operatorA−1 ∈ L(E,G),
then the sequence of approximate solutions {um} constructed using the method of
least squares converges to u0 in G. Moreover, the following estimates hold:

a) for every n and m,

|u0 − um|n ≤ Cn∥Au0 −Aum∥σ′(n) . (4.1.8)

b) for every n there exists m0 = m0(n) such that for every m > m0,

|u0 − um|n ≤ Cn|Aum − f | , (4.1.9)
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where | · | is the quasinorm of the metric (2.5.8).

Proof. Since the sequence {gi} is A-complete, for u0 and ε > 0 there exist m0 =
m0(ε) and α1, . . . , αm0 such that for every m ≥ m0,

|Au0 −Aum| ≤
∣∣∣∣Au0 − m0∑

i=1

αiAgi

∣∣∣∣ < ε .

It therefore follows that the sequence {Aum} converges to Au0 = f in E.
Thus, for any norm ∥ · ∥n on E, the sequence {∥Au0 −Aum∥n} converges to zero
as m→ 0. The inequality in a) holds since A is continuously invertible.

Now we will prove part b). For this, we will first show that for every n ∈ N
there exists m0 = m0(n) such that

∥Au0 −Aum∥n ≤ |Au0 −Aum| for all m0 . (4.1.10)

For given n there exists m0 = m0(n) such that |Au0 − Aum0 | < sup In. Let
us consider the case when |Au0 − Aum0 | ∈ int In. Then, using the corollary of
Lemma 4.1.1, we have

|Au0 −Au0| = ∥Aum0 −Aum0∥n .

If |Au0 −Aum0 | = 2−n+1, then, using part b) from the corollary to Lemma 4.1.1,
we have

∥Au0 −Aum0∥n ≤ |Au0 −Aum0 | .

But if |Au0 −Aum0 | ∈ In+1 = [2−n, 2−n+1[ , then

∥Au0 −Aum0∥n ≤ ∥Au0 −Aum0∥n+1 ≤ |Au0 −Aum0 | .

Since |Au0 − Aum0 | ∈ Ip for some p ≥ n, it follows that (4.1.10) holds for
m = m0. As is known, the following inequality is true:

|Au0 −Aum0+1| ≤ |Au0 −Aum0 | .

Thus, if we repeat our previous argument, we conclude that (4.1.10) holds for
m = m0 + 1. Using a similar line of reasoning we can establish (4.1.10) for any
m ≥ m0. Further, since A is continuously invertible we find that

|u0 − um|n ≤ Cn∥Au0 −Aum∥σ′(n) ≤ Cn|f −Aum| for m > m0(σ
′(n)) ,

that is, (4.1.9) holds.
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4.1.3 Application for the approximate solution equation containing tame op-
erators

It should be noted that if the inverse operator is tame, then in inequality (4.1.8) we
can set σ′(n) = n+ l, where l ∈ N is some number depending on A. If the inverse
operator is tamely isometric, i.e. A−1 ∈ L0(R(A), D(A)), then in inequality
(4.1.8) we can set that σ′(n) = n. If the operator A−1 ∈ LF (R(A), D(A)), then
in inequality (4.1.8) Cn can be chosen independent of n.

For some Fréchet spaces and for some classes of operators, the form of the
function σT , characterizing the continuity of the linear operator T ∈ L(E), and
also the form of tame operators are known. Let us give concretization of Theorem
4.1.3 for such spaces and operators:

1) Let α = (α1, α2, . . . ) be a non-decreasing sequence of positive numbers
tending to infinity. By Λ1(α) it is denoted the Fréchet space of power series of
finite type, i.e. the space of sequences ξ = {ξi}, for which the hilbertian norms

∥ξ∥2n =

∞∑
j=1

e−2αj/n|ξj |2, n ∈ N .

And by Λ∞(α) it is denoted the Fréchet space of power series of infinite type, i.e.
the space of sequences ξ = {ξj}, for which the hilbertian norms

|ξ|2n =
∞∑
j=1

exp(2nαj)|ξj |2, n ∈ N (4.1.11)

are finite. It is known [47] that for each operator T ∈ L(Λ1(α)) the inequality
σT (n) ≤ an is true, where a ∈ N is some number depending on α, i.e. the space
Λ1(α) is tame. From this we obtain that the inequality σT (n) ≤ an is true.

Corollary 1. Let A be an injective operator mapping the Fréchet space Λ1(α)
into itself, with a continuous inverse operator A−1. If u0 is an exact solution of
the equation (4.1.1) and the sequence of basis functions {gi} from Λ1(α) is A-
complete, then the sequence of approximate solutions {um}, constructed by the
method of least squares, converges to u0 in Λ1(α). Moreover, if the image of the
operator A is tamely isomorphic to the space Λ1(α), then for each n and m the
inequality

∥u0 − um∥n ≤ Cn∥Au0 −Aum∥an+l
holds, where a ∈ N depends on α, l ∈ N depends on A and Cn > 0.

Indeed, the first assertion of Corollary 1 follows from Theorem 4.1.3. Further,
let the image of the operator A be tamely isomorphic to the space Λ1(α) and this
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isomorphism is realized by the mapping L : R(A) → L1(α). Then the following
commutative diagram holds:

R(A)
A−1

//

L ##

Λ1(α)

Λ1(α)

T

::

where A−1 = T ◦ L and T = A−1 ◦ L−1 is a continuous mapping of the space
Λ1(α) into Λ1(α). By virtue of the above-mentioned theorem from [47] and the
tameness of the operator L, we have the estimates

∥u0 − um∥n = ∥A−1L−1LA(u0 − um)∥n = ∥TLA(u0 − um)∥n ≤
≤ C1n∥LA(u0 − um)∥an ≤ C1n · C2n∥A(u0 − um)∥an+l

= Cn∥A(u0 − um)∥an+l ,

where a ∈ N depends on α and l ∈ N exists due to the tameness of the operator L.
According to ( [11], p. 117), nuclear Fréchet spaces are isomorphic to the

Fréchet space of finite-type power series if and only if they satisfy the well-known
properties (DN) and (Ω). Moreover, if a nuclear Fréchet space E satisfies the
conditions (DN) and (Ω), then there exists a unique (up to equivalence) sequence
ε(E) called the associated exponential sequence such that ifE has the property that
E is isomorphic to the space of power series, then E is isomorphic to Λ1(ε(E)) or
Λ∞(ε(E)), depending on the type of the sequence space. From Corollary 1, taking
into account what has just been said, we obtain

Corollary 2. Let E be a Fréchet space with a generating sequence of inner prod-
ucts {(·, ·)n}, ∥ · ∥n = (·, ·)1/2n and A be an injective linear operator, mapping
the space E into itself, with continuous inverse A−1. If u0 is an exact solution of
equation (4.1.1) and the sequence of basis functions {gi} from E is A-complete,
then the sequence of approximate solutions {um}, constructed by the least squares
method, converges to u0 in E. Moreover, if E is nuclear, isomorphic to the space
Λ1(ε(E)) and the image of the operator A is also tamely isomorphic to the space
Λ1(ε(E)), then for each n and m the inequality

∥u0 − um∥n ≤ Cn∥Au0 −Aum∥an+l

holds, where a ∈ N depends on ε(E), l ∈ N depends on A and Cn > 0.

Let us now give an example of a Fréchet space satisfying the conditions of
Corollary 2. In ([11], Theorem 1.7), it is proved that the Fréchet space of analytic
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functions O(X), defined on a Stein manifold X with a known sequence of integral
norms, is isomorphic to the Fréchet space of power series of finite type if and
only if there exists a bounded plurisubharmonic exhaustive function on X . Such
manifolds are called hyperconvex. In particular, as is well known, the space of
analytic functions in the unit half-disk O(∆d) is isomorphic to the space Λ1(n

1/d).
We do not know whether these isomorphisms are tame.

In ( [47], Theorem 1.3), it was proved that the family of finite limit points of
the set Q = {αj/αν}j,ν∈N is bounded if and only if there exists a ∈ N depending
on α such that for each T ∈ L(Λ∞(α)) there exists l ∈ N such that the inequality
σT (n) ≤ an + l holds. Such spaces of power series of infinite type Λ∞(α) are
tame and the above functions Sk can be chosen as follows: Sk(n) = a · n + k (a
can be equated to unity by choosing a sequence equivalent to α = {αj}).

Corollary 3. Let A be an injective, continuously invertible operator, mapping the
Fréchet space Λ∞(α) into itself. If u0 is an exact solution of equation (4.1.1)
and the sequence of basis functions {gi} from Λ∞(α) is A-complete, then the se-
quence of approximate solutions {um}, constructed by the least-squares method,
converges to u0 in Λ∞(α). Moreover, if Λ∞(α) is tame and the image of the op-
erator A is tamely isomorphic to the space Λ∞(α), then for each n and m the
inequality

|u0 − um|n ≤ Cn|Au0 −Aum|an+l
holds, where a ∈ N depends on α, l ∈ N depends on A and Cn > 0.

Corollary 3 is proved similarly to the proof of Corollary 2, since according
to [47] and for the tame space Λ∞(α) there exists a constant a ∈ N such that for
every continuous operator T : Λ∞(α) → Λ∞(α) there exists a constant l ∈ N and
a sequence of numbers Cn such that for all n we have

|Tx|n ≤ Cn|x|an+l ,

where the norms | · |n on Λ∞(α) are defined by the equality (4.1.11).
According to [11], the Fréchet space of analytic functions O(X) on a Stein

manifoldX is isomorphic to the Fréchet space Λ∞(α) if and only if every bounded
plurisubharmonic function on X is constant. In particular, the space of entire func-
tions O(Cd) is isomorphic to the space Λ∞(n1/d). Therefore, Corollary 3 is valid
for some tamely invertible operators mapping spaces O(X) to themselves or hav-
ing an image tamely isomorphic to the space Λ∞(α). We do not know an exact
characterization of the Stein manifold X for which the Fréchet space O(X) is
tame, and the form of tame operators from the space L(O(X)).

Let us give an example of a Fréchet space s of rapidly decreasing sequences for
which the form of tame operators is known. The topology of the space s is given
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by the sequence of hilbertian norms

|ξ|2n =
∞∑
j=1

j2n|ξj |2, ξ = {ξj} ∈ s, n = 0, 1, . . . .

For a subspace F of s, Fn denotes the Hilbert space (F̃, | · |n) – the completion of
the space (F, | · |n). According to ([47], Theorem 3.1), if T is a tame operator from
L(s) and F = R(T ) is the image of the operator T , then there exist a complete
orthonormal system {en} in F0, consisting of elements of F and an equicontinuous
sequence {yn} from s′ such that for each ν ∈ N there exists µ ∈ N with the
properties

∞∑
n=1

|yn|′µ|en|ν <∞

and

Tx =
∞∑
n=1

yn(x)en , (4.1.12)

where | · |′µ is the norm dual to the norm | · |µ.

Corollary 4. Let A be an injective continuously invertible operator mapping the
Fréchet space s to itself. If u0 is an exact solution of equation (4.1.1) and the
sequence of basis functions {gi} from s is A-complete, then the sequence of ap-
proximate solutions {um} constructed by the least squares method converges to u0
in s. Moreover, if the image of the operator A is tamely isomorphic to the space s
and A−1 has the form (4.1.12), then for each n and m the inequality

|u0 − um|n ≤ Cn|Au0 −Aum|an+l

holds, where a, l ∈ N and Cn > 0.

Indeed, repeating the arguments that were used to prove Corollary 2, we obtain
the following diagram:

R(A)
A−1

//

L
""

s

s
T

@@

where A−1 = T ◦ L and the identity operator I = L−1L is tame. Therefore, by
([47], Theorem 3.1), we have the following estimates:

|u0 − um|n = |A−1L−1LA(u0 − um)|n ≤ C1n|L−1LA(u0 − um)|an+l1 ≤
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≤ C1n · tC2n|A(u0 − um)|an+l1+l2 = Cn|A(u0 − um)|an+l ,

where a, l ∈ N and Cn > 0.
It should be noted that the space s occupies an important place in the struc-

tural theory of nuclear Fréchet spaces. In particular, many frequently used Fréchet
spaces of infinitely differentiable functions are isomorphic to the space s ([160], p.
602). It is interesting to investigate which of these isomorphisms are tame.

Let us now generalize the concept of a projective process considered in [134]
and show that the above generalization of the least squares method is its con-
crete realization. Let G and E be Fréchet spaces and {Pm} and {Qm} be two
sequences (generally speaking, unbounded and nonlinear) of projections with do-
mainsD(Pm) ⊂ G,D(Qm) ⊂ E and closed sets of valuesR(Pm) ⊂ G,R(Qm) ⊂
E. Let A : G → E be a linear operator (in [134] its continuity was required). By
the projective process {Pm , Qm} for obtaining an approximate solution of the op-
erator equation (4.1.1) we mean the transition from this equation to the projection
equation

QmAPmu = Qmf, f ∈ D(Qm) (4.1.10)

for which the solution um ∈ R(Pm) can be found in one way or another.
We will call the projective process {Pm , Qm} applicable to the operator A and

write A ∈ Π{Pm, Qm}, if, starting from some n0, the equation (4.1.10) for each
element f ∈ E has a single solution um and the sequence of these solutions as
m→ ∞ converges to the solution of the equation (4.1.1).

In our case, the operator Qm is a strong metric projection of the Fréchet space
E onto its closed subspace AGm, that is, an operator that assigns to each element
f ∈ E its unique strong best approximation in AGm. The operator Pm : G→ Gm
is a projection operator onto a finite-dimensional subspace Gm. This projectve
process does not fit into covered by the framework of Banach spaces and has not
been discussed before.

4.2 Symmetric and self-adjoint operators in Fréchet–Hilbert spaces

Symmetric and positive definite operators in Hilbert spaces are of most importance
for quantum mechanics and mathematical physics and they are studied in detail in
the monographs [?, 105, 109, 139, 140]. Continuous self-adjoint operators in the
case of strict Fréchet–Hilbert spaces were first defined and studied in [84,85]. Our
definitions do not require continuity of the operator A and the results obtained are
valid not only for strict Fréchet–Hilbert spaces, but also for countable-Hilbert and
nuclear Fréchet spaces.



218 D. Zarnadze, D. Ugulava

Let A ∈ L0(E), then for each n ∈ N we define the projection operator An :
(E/Ker ∥ · ∥n, ∥̂∥n)→ (E/Ker ∥ · ∥n, ∥̂∥n) using the equality

An(Knx) = Kn(Ax), x ∈ D(A), (4.2.1)

where Kn : E → E/Ker ∥ · ∥n is the canonical map. The condition for the
correctness of the operator An is the following: for any x1 and x2 from E, the
condition x1 − x2 ∈ KerKn implies An(x1 − x2) ∈ KerKn.

Let us prove that A ∈ L0(E) if and only if An is continuous for each n ∈ N.
Indeed, if A ∈ L0(E), then for every n ∈ N there exists cn > 0 such that

∥AnK̂nx∥n = ∥K̂nAx∥n = ∥Ax∥n ≤ cn∥x∥n = cn∥K̂nx∥n,

i.e. An is continuous. The converse statement can be proved by similar reasoning
and we omit it.

LetE be a Fréchet space with an nondecreasing sequence of Hilbert seminorms
{∥ · ∥n}, where ∥x∥n = (x, x)

1/2
n for each x ∈ E and (·, ·)n are the semi-inner

product on E. Let A be a linear operator with dense domain D(A). If for y ∈ E
there is an element y∗ such that

(Ax, y)n = (x, y∗)n (4.2.2)

for each x ∈ D(A) and n ∈ N, then the equality A∗y = y∗ defines the operator
A∗ : E → E, which we call the Hilbert conjugate of the operator A. In other
words, D(A∗) consists of y ∈ E for which there exists a vector y∗ such that
(4.2.2) holds for all x ∈ D(A) and n ∈ N. This is equivalent to the fact that
the extension of functionals fn(x) = (Ax, y)n defined on D(A) to continuous
functionals is generated for each n ∈ N by the same element y∗ ∈ E. Given
y ∈ D(A∗), the element y∗ is uniquely determined by the identities (4.2.2). It
should also be noted that, as the example below shows, the operator A∗ differs
from the usual topological adjoint A′ and therefore (also keeping in mind [212])
we called it Hilbert.

An operator A with a dense domain D(A) is called symmetric if A ⊂ A∗, i.e.
if the adjoint operator A∗ is a continuation of A.

The symmetric operatorA can also be defined in the following equivalent way:
the operator A is called symmetric if

(Au, v)n = (u,Av)n

for all u, v ∈ D(A) and n ∈ N.
A symmetric operator A is called self-adjoint (or hypermaximal according to

the terminology introduced by von Neumann [182]) if A = A∗. Currently, the
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first of these terms is more commonly used, and we will also support a similar
terminology in the case of Fréchet spaces.

The definition of a self-adjoint operator in the case of a continuous operator
A mapping a strict Fréchet–Hilbert space into itself was given in [84], and in [85]
a Theorem on the spectral representation of a self-adjoint operator in such spaces
was proved.

A symmetric operator A is called positive definite in the space E if for every
n ∈ N there exists γn ≥ 0 such that

(Ax, x)n ≥ γn(x, x)n for every x ∈ E.

Let again E be a Fréchet space with a generating nondecreasing sequence of
hilbertian seminorms {∥ · ∥n}, ∥ · ∥n = (·, ·)1/2n , Kn : E → E/Ker ∥ · ∥n be
canonical mapping, (E/Ker ∥ · ∥n, ∥̂·∥n) be normed space with the associated
norm ∥K̂nx∥n = ∥x∥n and the inner product ⟨knx, kny⟩n = (x, y)n, En =

( ˜E/Ker ∥ · ∥n, ∥̂·∥n) be its completion. Let A : D(A) ⊂ E → E be a linear
operator with dense domain D(A). For each n ∈ N, we define the linear operator
An : En → En with the dense domain D(An) by the equality (4.2.1).

Lemma 4.2.1. LetE be a Fréchet space with an nondecreasing sequence of hilber-
tian seminorms {∥ · ∥n} and A : D(A) ⊂ E → E be a linear operator. A is
symmetric and positive definite with dense domain D(A) in E if and only if the
operators An, defined by equalities (4.2.1), are symmetric and positive definite in
( ˜E/Ker ∥ · ∥n, ∥̂·∥n) with the dense domains Kn(D(A)) for each n ∈ N.

Proof. Let the operator A be symmetric and positive definite. From the density
D(A) in E we immediately obtain the density D(An) = Kn(D(A)) in
(E/Ker ∥ · ∥n, ∥̂·∥n) for each n ∈ N. Next, for Knx,Kny ∈ D(An),

⟨AnKnx,Kny⟩n = ⟨KnAx,Kny⟩n = (Ax, y)n

= (x,Ay)n = ⟨Knx,KnAy⟩n = ⟨Knx,AnKny⟩n

and

⟨AnKnx,Knx⟩ = ⟨KnAx,Knx⟩n = (Ax, x)n ≥ γ2n(x, x) ≥ γ2n⟨Knx,Knx⟩n.

Let us now assume that An is symmetric and positive definite for every n ∈ N
with dense domain Kn(D(A)) and x, y ∈ D(A). Then we have

(Ax, y)n = ⟨KnAx,Kny⟩n = ⟨AnKnx,Kny⟩n = ⟨Knx,AnKny⟩n
= ⟨KnAx,KnAy⟩n = (x,Ay)n.
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The positive definiteness of the operator A is proved in a similar way. The density
of D(A) in E follows from the density of Kn(D(A)) in ( ˜E/Ker ∥ · ∥n, ∥ · ∥n) for
each n ∈ N.

Let us now present a generalization of von Neumann’s theorem ([109], p. 121).

Theorem 4.2.2. Let E be a Fréchet space with a generating nondecreasing se-
quence of hilbertian seminorms {∥ · ∥n}. Then the following statements are true:

a) The symmetric operator A, defined on the whole space D(A) = E, is self-
adjoint and continuous, i.e. A ∈ L(E). Moreover, if E is a strict Fréchet–Hilbert
space, then A ∈ L0(E), i.e. for every n ∈ N there is cn > 0 such that

∥Ax∥n ≤ cn∥x∥n for every x ∈ E. (4.2.3)

b) A symmetric operator A with a dense image R(A) in the space E has an in-
verse operatorA−1, andA−1 also is symmetric. Moreover, ifA is positive definite,
then A−1 ∈ L0(E).

c) Let A be a symmetric operator with dense image R(A) in E. Then A is
self-adjoint if and only if A−1 is self-adjoint.

d) A symmetric operatorA whose imageR(A) coincides withE is self-adjoint.

Proof. a) Due to the symmetry ofA, we have thatD(A) ⊂ D∗(A), butD(A) = E
and therefore D(A∗) = E, i.e. A = A∗. Let us prove that the operator A is closed.
Indeed, let um → u0 and Aum → v0 for m → ∞. Then for each n ∈ N and
u ∈ E we have that (v0, v)n = lim

m→∞
(Aum, v)n = lim

m→∞
(um, Av)n = (u0, Av)n,

i.e. v0 = Au0. Thus, the operator A is closed and therefore continuous. If E
is a Fréchet–Hilbert space, then the operator An defined by (4.2.1) turns out to
be defined on the whole Hilbert space En = ( ˜E/Ker ∥ · ∥n, ∥̂∥). Since An
is symmetric by Lemma 4.2.1, then, by the classical Hellinger–Toeplitz theorem
[109], An will be continuous for each n ∈ N, i.e. A ∈ L0(E).

b) Let us first note that A−1 exists in the case when the operator A is injective,
and due to the linearity of A, this occurs only when the equality Ax = 0 implies
that x = 0. Indeed, in our case, for all y ∈ D(A) and n ∈ N, we have that
(x,Ay)n = (Ax, y)n = 0. Hence, due to the density of R(A) in E, we obtain that
x ∈ Ker ∥ · ∥n for each n ∈ N, i.e. x = 0. This means that there is an inverse
operator A−1 with a dense domain D(A−1) = R(A) and A−1Au = u ∈ D(A).
Also, A−1Av = v for all v ∈ D(A−1) = R(A).

Let us now prove that for all u, v ∈ D(A−1) and n ∈ N the following equalities
are true:

(A−1u, v)n = (u,A−1v)n .



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 221

Indeed, if A−1u = x and A−1v = y, then u = Ax and v = Ay. Therefore,
due to the symmetry of the operator A, we have that (A−1u, v)n = (x,Ay)n =
(Ax, y)n = (u,A−1v)n for all n ∈ N, i.e. A−1 is symmetric.

Further, from the positive definiteness of the operatorA it follows that for every
n ∈ N there exists γn > 0 such that

(Au, u)n ≥ γn∥u∥2n .

From the Cauchy–Buniakowski inequality

(Au, u)n ≤ ∥Au∥n∥u∥n

it follows that
∥Au∥n∥u∥n ≥ γn∥u∥2n .

Hence, for u ∈ E, if ∥u∥n = 0, then in the last relation we have equality, and for
∥u∥n ̸= 0 we have the inequality

∥Au∥n ≥ γn∥u∥n ,

i.e. A−1 ∈ L0(E) due to (4.1.4).
c) Let A = A∗. In the proof of statement b) it was proven that A−1 exists and

is symmetric, so there is an adjoint operator (A−1)∗. It is enough to prove that
(A−1)∗ = (A∗)−1, since it immediately follows from the condition that A−1 =
(A∗)−1. If u ∈ D(A) and v ∈ D((A−1)∗), then for each n ∈ N we have

(u, v)n = (A−1Au, v)n = (Au, (A−1)∗v)n = (u,A∗(A−1)∗v)n .

This means that (A−1)∗v ∈ D(A∗) and A∗(A−1)∗v = v. Similarly, if u ∈
D(A−1) and v ∈ D(A∗), then for each n ∈ N we have

(u, v)n = (AA−1u, v)n = (A−1u,A∗v)n = (u, (A−1)∗(A∗v))n ,

i.e. A∗v ∈ D((A−1)∗) and (A−1)∗(A∗v) = v. It follows that (A−1)∗ = (A∗)−1.
The converse statement is proved by applying the already proved statement for
A−1.

d) By virtue of statement b), there is a symmetric inverse of A−1. But
D(A−1) = R(A) = E and therefore, by virtue of a), the operator A−1 is self-
adjoint, i.e. A−1 = (A−1)∗. But then, by virtue of c), A = A∗ and A is self-
adjoint.

It should be noted that statement a) is a generalization of the well-known
Hellinger–Toeplitz theorem on the continuity of a symmetric operator defined over
the whole space.

The application of Theorem 4.2.2 proves the following generalization of the
well-known theorem of Friedrichs, Stone, Vintner ([109], p. 123).
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Theorem 4.2.3. Let E be a Fréchet space with a generating nondecreasing se-
quence of hilbertian seminorms {∥ · ∥n} and A : D(A) ⊂ E → E be a symmetric
and positive definite operator with a dense image R(A). Then A has a self-adjoint
and positive definite extension Ã such that R(Ã) = E.

Proof. By statement b) of Theorem 4.2.2, there is a symmetric inverse A−1 to
the operator A, which belongs to L0(E). Let B = A−1. The operator B can be
extended by continuity in a unique way to the entire space E. Let us denote this
continuation by B̃. For x ∈ E it is defined by the equality B̃x = lim

k→∞
A−1xk,

where xk ∈ R(A) and lim
k→∞

xk = x. Let us prove that B̃ is also symmetric. Indeed,

let x, y ∈ E and lim
k→∞

xk = x and lim
m→∞

ym = y, where xk, ym ∈ R(A). Then for

each n ∈ N we have

(B̃x, y)n =
(
lim
k→∞

A−1xk, lim
m→∞

ym
)
n
= lim

k→∞
lim
m→∞

(A−1xk, ym)n =

= lim
k→∞

lim
m→∞

(xk, A
−1ym)n = (x, B̃y)n.

From statement a) of Theorem 4.2.2 it follows that B̃ is self-adjoint. Since B̃
is a continuation of A−1, then R(B̃) ⊃ R(A−1) = D(A), i.e. R(B̃) is dense
everywhere in E. If we now apply statement c) of Theorem 4.2.2, for the operator
B̃ we obtain that B̃−1 is also self-adjoint. Namely, B̃−1 is a self-adjoint extension
of the operator A. Let us denote B̃−1 by Ã. Let us prove that if x ∈ D(A), then
Ax = Ãx. Indeed, then Ax ∈ R(A), A−1Ax = B̃Ax = x, i.e. Ax = B̃−1x and
therefore Ax = Ãx. Since R(Ã) = D(B̃) = E, Ã satisfies all the requirements of
Theorem 4.2.2.

It is not known whether Theorem 4.2.3 is valid without the requirementR(A) =
E. In the case of Hilbert spaces, this follows from the positive definiteness of the
operator A ([47], Theorem X.26, p. 205).

Corollary. Let E be a Fréchet space with a generating nondecreasing sequence
of hilbertian seminorms {∥ · ∥n} and A : E → E be a symmetric and positive
definite operator with a dense range R(A). Then A has an extension Ã such that
the equation

Ãu = f (4.2.4)

has a unique solution for each f ∈ E.

We will call the solution u0 ∈ D(A) of the equation (4.2.4) classical, and if
u0 /∈ D(A), then generalized.
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It should also be added that for each n ∈ N the extension of the operator Ã
also satisfies the inequality

(Ãx, x)n ≥ γn(x, x)n.

Below we will show that the generalized solution is always contained in the
energetic space EA of the operator A, to the definition of which we proceed.

4.2.1 Energetic space of symmetric and positive definite operators

Let (E,T) be a Fréchet space with a generating nondecreasing sequence of hilber-
tian seminorms {∥ · ∥n}, A : D(A) ⊂ E → E be a symmetric and positive definite
operator. Along with the induced topology, we endowD(A) with the topology TA,
a generating sequence of hilbertian seminorms

[x]n = [x, x]1/2n , x ∈ D(A), n ∈ N, (4.2.5)

where
[x, y]n = (Ax, y)n, x ∈ D(A), n ∈ N. (4.2.6)

From the positive definiteness of the operator A it follows that the topology
TA is not weaker than the topology T ∩ D(A). Let EA denote the completion of
D(A) in the topology TA and call it the energetic space of the operator A. We
will call the quantities [x, y]n and [x]n energetic semi-inner product x, y ∈ D(A)
and energetic seminorms x ∈ D(A), respectively. By virtue of the above, we also
have that D(A) ⊂ EA ⊂ E. Therefore, after D(A) is replenished, elements not
contained inD(A) appear in EA. Therefore, the representations (4.2.5) and (4.2.6)
do not hold for all x, y ∈ EA. Although, for x, y ∈ D(Ã) the representations are
still valid

[x, y]n = (Ãx, y)n . (4.2.7)

If we assume that the sequence of seminorms {[ · ]n} is non-decreasing, then
the Fréchet space (EA,TA) can be represented as the projective limit of a se-

quence of Hilbert spaces {( ˜EA/Ker[ · ]n, [ ·̂ ]n)} with respect to the mappings πnm
(m ≥ n), where [K̂A,nx]n = [x]n is the associated norm on the quotient space
EA/Ker[ · ]n, KA,n : EA → EA/Ker[ · ]n is canonical mapping, EA,n =

( ˜EA/Ker[ · ]n, [ ·̂ ]n) is completion of the space (EA/Ker[ · ]n, [ ·̂ ]n), and π̃A,nm
is a continuous extension to EA,m of the canonical map

πA,nm : (EA/Ker[ · ]m, [ ·̂ ]m) → (EA/Ker[ · ]n, [ ·̂ ]n) (m ≥ n).
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By Lemma 4.2.1, ifA is symmetric and positive definite, thenAn is symmetric
and positive definite, and therefore on D(An) we can define the energetic norm of
the operator An by the equality

[Knx]An = ⟨AnKnx,Knx⟩1/2n , Knx ∈ D(An), (4.2.8)

and the inner product

[Knx,Kny]An = ⟨AnKnx,Kny⟩n , Kny,Knx ∈ D(An). (4.2.9)

The completion ofD(An) by the norm [ · ]An is the energy space of the operator
An and is denoted by HAn .

Theorem 4.2.4. Let E be a Fréchet space with a generating nondecreasing se-
quence of hilbertian seminorms {∥ · ∥n}, A : D(A) ⊂ E → E be a symmetric
and positive definite operator, EA be the energetic space with an nondecreasing
sequence of seminorms (4.2.5). Then the space EA is represented as the projective
limit of a sequence of Hilbert spaces HAn , energetic spaces of the operator An.

Proof. It is enough to show that the Hilbert spaces (EA,n, [ ·̂ ]n) and (HA,n, [ · ]An)
are isometric. Indeed, sinceD(A) is everywhere dense in (EA,TA) andKn,A(EA)

is dense in (EA,n, [ ·̂ ]n), then Kn,A(D(A)) is dense in EA,n for every n ∈ N.
Indeed, let n be fixed, ε > 0 and x̂ ∈ EA,n, then there exists x ∈ EA such
that [x̂ − Kn,A]n < ε

2 . Therefore, for x ∈ EA and the specified n, there exists
y ∈ D(A) such that [x − y]n <

ε
2 , i.e. [ ̂Kn,Ax−Kn,Ay]n <

ε
2 . From here we

get that [x̂ − Kn,Ay]n < ε. Further, from the definition of the norms [ ·̂ ]n and
[ · ]An it follows that the normed spaces (Kn,A(D(A)), [ ·̂ ]n) and (D(An), [ · ]An)
are isometric and this isometry is realized by the mapping Kn,Ax → Knx, x ∈
D(A). Really,

[K̂n,Ax]n = [x]n = (Ax, x)n = ⟨KnAx,Knx⟩n = ⟨AnKnx,Knx⟩n = [Knx]An .

Since Kn,A(D(A)) and D(An) are dense in the spaces EA,n and HAn , respec-
tively, then their completions (EA,n, [ ·̂ ]n) and (HAn , [ · ]An) are also isometrical.
Hence, in view of the above, it turns out that the space (EA,TA) is represented as
the projective limit of the sequence of Hilbert spaces {(HAn , [ · ]An)}.

To illustrate our reasoning, we present a diagram in which the arrows indicate
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the mappings we mentioned:

EA
KA,n //

Ã

��

(EA,n, [̂ ]n)
��

E
A //

Kn
��

E

Kn

��

(EA,n, [̂ ]n)
��

OO

En = ( ˜E/Ker ∥ · ∥n, ∥ ·̂ ∥n)
An // En (HAn , [ · ]An)oo

OO

The operators Ã and Ãn are surjective and exist by virtue of Theorem 4.2.3.

4.2.2 Examples of symmetric and self-adjoint operators in Fréchet–Hilbert
spaces

1. Position operator in quantum mechanics. The position operator in quantum
mechanics is well known, defined by the equality

Tx(t) = t · x(t), (4.2.10)

where D(T ) consists of all complex valued functions x ∈ L2(R) for which t ·
x(t) ∈ L2(R). We can define the extension of this operator by the same equality to
the space L2

loc(R). The topology of the space L2
loc(R) is generated by a sequence

of semi-inner products

(x, y)n =

n∫
−n

x(t)y(t) dt, x, y ∈ L2
loc(R). (4.2.11)

Let us prove that the operator (4.2.10) with domain D(T ) = L2
loc(R) is a

continuous self-adjoint operator. Indeed, for each n ∈ N and x, y ∈ L2
loc(R), we

have

(Tx, y)n =

n∫
−n

tx(t)y(t) dt =

n∫
−n

x(t)ty(t) dt = (x, Ty)n .

By virtue of statement a) of Theorem 4.2.2, it turns out that T is a continuous
operator of class L0(L

2
loc(R)), since the space L2

loc(R) is a strict Fréchet–Hilbert
space.

2. Taking into account the notation of the previous example, we define an
operator on the space L2

loc(R) using the equality

Tx(t) = (1 + t2)x(t). (4.2.12)
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By statement a) of Theorem 4.2.2, this operator is self-adjoint and continuous
of class L0(L

2
loc(R)), since D(T ) = L2

loc(R) and for each n ∈ N and x, y ∈
L2
loc(R) the following equalities are valid:

(Tx, y)n =

n∫
−n

(1 + t2)x(t)y(t) dt =

n∫
−n

x(t)(1 + t2)y(t) dt = (x, Ty)n .

The operator (4.2.12) is positive definite, since for each x ∈ L2
loc(R) and n ∈ N,

the following inequalities hold:

(Tx, x)n =

n∫
−n

(1 + t2)|x(t)|2 dt

≥ min{(1 + t2); t ∈ [−n, n]}
n∫
−n

|x(t)|2 dt ≥ (x, x)n .

On the other hand, (Tx, x)n ≤ max{(1 + t2); t ∈ [−n, n]}(x, x)n ≤ (1 +
n2)(x, x)n, i.e. the energy space of the operator (4.2.12) coincides with the space
L2
loc(R). It is easy to verify that there is an inverse operator defined by the equality

T−1x(t) =
x(t)

1 + t2
.

This operator is also self-adjoint, positive definite and continuous of class
L(L2

loc(R)). Therefore, T is isometrically tame. Since T is a topological iso-
morphism, the topological adjoint map T ′ : (L2

loc(R))′ → (L2
loc(R))′ is also a

strong isomorphism. But the space (L2
loc(R))′ = L2

0(R) in the strong topology is a
strict (LH)-space, which is everywhere dense in the space L2

loc(R). It follows that
T ′ and T ∗ are different from each other.

3. Let Ω ⊂ Rl be an open set. The space W 2,∞(Ω) consists of functions f that
have generalized derivatives of all orders f (α) ∈ L2(Ω) (α = (α1, . . . , αl) is multi-
index). The space W 2,∞(Ω) is considered with the topology of L2-convergence of
derivatives of all orders. This topology is non-normable, but metrizable and is
given by an nondecreasing sequence of hilbertian norms

∥f∥2,n =

( ∑
|α|≤n−1

∥f (α)∥22
)1/2

, |α| =
l∑

j=1

αj , n ∈ N, (4.2.13)

where

∥f∥2 =
(∫

Ω

|f(t)|2dt
)1/2

.
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It is obvious that the norm (4.2.13) is generated by the scalar product

(f, g)2,n =
∑

|α|≤n−1

(f (α), g(α))2, (4.2.14)

where (·, ·)2 is the scalar product of the space L2(Ω).
In [200], it was proven that the spaceW 2,∞(Rl) is a complete countable Hilbert

space. It is known that W 2,∞(Rl) =
∞⋂
n=0

Wn
2 (Rl), where Wn

2 (Rl) is a Sobolev

space of n-th order. It also follows from Sobolev’s theorem that W 2,∞(Ω) consists
of functions having ordinary derivatives of all orders. The space W 2,∞(Rl) is not
nuclear, since it has an infinite-dimensional normable subspace Mν2(Rl) (Section
2.3), which consists of entire functions of exponential type ν, whose restrictions to
Rl belong to the space L2(Rl).

Using the equality

Ax(t) =
i

h

[
x

(
t+

h

2

)
− x

(
t− h

2

)]
, (4.2.15)

let us define a difference operator, where h ∈ R, h ̸= 0. Let us prove that this
operator is self-adjoint on the space W 2,∞(R). Indeed, for x, y ∈ W 2,∞(R), we
have

(Ax, y)2,1 =
i

h

∞∫
−∞

x

(
t+

h

2

)
y(t) dt− i

h

∞∫
−∞

x

(
t− h

2

)
y(t) dt

(
t+

h

2
= x, t = s− h

2
, ds = dt, t− h

2
= s, t = s+

h

2

)

=
i

h

∞∫
−∞

x(s)y

(
s− h

2

)
ds− i

h

∞∫
−∞

x(s)y

(
s+

h

2

)
ds

=
i

h

∞∫
−∞

x(s)

(
y

(
s− h

2

)
− y

(
s+

h

2

))
ds=

i

h

∞∫
−∞

x(s)Ay(s) ds

= (x,Ay)1 .

Similarly, we obtain that

(Ax, y)2,2 = (Ax, y)2,1 + ((Ax)′, y′)2,1 = (x,Ay)2,1 + (Ax′, y′)2,1 =

= (x,Ay)2,1 + (x′, Ay′)2,1 = (x,Ay)2,2 .
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Similar reasoning will prove the equality

(Ax, y)2,n = (x,Ay)2,n

for n ≥ 2. Since D(A) = W 2,∞(R), then, by statement a) of Theorem 4.2.2, A is
a continuous self-adjoint operator.

4. Momentum operator in quantum mechanics. The momentum operator in
quantum mechanics is defined by the equality

Tx(t) = ix′(t),

where i is a complex unit, and D(T ) consists of a set of absolutely continuous
functions x(t) on [−1, 1], having derivatives x′(t) ∈ L2[−1.1]. By analogy with
Example 1, we define the extension T̃ of this operator by the equality just given to
L2
loc]a, b[. Let an ↓ a and bn ↑ b. We define the topology of the space L2

loc]a, b[ by
a sequence of hilbertian seminorms

∥x∥n =

( bn∫
an

|x(t)|2 dt
)1/2

.

We assume that D(T ) consists of all functions x(t) ∈ L2
loc[a, b] that are ab-

solutely continuous on each compact interval in ]a, b[, i.e. x′(t) ∈ L2
loc[a, b] and

x(an) = x(bn) = 0 for each n ∈ N. By an insignificant change in the reasoning,
used to prove the density of the domain of definition of the operator T in the case
of the Hilbert space L2(R) ( [71], p. 276), one can also prove that D(T̃ ) is every-
where dense in L2

loc]a, b[. Applying the results of the example given in ( [71], p.
284), we obtain that T̃ ∗ = ix′(t), where D(T̃ ∗) is an space of absolute continuous
on each compact set ]a, b[ functions x(t) for which x′(t) ∈ L2

loc[a, b]. Therefore,
D(T̃ ) ⊂ D(T̃ ∗) and T̃ is an example of a symmetric but not self-adjoint operator.

5. Let H2 be the space of functions analytic in the unit disk such that their
restrictions on the circle f(θ) = f(eθ) belong to the space L2[−π, π], periodic
functions summable by square. It is well known that the Fourier coefficients of
such functions with negative indices are equal to zero, i.e.

1

2π

π∫
−π

f(θ)eijθ dθ = 0, j = 1, 2, . . . .

Consequently, the expansion of the function f ∈ H2 in the form of a Fourier series
has the form

f =
∞∑
j=1

(f, uj)uj , where uj = eijθ .
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We denote byH2,∞[−π, π] the space of functions analytic in the unit disk such
that f(θ) = f(e1θ) together with their derivatives belong to the space L2[−π, π].
Let us define the topology of the space H2,∞ by means of a sequence of hilbertian
norms

∥f∥2,n =

( n−1∑
α=0

∥f (α)∥22
)1/2

, (4.2.16)

where

∥f∥2 =
(

1

2π

π∫
−π

|f(θ)|2 dθ
)1/2

.

Consider a linear, positive definite operator A with the spectrum 0 < λ1 <
· · · < λn < · · · and limλk = ∞. Then the operator A has the form

Af =

∞∑
j=1

λj(f, uj)uj . (4.2.17)

D(A) consists of all functions f for which the series (4.2.17) converges. Since
D(A) contains all finite sums, then D(A) is dense in H2,∞[−π, π]. Let us prove
that for each n ∈ N, f, g ∈ D(A), the following equalities hold:

(Af, ϕ)2,n = (f,Aϕ)2,n . (4.2.18)

We have

(Af, ϕ)2,1 =

( ∞∑
j=1

λj(f, uj)uj , ϕ

)
=

∞∑
j=1

λj(f, uj)(uj , ϕ)

=

∞∑
j=1

(f, uj)λj(ϕ, uj) =

(
f,

∞∑
j=1

λj(ϕ, uj)uj

)
= (f,Aϕ)2,1 .

Further, due to the fact that the derivative of the Fourier series of the function
f ∈ H2,∞[−π, π] is the Fourier series of the derivative of the function, we have

(Af, ϕ)2,2 = (Af, ϕ) + ((Af)′, ϕ′) = (f,Aϕ) + (Af ′, ϕ′) = (f,Aϕ) + (f ′Aϕ′)

= (f,Aϕ) + (f ′, (Aϕ)′) = (f,Aϕ)2,2 .

Equalities (4.2.18) are proved similarly for other n ≥ 2.
The operator (4.2.17) is also positive definite. Indeed, for f ∈ D(A) we have

(Af, f)2,1 =
∞∑
j=1

λj(f, uj)(uj , f) =
∞∑
j=1

λj |(f, uj)|2
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≥ λ1

∞∑
j=1

|(f, uj)|2 = λ1(f, f)2,1 .

By similar reasoning, we obtain the inequality

(Af, f)2,n ≥ λ1(f, f)2,n

for other n ≥ 2, too.
The topology of the energetic spaceEA of the operatorA, defined by the equal-

ity (4.2.17), is generated by the sequence of norms [f ]n = (Af, f)
1/2
2,n .

The inverse operator A−1f =
n∑
j=1

(f,uj)
λj

uj is a continuous operator of class

LF (H
2,∞), positive definite and symmetric.

6. Let s be the space of rapidly decreasing sequences with a sequence of scalar
products

(x, y)n =
∞∑
j=1

j2nxkyk, where x = {xk}, y = {yk} ∈ s.

Consider the operator

Ax = (x1, 2x2, . . . , nxn, . . . ).

We have

|Ax|n =
n∑
j=1

j2nj2|xj |2 =
n∑
j=1

j2n+2|xj |2 = |x|n+1 . (4.2.19)

Therefore, A is a tame (ℓ = 1) continuous (despite the fact that this definer is
not continuous in the Hilbert space ℓ2).

Next, for each n ∈ N and x, y ∈ s we have

(Ax, y)n =
∞∑
j=1

j2n+2xjyj = (x,Ay)n,

i.e. A is symmetric and, by virtue of its definition on the whole space s and state-
ment a) of Theorem 4.2.2, is self-adjoint.

For n ∈ N and x ∈ s, we also have that

(Ax, x)n =
∞∑
j=1

j2n+2|xj |2 ≥
n∑
j=1

j2n|xj |2 ≥ (x, x)n , (4.2.20)
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i.e. A is positive definite.
Since R(A) = s, there exists A−1x = (x1,

x2
2 , . . . ,

xn
n , . . . ) and by (4.2.19),

A is continuous of class LF (s), self-adjoint and positive definite.
By virtue of (4.2.19)m, we also obtain that the energetic space of the operator

(4.2.18) again coincides with s.
7. The Schwarz space of rapidly decreasing functions S(R) (see Section 2.6)

is the set of infinitely differentiable complex-valued functions ϕ(x) on R for which

∥ϕ∥n = sup
{
|xnD(n)ϕ(x)|; x ∈ R

}
<∞, n ∈ N. (4.2.21)

Thus, the functions from the space S(R) are those functions that, together with
their derivatives, decrease to infinity faster than any polynomial. With the sequence
of norms (4.2.21) it is a Fréchet space ( [139], p. 152). Let us now present an
equivalent sequence of hilbertian norms on S(R)

∥ϕ∥n,2 =
( ∑
k≤n−1

∫
R

|xkϕ(k)(x)|2dx
)1/2

, ϕ ∈ S(R), n ∈ N. (4.2.22)

In ( [139], p. 161), the following increasing sequence of norms {∥ · ∥n} is
considered, equivalent to (4.2.21). LetA : S(R) → S(R) andA+ : S(R) → S(R)
be the mappings defined respectively by the equalities

A =
1√
2

(
x+

d

dx

)
, A+ =

1√
2

(
x− d

dx

)
, N = A+A.

Then we define the hilbertian norms ∥ · ∥n on S(R) as follows:

∥f∥n = ∥(N + 1)nf∥2, f ∈ S(R) and n ∈ N.

It is known ( [64], see also [160], p. 606) that S(R) is a nuclear countable
Hilbert space.

In the next section we will introduce a new sequence of norms equivalent to
(4.2.21), which plays an important role in finding approximate solutions for an
equation containing a quantum harmonic oscillator operator.

4.2.3 Formation of symmetric operators in Fréchet–Hilbert space

Let T be a closed linear operator mapping an everywhere dense subset D(T ) of
the Hilbert space H into itself. Von Neumann’s theorems on the representation of
the orthogonal complement in H ×H of the graph G(T ), as well as the symmetry
and self-adjointness of the operators TT ∗, T ∗T , I + TT ∗ and I + T ∗T , are well
known.
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In this section, we generalize these von Neumann results to the case of Fréchet
spaces E whose topology is generated by an increasing sequence of hilbertian
seminorms ∥x∥n = (x, x)

1/2
n . ThenE×E is again a Fréchet space whose topology

is generated by an increasing sequence of hilbertian seminorms

|{x, y}|n =
(
∥x∥2n + ∥y∥2n

)1/2
, {x, y} ∈ E × E, (4.2.23)

and these seminorms are generated by semi-inner products

({x, y}, {w, z})n = (x,w)n + (y, z)n, (4.2.24)

{x, y} , {w, z} ∈ E × E, n ∈ N.

Let again A : E → E be a closed linear operator and G(A) = {{x,Ax} ∈
E×E; x ∈ D(A)} be a graph of operatorA. Let us define a mapping V onE×E
using the equality

V {x, y} = {−y, x}.

Proposition 4.2.5. LetE be a Fréchet space with an increasing sequence of hilber-
tian seminorms ∥ · ∥n = (·, ·)1/2n and let A : E → E be a closed linear operator
with the dense domain D(A). If there is a adjoint operator A∗ : E → E, then the
equality G(A∗) =

⋂
n∈N

V (G(A))⊥n holds.

Proof. Let {z, w} ∈
⋂
n∈N

V (G(A))⊥n . Then for each (x, y) ∈ V G(A) and n ∈ N,

the following equalities hold:

({z, w}, {x, y})n = 0.

By condition, {x, y} = V ({x1, y1}), where {x1, y1} ∈ G(A). Therefore, y1 =
Ax1 and {x, y} = V ({x1, Ax1}) = {−Ax1, x1}. Then, for each n ∈ N, the
following equalities are true:

({z, w}, {−Ax1, x1})n = −(z,Ax1)n + (w, x1)n = 0,

i.e.
(Ax1, z) = (x1, w)n.

This is equivalent to the fact that z ∈ D(A∗) and w = A∗z, i.e. {z, w} ∈ G(A∗).
Let us now prove the converse inclusion. Let {z, w} ∈ G(A∗), i.e. w = A∗z.

Then for an arbitrary {−Ax1, x1} ∈ V G(A), where x1 ∈ D(A), it is necessary to
prove that

{z,A∗z} ⊥ {−Ax1, x1}.
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This follows from the equalities

−(z,Ax1)n + (A∗z, x1)n = 0,

which for each n ∈ N follow from the conditions.

Corollary. Under the conditions of Proposition 4.2.5, the Hilbert adjoint operator
is closed.

It should be noted that, in contrast to Hilbert spaces, it cannot be argued that
V (G(A)) is the orthogonal complement ofG(A∗), since not every closed subspace
of the Fréchet space E × E has an orthogonal complement (see Section 2.4).

Let us now present a sufficient condition for V G(A) to have an orthogonal
complement in E × E.

Theorem 4.2.6. Let E × E be a Fréchet–Hilbert space (resp. countable-Hilbert
space) with a sequence of hilbertian seminorms (resp. hilbertian norms) (4.2.23)
and A : E → E is a closed linear operator that has the Hilbert adjoint operator
A∗. If a closed subspace V (G(A)) has the property (H) (resp. the property (C))
in E × E, then E × E = V (G(A))⊕G(A∗).

Proof. Since V (G(A)) has orthogonal complement, then, by Proposition 4.2.5, it
turns out that V G(A)⊥ = G(A∗). Indeed, let E × E = V G(A) ⊕ V (G(A))⊥,
i.e. each element of {z, w} ∈ V G(A)⊥ is orthogonal to an arbitrary element of the
subspace V (G(A)), i.e. {z, w} ⊥ {−Ax1, x1}. This means that for each n ∈ N
the equality

(z,Ax1)n = (w, x1)n

holds, i.e.
(Ax1, z)n = (x1, w)n.

But then w = A∗z and {z, w} ∈ G(A∗).

Corollary. Let the Fréchet space E × E with a sequence of hilbertian seminorms
(4.2.23) be represented as the sum of its closed subspaces G(A∗) and V G(A)). If
D(AA∗) andD(A∗A) are dense everywhere inE andA∗∗ = A, then the operators
AA∗ and A∗A are symmetric and only positive, and the operators I + AA∗ and
I + A∗A are self-adjoint, positive definite and have self-adjoint and continuous
inverses of class L0(E).

Proof. Let’s check that AA∗ and A∗A are symmetric and only positive. Indeed,
let x, y ∈ D(AA∗) = {z ∈ D(A∗); A∗z ∈ D(A)}, then for each n ∈ N,

(AA∗x, y)n = (A∗x,A∗y)n = (x,A∗∗A∗y)n = (x,AA∗y)n



234 D. Zarnadze, D. Ugulava

and
(AA∗x, x)n = (A∗x,A∗x)n ≥ 0.

The statement for A∗A is proved similarly.
Let now x, y ∈ D(I +AA∗) and n ∈ N. Then we have

((I +AA∗)x, y)n = (x+AA∗x, y)n = (x, y)n + (AA∗x, y)n

= (x, y)n + (x,AA∗y)n = (x, (I +AA∗)y)n .

The symmetry of the operator I + AA∗ is proved in a similar way. Further, for
arbitrary x ∈ D(I +AA∗) and each n ∈ N, we have that

((I +AA∗)x, x)n = (x, x)n + (AA∗x, x)n = (x, x)n + (A∗x,A∗x)n ≥ (x, x)n,

i.e. I +AA∗ is a positive definite operator.
From the equality E × E = V G(A) ⊕ G(A∗) it follows that for an arbitrary

{f, g} ∈ E × E there are only elements {−Ax, x} ∈ V (G(A)) and {y,A∗y} ∈
G(A∗) such that

{f, g} = {−Ax, x}+ {y,A∗y},
or, if we rewrite them in coordinates, then{

f = −Ax+ y,

g = x+A∗y,
(4.2.25)

in this case ({−Ax, x}, {y,A∗y})n = 0 for each n ∈ N. Therefore, for each
n ∈ N we have

|{f, g}|2n = ∥f∥2n + ∥g∥2n = |{−Ax, x}|2n + |{y,A∗y}|2n
= ∥Ax∥2n + ∥x∥2n + ∥y∥2n + ∥A∗y∥2n.

In the case g = 0, from (4.2.25) we obtain the system{
f = −Ax+ y,

0 = x+A∗y.

It follows that for any f ∈ E there is g ∈ D(AA∗) such that f = y + AA∗y, i.e.
for any f ∈ E there is a unique y that satisfies the equation

(I +AA∗)u = f.

This means that R(I + AA∗) = E and therefore, by statement d) of Theorem
4.2.2, the operator I + AA∗ is self-adjoint. Again, by virtue of statements b) and
c) of Theorem 4.2.2, we obtain that the operator (I + AA∗)−1 is also self-adjoint
and (I +AA∗)−1 ∈ L0(E).

The statement for the operator I +A∗A is proved in a similar way.
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Note that the above results for the operator (4.2.12) can be obtained by applying
the corollary of Theorem 4.2.6 to the operator (4.2.10), i.e. if we assume that
Tx(t) = tx(t), then (I + TT ∗)x(t) = (1 + t2)x(t).

4.2.4 Extension of some symmetric operators from Hilbert spaces to strict
Fréchet–Hilbert spaces

We present here a sufficient condition for symmetric and self-adjoint operators
defined in a Hilbert space to have the same extensions in some strict Fréchet–
Hilbert spaces. In this case, their domain of definition significantly expands and
in some cases these extensions turn out to be continuous, despite the fact that the
operators themselves are unbounded in the original Hilbert spaces.

For this purpose, we will apply Theorem 2.4.1 that is representation of strict
Fréchet–Hilbert spaces in the form of a strict projective limit of the sequence of
its complemented subspaces and the representation of its strongly conjugate space
in the form of a strict inductive limit of the same sequence of its complemented
subspaces.

It should also be noted that if E is a strict Fréchet–Hilbert space, then, by The-
orem 2.4.1, the canonical map Kn is the projector of E onto Hn, and its restriction
Kn,Hn toHn is a topological isomorphism ofHn ontoE/Ker pn for every n ∈ N.
Therefore, each element x ∈ N is identified with the sequence {knx}, and since
E/Ker pn is isomorphic to the subspace Hn, then the element knx is also identi-

fied with the element hn =
(n)
x ∈ Hn. The element

(n)
x is called the trace of x inHn.

If, in particular, h ∈ Hn, then its trace in Hn coincides with h, i.e. knh = h =
(n)

h .
Moreover, for any h1, h2 ∈ Hn, the following equalities are true:

(h1, h2)n = (h1, h2)n,Hn = ⟨knh1, knh2⟩n. (4.2.26)

For example, in the case of the space ω = CN , the subspace Hn, mentioned

in Theorem 2.4.1, is identified with Cn and for x = {xn} ∈ ω, kn(x) =
(n)
x =

(x1, . . . , xn, 0, . . . ) is a trace of element x in Hn.
In the case of the space L2

loc(Ω), where Ω =
⋃
n∈N

Ωn, Ωn ⊂ intΩn+1 (n ∈ N),

the subspace Hn mentioned in Theorem 2.4.1 is identified with L2
0(Ωn), the space

of functions summable in a square on Ωn and equal to zero outside Ωn. The trace
of the function f ∈ L2

loc(Ωn) in Hn is its restriction to Ωn.
Using Theorem 2.4.1, one can easily prove that for each element x of strict

Fréchet–Hilbert space E, the sequence of its traces {
(n)
x } converges to x in E.
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Therefore, the dual space E′ =
⋃
n∈N

Hn to the strict Fréchet–Hilbert space E is

everywhere dense in E, i.e. E =
⋃
n∈N

Hn
E

.

Now let (E,T) = s · lim
←

(Hn, pn,Hn) be a strict Fréchet–Hilbert space and

L be a symmetric operator on E with dense domain D(L). Let L(n) denote its
restriction to Hn. If D(L) ∩ Hn is dense everywhere in Hn and leaves each Hn

invariant, i.e. L(Hn) ⊂ Hn, then L(n) is symmetric in Hn. According to ( [139],
p. 252, Lemma 2), every symmetric operator on a separable Hilbert space has a
sequence of invariant subspaces. Let Ln denote the projection of L on the quotient
space E/Ker pn, defined by the equality

Ln(Knx) = Kn(Lx). (4.2.27)

By virtue of the above, L defines a symmetric operator on Hn as well.

Theorem 4.2.7. Let (E,T) = s·lim
←

(Hn, pn,Hn) be a strict Fréchet–Hilbert space,

L : E → E be a linear operator with dense domain D(L) and L(Hn) ⊂ Hn for
each n ∈ N. Then the following statements are true:

a) L is a symmetric operator inE if and only if the operators Ln are symmetric
in ( ˜E/Ker pn, p̂n) for each n ∈ N with dense domain D(Ln) = Kn(D(L)).

b) For h ∈ D(L) ∩Hn, the following equalities are true:

Ln(Knh) = Lh = L(n)h, (4.2.28)

where Ln is defined by the equality (4.2.27) and the operator L is defined on D(L)
by the equality

Lϕ = L({φn}) = {Lnϕ} = {L(n)ϕn}, (4.2.29)

where {ϕn} = {knϕ}.
c) For the operator L to be symmetric, it is necessary and, if Kn(D(L)) ⊂

D(L(n)) = D(L) ∩ Hn, it is sufficient that L(n) were symmetric in Hn for each
n ∈ N.

d) If for each n ∈ N the equality D(Ln) = Hn holds, then L is a continuous
self-adjoint operator if and only if D(L) = E.

Proof. a) Let L be a symmetric operator on E and h1, h2 ∈ D(Ln). Since
D(Ln) = Kn(D(L)), then there exist x, y ∈ D(L) such that knx = h1 and
kny = h2. Then for these x, y and n ∈ N we have

(Lx, y)n = (x, Ly)n. (4.2.30)
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By the definition of the inner product on the quotient space E/Ker pn we
obtain the equality

⟨knLx, kny⟩n = ⟨knx, knLy⟩n.

Further, by virtue of (4.2.27), we have

⟨Lnknx, kny⟩n = ⟨knx, Lnkny⟩n. (4.2.31)

But from here, by definition, for h1 and h2 the following equality is true:

⟨Lnh1, h2⟩n = ⟨h1, Lnh2⟩n.

Now let x, y ∈ D(L) and n ∈ N, then if knx = h1 and kny = h2, then
h1, h2 ∈ kn(D(L)) = D(Ln). Due to the symmetry of Ln, we obtain that the
equality (4.2.31) is true. Hence, repeating the above reasoning in reverse order, we
obtain that (4.2.30) is true, i.e. L is a symmetric operator on E.

b) As noted above, in the case of the strict Fréchet–Hilbert space E, the canon-
ical map kn : E → E/Ker pn = Hn is the projector of E onto Hn, and its
restriction to Hn is an isomorphism of Hn onto (E/Ker pn, p̂n). Therefore, if

h ∈ Hn, then knh = h =
(n)

h . From here and from the condition we see that
(4.2.28) is true.

Let ϕ ∈ D(L). Since the space E is represented as the strictly projective limit
of the sequence of its complemented Hilbert spaces {(Hn, pn,Hn)} with respect to
the mappings πnm (n ≤ m), we obtain that ϕ = {ϕn} = {knϕ}, where knϕ ∈
kn(D(L)) and πnmkmϕ = knϕ (n ≤ m). Next, we have

πnm(Lmϕm) = πnmLmkmϕ = πnmkm(Lϕ) = kn(Lϕ)

= Lnknϕ = Lnϕn (n ≤ m).

Therefore, the sequence {Lnϕn} defines an element Lϕ of the space E. By virtue
of the first part of statement b), we also obtain that

Lϕ = {L(n)ϕn}.

Let L be a symmetric operator on E. Then for any n ∈ N and h1, h2 ∈
D(L) ∩Hn we have that

(Lh1, h2)n = (h1, Lh2)n.

Since L(Hn) ⊂ Hn, by virtue of (4.2.26) it follows that

(L(n)h1, h2)n,Hn = (h1, L
(n)h2)n,Hn . (4.2.32)
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It is easy to verify that D(L) ∩ Hn is everywhere dense in Hn. Therefore, by
hypothesis, L(n) is symmetric in Hn.

Let now L(n) be symmetric for every n ∈ N, i.e. (4.2.32) is valid for any
h1, h2 ∈ D(L) ∩Hn.

Let x, y ∈ D(L), then h1 = knx and h2 = kny belong to D(L(n)). Therefore,
(4.2.32) is true for them, and in (4.2.26) and (4.2.28) we also have that for each
n ∈ N the equality is true:

⟨Lnknh1, knh2⟩n = ⟨knh1, Lnknh2⟩n,

i.e. Ln is symmetric for every n ∈ N. According to statement a) we obtain that L
is symmetric in E.

d) Let D(Ln) = Hn for each n ∈ N and L be a self-adjoint operator, then
according to (4.2.29) Lϕ exists for any ϕ = {knϕ} ∈ E and, due to the self-
adjointness of L, ϕ ∈ D(L). Conversely, if D(L) = E, then, by virtue of the
generalized Hellinger–Toeplitz theorem, we obtain that L is self-adjoint, continu-
ous, and belongs to the class L0(E).

Now let (H, ∥ · ∥) be a Hilbert space, {Hn} be an increasing sequence of its
closed subspaces such that H =

⋃
n∈N

Hn
H

. Let jnm : Hn → Hm and jn :

Hn →
⋃
n∈N

Hn = F be sequences of isometric embeddings for which the equalities

jm · jnm = jn (n ≤ m) hold, L be a symmetric operator in H with dense domain
D(L) and L(n) be a restriction of L onHn with domainD(L(n)) = D(L)∩Hn or,
more precisely, D(L) =

⋃
n∈N

jn(D(L(n))) (we sometimes omit jn and jnm if this

does not lead to misunderstanding). In the inductive limit topology T, the space F
is a strict (LH)-space, i.e. a strict inductive limit of the sequence of Hilbert spaces
{Hn}. By virtue of Theorem 2.4.1, its strong dual space E = (F ′, β(F ′, F )) =
s · lim

←
Hn is a strict Fréchet–Hilbert space, i.e. the strict projective limit of the

sequence {Hn} with respect to the adjoint mappings j′nm : H ′m → H ′n and j′nm :
Hm → Hn (n ≤ m). In these notations we have

Theorem 4.2.8. Let {Hn} be an increasing sequence of subspaces of the Hilbert

space (H, ∥ · ∥) such that
⋃
n∈NHn

H
= H , let L be a symmetric operator in

H , L(Hn) ⊂ Hn and L(n) be the restriction of L to Hn. If for any n ≤ m the
conditions j′nmL

(m)ϕm = L(n)j′nmϕm are satisfied, then the equality

L̃({ϕn}) = {L(n)ϕn} (4.2.33)

defines a symmetric operator on the strict Fréchet–Hilbert space E =
(F ′, β(F ′, F )) = s · lim

←
Hn, the strict projective limit of the sequence of its sub-

spaces {Hn}, with respect to the mappings j′nm (n ≤ m).
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Proof. Indeed, by virtue of the above, the conjugate to the strict (LH)-space F =
s · lim
→
Hn in the strong topology is the strict Fréchet–Hilbert space E = s · lim

←
Hn

that is a strict projective limit of the sequence of spaces {Hn} with respect to the
mappings j′nm. Therefore, each element of ϕ ∈ E is represented in the form ϕ =
{ϕn}, ϕn ∈ Hn, where j′nmϕm = ϕn (n ≤ m) and j′nϕ = ϕn, i.e. j′m · j′nm = j′n
(n ≤ m). Let’s check that the right-hand side in (4.2.33) is an element from E. In
fact, we have that j′nmL

(m)ϕm = L(n)j′nm · ϕm = L(n)j′nm · jmϕ = L(n)j′n · ϕ =
L(n)ϕn (n ≤ m).

It is also obvious that the restriction of L̃ to Hn coincides with L(n) and, by
virtue of statement b) of Theorem 4.2.7, we obtain that L̃n = L(n).

Example. Let H = L2
0(R), Hn = L2

0[−n, n], jnm := L2
0[−n, n] → L2

0[−m,m]
be identical embedding, jn : L2

0[−n, n] →
⋃
n∈N

L2
0[−n, n] = F and Lx(t) = tx(t)

be a well-known position operator in quantum mechanics. Obviously, L(Hn) ⊂
Hn for every n ∈ N. The mappings j′nm and j′n are operators of restriction of
functions to [−n, n]. The equalities j′nmL

(m)ϕm = L(n)j′nmϕm indicate the com-
mutativity of the two operations of restriction and multiplication on the argument
t, i.e. j′nmL

(m)ϕm = j′nmtϕm = tϕn and L(n)j′nmϕm = L(m)ϕn. Then, by virtue
of the equalities

L̃ϕ(t) = {L(n)ϕn} = tϕ(t), ϕ ∈ L2
loc(R),

the continuation of the symmetric operator L from the Hilbert space L2(R) to the
strict Fréchet–Hilbert space L2

loc(R) is defined. Moreover, D(L̃n) = D(L(n)) =

L2
0[−n, n] and therefore, by virtue of statement d) of Theorem 4.2.7, D(L̃) =

L2
loc(R), L̃ is a continuous and self-adjoint operator and L̃ ∈ L0(L

2
loc(R)).

Let us now indicate how Theorem 4.2.8 can be applied by the self-adjoint dif-
ferential operator constructed in [98, 100]. Namely, in the notation considered
above, for a sequence of subspaces {Hn} of a Hilbert space (H, ∥ · ∥) there is a
sequence of self-adjoint operators Ln in the spaces Hn for which D(Ln) ⊂ Hn

and jnmD(Ln) ⊂ D(Lm) (n ≤ m). According to ( [98], Theorem 1.1), if for
any ε > 0 there is a number n0(ε) such that for all m > n ≥ n0(ε) and any
ϕn ∈ D(Ln) the inequality

∥(Lmjnm − jnmLn)ϕn∥ ≤ ε (∥ϕn∥+ ∥Lmjnmϕn∥+ ∥Lnϕn∥)

holds, then through equality

L∞ϕ = lim
m→∞

jmLmjnmϕn
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for ϕ = jnϕn ∈ D∞ =
⋃
n∈N

jnDn we define an essentially linear self-adjoint

operator L∞ on D∞.
Moreover, ifHn are invariant subspaces under the operatorL∞, j′nmL

(m)
∞ ϕm =

L
(n)
∞ j′nmϕm (n ≤ m), then by Theorem 4.2.8 the equality

L̃∞({ϕn}) = {L(n)
∞ ϕn}

for {ϕm} ∈ E = (F ′, β(F ′, F )) = s · lim
←
Hn a symmetric operator is defined on

the strict Fréchet–Hilbert space E, where L(n)
∞ – restriction of L∞ to Hn.

4.3 Generalization of the Ritz method for operator equations in Fréchet–
Hilbert spaces

4.3.1 Equation with symmetric and positive definite operators in Fréchet–
Hilbert spaces

Let again E be a Fréchet space with a generating non-decreasing sequence of
hilbertian seminorms {∥ · ∥n} and let A : D(A) ⊂ E → E be a symmetric and
positive definite operator with dense domain D(A) and the image R(A). Then, by
virtue of the corollary of Theorem 4.2.3, A has a unique self-adjoint extension Ã
such that the equation

Ãu = f (4.3.1)

has a unique solution u0 for each f ∈ E.
It may turn out that u0 ∈ D(A), then u0 will be the classical solution of the

equation
Au = f. (4.3.2)

If u0 /∈ D(A), then we call it a generalized solution of the equation (4.3.2).
The solution of the equation (4.3.1) belongs to the energetic space EA defined

in Section 4.2.1. Indeed, the equation (4.3.1) has a solution u0 ∈ E if and only if
the equation

Ãnknu = knf

has a solution knu0 for each n ∈ N. It is well known that knu0 belongs to the
energetic space H

Ãn
of the operator Ãn. On the other hand, consider the equation

Anknu = knf (4.3.3)

in Hilbert space En = ( ˜E/ ker ∥ · ∥n, ∥ ·̂ ∥n). By Lemma 4.2.1, the operator An
is symmetric and positive definite and, therefore, according to the Ritz method in
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energetic spaces ( [?], p. 26), the equation (4.3.3) has a generalized solution ûn
belonging to the energetic space (HAn , [ ]An). ûn is a solution to the equation

Ãnun = knf,

where Ãn is a self-adjoint extension of the operatorAn, which provides a minimum
to the energetic functional

Fn(knu) = ⟨Anknu, knu⟩n − ⟨knf, knu⟩n − ⟨knu, knf⟩n. (4.3.4)

By virtue of Theorem 4.7.3 ( [20], p. 79), the energetic space of a positive defi-
nite operator and its Friedrich’s extensions coincide and therefore (HAn , [ · ]An) =
(H

Ãn
, [ · ]

Ãn
). Since equations with operators An and Ãn have unique solutions,

ûn = knu0 ∈ HAn ⊂ En. From this we can conclude that the solution u0 also
belongs to the energetic space EA of the operator A, which is the projective limit
of the sequence of spaces {(HAn , [ · ]An)}.

This section generalizes the Ritz method for approximately solving the equa-
tion (4.3.1).

Let us first note that the above-mentioned operator A can be represented as
follows: Ax = {knAx} = {Anknx}. From the positive definiteness of the opera-
tors A and An it follows that there are inverse operators A−1 and A−1n , which are
related by the equalities

A−1x = {knA−1x} = {(A−1)nknx},

where (A−1)n is the projection of the inverse operator A. Obviously, for each
n ∈ N, the equalities A−1n = (A−1)n are valid. The operators A−1 and A−1n are
also related by the equalities

πnmA
−1
m kmx = πnmkmA

−1x = knA
−1x = A−1n (knx) (n ≤ m).

Similar representations are also valid for the operators Ã and Ã−1.
It should be noted that if E is a Fréchet–Hilbert space with a nondecreasing

sequence of hilbertian seminorms {∥·∥n}, then for a fixed f ∈ E the inner products
(f, u)n generate continuous functionals on E, which, generally speaking, differ
from each other for different n ∈ N. The equality

(f, u)n = ⟨knf, knu⟩n (4.3.5)

defines a linear continuous functional on the Hilbert space En = ( ˜E/Ker ∥ · ∥n,
∥ ·̂ ∥n) (n ∈ N). From the inequalities

|(x, u)|n = |⟨knf, knu⟩| ≤ ∥f̂∥n · ∥û∥n ≤ ∥f̂∥nγ−1n [u]An
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it follows that the indicated functionals define continuous linear functionals on
HAn (n ∈ N). Therefore, there are the elements un ∈ HAn satisfying the equali-
ties

⟨knf, knu⟩n = [un, knu]An , (4.3.6)

where [·, ·]An is the inner product of HAn (n ∈ N) defined by (4.2.6).
So, each f ∈ E generates a sequence of elements {un}, where un ∈ HAn (in

what follows we will consider the right side of the equation (4.3.1) as f ). In the
case when knf ∈ R(An), i.e. when knf belongs to the image of the operator An,
we have

⟨knf, knu⟩n = ⟨AnA−1n knf, knu⟩n = [A−1n knf, knu]An = [un, knu]An .

It follows that un = A−1n (knf), i.e. un is a solution to the equation (4.3.3). In
the case when there is a solution u0 = {un} ∈ E to the equation (4.3.1), i.e. un
are the minimum points of the functionals (4.3.4), then the functionals (4.3.5) are
generated by the elements of un ∈ HAn .

4.3.2 Definition of an approximate solution and convergence of its sequence

Let A : E → E be the symmetric and positive definite operator of the Fréchet
space E into itself and EA be the energetic space of the operator A. The topology
TA of the space EA, generated by the non-decreasing sequence {[ · ]n}, will be
metrized using the metric (2.5.12), i.e. for x, y ∈ EA we set

d(x, y) = |x− y|

=



[x− y]1, when [x− y]1 ≥ 1,

2−n+1, when [x− y]n ≤ 2−n+1

and [x− y]n+1 ≥ 2−n+1 (n ∈ N),
[x− y]n+1, when 2−n ≤ [x− y]n+1 < 2−n+1 (n ∈ N),
0, when x− y = 0.

(4.3.7)

For the balls Kr = {x ∈ EA; d(x, 0) ≤ r} (r ∈ R+) of this metric the relations
Kr = rVn are valid, where Vn = {x ∈ EA; [x]n ≤ 1}, when

r ∈ In =

{
[1,∞[ for n = 1,

[2−n+1, 2−n+2[ for n ≥ 2.
(4.3.8)

The Minkowski functionals qr(·) of the balls Kr have the following form:

qr(x) = r−1[x]n at r ∈ In. (4.3.9)
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It should be noted that if the space EA is a normed space with the energetic
norm [·], with a unit ball S, and we assume that V1 = V2 = · · · = Vn = S, then
constructed for such case quasinorm (4.3.7) will coincide with the initial norm
[·]. Since in the considering case, the seminorms [ · ]n are generated by semi-inner
products, by virtue of (4.3.9), qr(·) are also generated by the semi-inner products.
Moreover, for r ∈ In the seminorms qr(·) and [ · ]r differ from each other only
by the positive factor r−1 (the Minkowski functionals Kr and S also differ in the
normed spaceE) and therefore their unit balls are similar. Thus, our results contain
the classical case of Hilbert spaces.

Let {ϕj} ⊂ EA be a linearly independent sequence and Gm be a subspace
of EA spanned by ϕ1, . . . , ϕm. We call a sequence of subspaces {Gm} extremely
dense in EA (similar to the terminology from [99]) if for any function u ∈ E the
sequence

d(u,Gm) = inf{d(u, g); g ∈ Gm} → 0 as m→ ∞.

Proposition 4.3.1. In the above notation, the following statements are equivalent:
a) The sequence of subspaces {Gm} is extremely dense in EA.
b) For each l ∈ N and any function u ∈ EA, a sequence of numbers

inf{[u− g]l; g ∈ Gm} → 0 as m→ ∞.

c) The closure of the set
⋃
m∈N

Gm in EA coincides with EA.

Lemma 4.3.2. Let E be a Fréchet space with a nondecreasing sequence of semi-
norms {[ · ]n}, with metric (4.3.7), and G ⊂ E be its closed convex subset. Then,
if for u ∈ E the equality inf{[u − g]n; g ∈ G} = r holds and r ∈ In, then
d(u,Gm) = r. If, in addition, r ∈ int In (n ∈ N), then the converse is also true.

The proof of Lemma 4.3.2 for the metric (4.3.7) does not differ significantly
from the proof of Proposition 3.1.2 and we omit it.

Proof of Proposition 4.3.1. a) ⇒ b) Let u ∈ EA, d(u,Gm) → 0 for m→ ∞ and
l ∈ N. Then there exists m0 = m0(l) ∈ N such that for m ≥ m0 the inequality
d(u,Gm) < sup Il holds. If d(u,Gm) ∈ Il, then, by Lemma 4.3.2,

inf{[u− g]l; g ∈ Gm0} ≤ d(u,Gm0) < sup Il.

That’s why

inf{[u− g]l; g ∈ Gm0} < sup Il, when m ≥ m0.
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If d(u,Gm0) ∈ Il+p for some p ∈ N, then, again by Lemma 4.3.2, we obtain

inf{[u− g]l; g ∈ Gm0} ≤ · · · ≤ inf{[u− g]l+p; g ∈ Gm0}
≤ d(u,Gm0) < sup Il+p < sup Il.

Therefore, the condition of statement b) is satisfied.
b) ⇒ a) It is necessary to prove that for every u ∈ EA and ε > 0 there exists

m0 = m0(ε) ∈ N such that for all m ≥ m0 the inequality d(u,Gm) < ε holds.
Let us assume the opposite. Then there exist u0 ∈ EA and ε0 > 0 such that
lim
m→∞

d(u,Gm) = α ≥ ε0. Let first α ∈ Il, i.e. α ≥ 2−l+1, so there exists

m1 = m1(ε) such that d(u0, Gm) ∈ Il for m ≥ m1. If α ∈ int Il, then by Lemma
4.3.2 and from the strong proximality of finite-dimensional subspaces in Fréchet
spaces E with respect to the metric (4.3.7) there exist gm ∈ Gm such that

d(u0, Gm) = d(u0, gm) = [u0−gm]l = inf{[u0−g]l; g ∈ Gm} → α as m→ ∞.

Since α > 0, this contradicts our assumption.
If α = 2−l+1, then either d(u0, Gm) ∈ int Il and

d(u0, Gm) = [u0 − gm]l = inf{[u0 − g]l; g ∈ Gm} → α as m→ ∞,

which again leads to a contradiction, or starting from some m1 ∈ N, the equalities
d(u0, Gm) = α = d(u0, gm) for m ≥ m1 are valid. This means that (u0 +Gm) ∩
K2−l+1 = (u0+Gm)∩Vl ∋ u0+gm and (u+Gm)∩intK2−l+1 = (u0+Gm)∩Vl =
∅. However, according to the condition, we have

[u0 + g′m]l+1 = inf{[u0 + g]l+1; g ∈ Gm} → 0 as m→ ∞.

Therefore, for Vl+1 there is a number m2 ∈ N such that

u0 + g′m ∈ Vl+1 = K2−l ⊂ intVl as m ≥ m1,

and this contradicts the condition (u0 +Gm) ∩ Vl = ∅ for m ≥ max(m1,m2).
The proof of the equivalence of a) ⇔ c) is not difficult and we omit it.

Theorem 4.3.3. Let E be a Fréchet space with a non-decreasing sequence of
hilbertian seminorms {∥ · ∥n}, A be a symmetric and positive definite operator,
EA be the energetic space of the operator A with a non-decreasing sequence of
hilbertian seminorms {[ · ]n}, with the metric (4.3.7), {ϕk} be a sequence of basis
functions from D(A) ⊂ EA, Gm ⊂ EA be the subspace spanned by the functions
ϕ1, . . . , ϕm, Ker[ · ]n ∩ Gm = {0} and let u0 = {un0} ⊂ EA be a generalized
solution of the equation (4.3.2). Then the following statements are equivalent:

a) d(u0, Gm) = d(u0, um) = r ∈ int Il; (4.3.10)
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b) inf{[u0 − g]l; g ∈ Gm} = [u0 − um]l = r ∈ int Il; (4.3.11)

c) um =
m∑
j=1

ajϕj , where the coefficients a1, . . . , am satisfy the system of

equations
m∑
k=1

[ϕk, ϕj ]lak = (f, ϕj)l, j = 1, . . . ,m, (4.3.12)

and

r =

√
G(u0, ϕ1, . . . , ϕm)l
G(ϕ1, . . . , ϕm)l

∈ int Il, (4.3.13)

where G(ϕ1, . . . , ϕm)l = det([ϕk, ϕj ]l) is the Gram determinant.

Proof. a) ⇒ b) follows from Lemma 4.3.2, taking into account the fact that the
finite-dimensional subspaceGm is proximal inEA with respect to the metric (4.3.7)
and with respect to the seminorm [ · ]l, i.e. the infimums in (4.3.10) and (4.3.11)
are achieved on the same element um ∈ Gm for r ∈ int Il.

b) ⇒ c) Statement b) means that um =
m∑
j=1

ajϕj ∈ Gm is the best approxima-

tion for u0 in Gm with respect to the hilbertian seminorm [ · ]l. This is equivalent
to saying that kA,lum is the best approximation of kA,lu0 with respect to the norm
[ ·̂ ]1 of the Hilbert space EA,l, i.e.[ ̂kA,lu0 − kA,lum

]
l
= inf

{[ ̂kA,lu0 − kA,lg
]
l
; g ∈ G

}
= r ∈ int Il, (4.3.14)

where kA,l : EA → EA/Ker[ · ]l is the canonical mapping, and [ ·̂ ]l is the norm

on EA/Ker[ · ]l, associated with the seminorm [ · ]l. Since kA,lg =
m∑
j=1

ajkA,lϕj ,

(4.3.14) can be written in the form[ ̂kA,lu0 − kA,lum
]
l

= inf
{[ ̂
kA,lu0 −

m∑
j=1

ajkA,lϕj

]
l
; a1, . . . , am ∈ R

}
= r ∈ int Il. (4.3.15)

According to ( [1], p. 25), (4.3.15) is satisfied if and only if the coefficients
a1, . . . , am satisfy the system of equations

m∑
i=1

[ ̂kA,lϕi, kA,lϕj
]
l
ai =

[ ̂kA,lu0, kA,lϕj
]
l
, j = 1, . . . ,m,
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and

[ ̂kA,lu0 − kA,lum
]
l
=

√√√√G( ̂kA,lu0, kA,lϕ1, . . . , kA,lϕm)l

G( ̂kA,lϕ1, . . . , kA,lϕm)l
= r ∈ int Il,

where

G(kA,lu0, . . . , kA,lϕm)l =

∣∣∣∣∣∣∣∣∣
[ ̂kA,lu0, kA,lu0]l, . . . , [ ̂kA,lϕm, kA,lu0]l

[ ̂kA,lu0, kA,lϕ1]l, . . . , [ ̂kA,lϕm, kA,lϕ1]l
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[ ̂kA,lu0, kA,lϕm]l, . . . , [ ̂kA,lϕm, kA,lϕm]l

∣∣∣∣∣∣∣∣∣
and

G( ̂kA,lϕ1, . . . , kA,lϕm)l =

∣∣∣∣∣∣∣
[ ̂kA,lϕ1, kA,lϕ1]l, . . . , [ ̂kA,lϕm, kA,lϕ1]l
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[ ̂kA,lϕ1, kA,lϕm]l, . . . , [ ̂kA,lϕm, kA,lϕm]l

∣∣∣∣∣∣∣ .
By the definition of thhe inner products [ ·̂ ]1, we have the equalities

G( ̂kA,lu0, kA,lϕ1, . . . , kA,lϕm)l = G(u0, ϕ1, . . . , ϕm)l

and
G( ̂kA,lϕ1, . . . , kA,lϕm)l = G(ϕ1, . . . , ϕm)l.

As is known ( [1], p. 17), G(kA,lϕ1, . . . , kA,lϕm) ̸= 0 only if the vectors
kA,lϕ1, . . . , kA,lϕm are linearly independent. For this, it is enough that the re-
striction of kA,l to Gm is injective, i.e. so that Ker kA,l ∩ Gm = {0}. Since
Ker kA,1 ⊃ Ker kA,2 ⊃ · · · , it is sufficient to require that Ker kA,1 ∩Gm = {0} .
This is equivalent to Ker[ · ]1 ∩Gm = {0}. In particular, this condition is satisfied
if [ · ]1 is a norm on EA. We must take this circumstance into account when choos-
ing basis functions. These arguments prove the validity of conditions (4.3.12) and
(4.3.13), taking into account the equalities[ ̂kA,lu0, kA,lϕj

]
l
= [u0, ϕj ]l = [Ã−1f, ϕj ]l = (ÃA−1f, ϕj)l = (f, ϕj)l,

where Ã is a continuation of A that exists due to the corollary of Theorem 4.2.3.
c) ⇒ b) is proved by carrying out the reverse order of reasoning that was carried

out in proving the implication b) ⇒ c).
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It should be noted that the requirement r ∈ int I1 is essential only for proving
the implication a) ⇒ b).

It should also be noted that, under the conditions of Theorem 4.3.3, the gener-
alized solution u0 provides a minimum on EA to the functional

F (u) = |u− u0|2 − |u0|2,

where | · | is a quasinorm of the metric (4.3.7), and um provides a minimum to this
functional on Gm.

Theorem 4.3.3 suggests that an approximate solution should be sought in the

form um =
m∑
k=1

akϕk, where the coefficients a1, . . . , am are determined from the

system (4.3.12). In this case, we will say that the approximate solution was con-
structed using the Ritz method. If it is additionally known that the solution is found
with an accuracy of ε > 0, then we begin solving the system (4.3.12) with respect
to the l-th semi-inner product, for ε ∈ Il, where the intervals Il were defined by
equalities (4.3.8). In this case, we also obtain the best approximation of the gener-
alized solution u0 in Gm with respect to the semi-inner product [ · ]l, i.e. the best
approximation of the l-th projection kl,Au0 with respect to the inner product [ ·̂ ]l
of the space EA,l. From the extremely density of the sequence {ϕj} and by virtue
of Proposition 4.3.1 we obtain that

[u0 − um]l = [kA,1u0 − kA,1um]l =

√
G(u0, ϕ1, . . . , ϕm)l
G(ϕ1, . . . , ϕm)l

→ 0 as m→ ∞.

Therefore, there exists m0(l) such that for m > m0(l) the following inequalities
are true:

[u0 − um]l < sup Il.

Theorem 4.3.4. LetE be a Fréchet space with a nondecreasing sequence of hilber-
tian seminorms {∥ · ∥n}, A be a symmetric and positive definite operator, EA be
the energy space of operator A with an increasing sequence of hilbertian semi-
norms {[ · ]n}, with the metric (4.3.7), {ϕk} be a sequence of basis functions from
D(A) ⊂ EA, Gm ⊂ EA be a subspace spanned by the functions ϕ1, . . . , ϕm and
let u0 = {un0} ∈ EA be a generalized solution to the equation (4.3.2). Then there
is a sequence of approximate solutions constructed by the Ritz method that con-
verges to u0, both in the energy space EA and in the original space E. Moreover,
for each n ∈ N, there exists k0 = k0(n) such that for each k ≥ k0 the following
inequalities are true:

[u0 − uk]n ≤ |u0 − uk|, (4.3.16)

where | · | is a quasinorm of the metric (4.3.7).
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Proof. As noted above, from the extremely density of the sequence {ϕi} and
Proposition 4.3.1, we have that for an arbitrary l1 ∈ N there exists m1(l1) such
that

[u0 − um1(l1)]l1 = [ ̂kA,l1u0 − kA,l1um1(l1)]l1 < sup Il1 ,

where kA,l1u0 can be found as the limit of the sequence {kA,l1um} constructed by
solving the system (4.3.12), for l = l1 by norm [ ·̂ ]l1 for m→ ∞. Next, we choose
l2 ≥ (l1 + 1,m1(l1)), solve the system (4.3.12) again for l = l2 and find m2(l2)
such that

[u0 − um2(l2)]l2 = [ ̂kA,l2u0 − kA,l2um2(l2)]l2 < sup Il2 .

Continuing this process, we find mk(lk) ≥ max(lk−1 + 1,mk−1(lk−1)) such
that

[u0 − umk(lk)]lk = [ ̂kA,lku0 − kA,lkumk(lk)]lk < sup Ilk .

It remains to prove that the sequence {umk(lk)} converges to the solution u0 in
the space EA and, consequently, in the space E. This follows from the following
inequalities:

d(u0, umk(lk)) < sup Ilk = 2−lk+2 as lk ≥ 2,

since u0 − umk(lk) belongs to some ball of radius from the interval Ilk . Therefore,
in the space EA, and therefore in E,

lim
k→∞

umk(lk) = u0.

Remark 4.3.1. By virtue of the equalities [ϕk, ϕj ]l=(Aϕk, ϕj)l= ⟨klAϕk, klϕj⟩l
= ⟨Aklϕk, klϕj⟩l = [klϕk, klϕj ]Al

and (f, ϕj)l = ⟨klf, klϕj⟩l, the system (4.3.12)
can be rewritten as

m∑
i=1

[klϕk, klϕj ]Al
ak = ⟨klf, klϕj⟩l, j = 1, . . . ,m. (4.3.17)

This system is the Ritz system for equations (4.3.3), which under the conditions
of Theorem 4.3.4 has a generalized solution klu0. If ker kl ∩ Gm = {0}, i.e. the
restriction of ∥ · ∥l to Gm is a norm, the system (4.3.17) has a unique solution and
the sequence of approximate solutions converges with respect to the norm [ · ]Al

to
the solution klu0 for m → ∞. Due to the isometry of the spaces (EA,l, [ ·̂ ]l) and
(HAl

, [ · ]Al
), we find that klu0 = kA,lu0.
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4.4 Application of the Ritz method for the approximate solution of some op-
erator equations. The space D(A∞)

Let H be a complex separable Hilbert space, let A : D(A) ⊂ H → H be a linear
operator and D(A) be dense in H . An element u ̸= 0 of the energetic space HA

and a number λ are called generalized eigenelement and generalized eigenvalue of
the operator A if they satisfy the identity

[u, η]A = λ(u, η), ∀η ∈ HA.

The set of generalized eigenvalues is called generalized spectrum. It is known ([?],
p. 92) that the generalized eigenvalues and eigenelements of a positive definite op-
erator coincide with the ordinary eigenvalues and eigenelements of the Friedrichs
extension of this operator.

The spectrum of an operator is called purely discrete ( [111], p. 386) if it con-
sists of a countable set of eigenvalues with a single limit point at infinity. If A is, in
addition, a self-adjoint operator, then such a spectrum is called pure point spectrum
([160], p. 493).

By Rellich’s theorem, a self-adjoint operator A has a purely point spectrum if
and only if the embedding map of its domain D(A) (with the norm ∥u∥D(A) =
|Au∥+ ∥u∥) in H is compact ([160], p. 493).

If the generalized spectrum of a symmetric operator A is purely discrete and
the sequence of corresponding generalized eigenelements is complete in H , then
such a spectrum is called discrete.

Theorem 4.4.1 ( [?], p. 98). Let a positive definite operator be such that any set
bounded in the energy metric is compact in the metric of the original space. Then
the generalized spectrum of this operator is discrete.

The condition of this theorem can also be formulated as follows: the energy
space is embedded in the original space completely continuously.

If A is a self-adjoint and positive definite operator, then the range R(A) of the
operator A coincides with H . It is clear that in this case the Friedrich’s extension
of A coincides with A and the generalized spectrum of the operator A coincides
with its ordinary spectrum.

It is known ([111], p. 386) that if A is a self-adjoint positive definite operator,
then its spectrum is purely discrete if and only if the energetic space of the oper-
ator A is embedded in the original space completely continuously. This proposal,
together with Theorem 4.4.1, convinces us that

Theorem 4.4.2. If the spectrum of a self-adjoint and positive definite operator A
is purely discrete (i.e., is purely pointwise), then this spectrum is discrete.
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Let H be a Hilbert space and A : D(A) ⊂ H → H be a self-adjoint operator
with purely pointwise spectrum.

The topology of a well-known countable-Hilbert space

D(A∞) =
∞⋂
k=1

D(Ak)

can be generated with the sequences of hilbertian norms

∥x∥n = (∥x∥2 + ∥Ax∥2 + · · ·+ ∥Anx∥2)1/2, (4.4.1)

x ∈ D(A∞), n ∈ N0 = N ∪ {0},

which are generated by the inner products

⟨x, y⟩n = (x, y) + (Ax,Ay) + · · ·+ (An−1x,Any), x, y ∈ D(A∞).

The space D(A∞) coincides with the space H if and only if the operator A is
bounded. Note also that a sequence {hk} converges to h in the space D(A∞) if
and only if Anhk converges to Anh in H for every n ∈ N0.

The spaces D(A∞) were introduced by Mityagin [108] and were subsequently
studied by Pitsch [126] and Triebel [159] for many differential operators. An im-
portant motive for introducing the spacesD(A∞) was the question of the existence
of a basis in special nuclear spaces.

In this section, the generalized Ritz method is used to approximate solution of
the equation

Au = f (4.4.2)

with positive definite operator A in the Hilbert space H in the case of a sufficiently
smooth right-hand side.

4.4.1 Self-adjointness in Fréchet space D(A∞) of restriction of self-adjoint
operator A in Hilbert space H

It is well known that any Fréchet space is isomorphic to the subspace of product of
sequences of Banach spaces. The space D(A∞) is isomorphic to the subspace M
of the Fréchet–Hilbert space HN [201], the topology of which is generated by the
sequence of semi-inner products

⟨x, y⟩n = (x1, y1)+ · · ·+(xn, yn), x = (xk), y = (yk) ∈ HN , n ∈ N. (4.4.3)

The indicated isomorphism (it is actually an isometry) is realized by the map-
ping

D(A∞) ∋ x→ Orb(A, x) := (x,Ax, . . . , An−1x, . . . ) ∈M ⊂ HN .
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This means that the spaceD(A∞) is isomorphic to the space of all orbits orb (A, x)
for the operator A at the point x ∈ D(A∞), considered in the induced topology of
the space HN . Using this representation we define the operator A∞ : D(A∞) →
D(A∞) by the equality

A∞x = A∞(x,Ax,A2x, . . . ) = (Ax,A2x, . . . ),

i.e.
A∞(orb(A, x)) = orb(A,Ax). (4.4.4)

In fact, A∞ is the restriction toD(A∞) of the operatorAN , defined onHN , by the
equality

AN ((xk)) = (Axk) ∈ HN .

We consider the equation (4.4.2) in the countable-Hilbert space D(A∞) (the
space D(A∞) coincides with the space C∞(A) ( [140], p.345), the set of C∞-
elements of the operator A). Then it is proved the continuity and self-adjointness
of A∞ in the space D(A∞). This notation for the space D(A∞) acquires a new
meaning that differs from the classical case where D(A∞) was the whole symbol,
where A∞, if taken separately, meant nothing. From now on, the symbol D(A∞)
will also denote the definition domain of the operator A∞ which obviously coin-
cides with the space D(A∞).

Theorem 4.4.3. LetA be a symmetric operator in the Hilbert spaceH with domain
D(A). Then the following statements are valid:

a) If the operator A is self-adjoint, then the operator AN is a self-adjoint op-
erator in the Fréchet–Hilbert space HN with a sequence of hilbertian seminorms
(4.4.3) and with the domain D(A)N .

b) The operator A∞, defined by equality (4.4.4) on whole space D(A∞), is a
continuous self-adjoint operator in the space D(A∞).

c) If the operatorA has a pure point spectrum, thenA∞ has self-adjoint inverse
operator (A∞)−1 in the space D(A∞). Further, if A is positive definite in H, then
A∞ is isomorphism of the space D(A∞) on itself and the energetic space EA∞ of
the operator A∞ coincides with D(A∞).

d) If the positive operator A has a purely pointwise spectrum of non-decreasing
positive eigenvalues {λk}, then A∞ is positive defined selfadjoint isomorphism
onto the space D(A∞).

Proof. a) It is not difficult to prove that Hilbert adjoint of the operator AN in the
Fréchet–Hilbert space HN is (A∗)N with the domain of definition D(A∗)N and,
therefore, it follows from the condition that the operator AN is self-adjoint in HN .
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b) Obviously, the domain of definition of the operator A∞ is whole space
D(A∞), i.e. notation of the space D(A∞) is now also a notation for the domain of
definition for the operator A∞. Let x, y ∈ D(A∞), then for each n ∈ N0 we have

⟨A∞x, y⟩n = (Ax, y) + (A2x,Ay) + · · ·+ (Anx,An−1y)

= (x,Ay) + (Ax,A2y) + · · ·+ (An−1x,Any) = ⟨x,A∞y⟩n.

Hence, by virtue of statement a) of Theorem 4.2.2, we obtain that A∞ is con-
tinuous self-adjoint operator in the space D(A∞).

c) By Rellich’s theorem ([160], p. 493), the self-adjoint operator in the Hilbert
space H has a pure point spectrum if and only if the embedding of its domain
D(A) (with the norm ∥u∥D(A) = ∥Au∥ + ∥u∥) in H is compact. It follows from
this that the spaceD(A∞) is a space of type (FS), i.e. projective limit of sequence
of Hilbert spaces with compact embeddings.

In particular, in our case the space D(A∞) is Montel, i.e. in it every closed
and bounded set is compact. By virtue of Theorem 3 of [163], the operator A∞

has a complete orthogonal system of the eigenelements {orb(A,φk)} in D(A∞)
(with the eigenvalues λk), which is also an unconditional basis in D(A∞). (If the
space D(A∞) is nuclear, then this basis is absolute.) It follows from this that the
image R(A∞) of the operator A∞ is everywhere dense in the space D(A∞), since
eigenelement for the operator A∞ is contained in its image. Indeed, by virtue of
the above isomorphism, for any k ∈ N we have

A∞ orb(A,φk) = A∞(φk, Aφk, A
2φk, . . . ) = (Aφk, A

2φk, A
3φk, . . . )

= (λkφk, λkAφk, λkA
2φk, . . . ) = λk(φk, Aφk, A

2φk, . . . )

= λkA
∞ orb(A,φk).

Therefore, by virtue of statement c) of Theorem 4.2.2, we obtain that A∞ has
a self-adjoint inverse operator (A∞)−1.

Let now A be positive definite in H, then for x ∈ D(A∞) and n ∈ N we have

⟨A∞x, x⟩n = ⟨A∞ orb(A, x), orb(A, x)⟩n
= (Ax, x) + (A2x,Ax) + · · ·+ (Anx,An−1x)

≥ γ[(x, x) + (Ax,Ax) + · · ·+ (An−1x,An−1x)]

= ⟨γ2(orb(A, x), orb(A, x))⟩n = γ2⟨x, x⟩n, (4.4.5)

i.e. A∞ is also positive definite in D(A∞). By virtue of the statement b) of
Theorem 4.2.2, (A∞)−1 ∈ L0(E). Since, due to Theorems 4.2.3, (A∞)−1 has

a self-adjoint extension ˜(A∞)−1 such that D( ˜(A∞)−1) = D(A∞), we get that
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˜(A∞)−1 = (A∞)−1. Hence, A∞ is an isomorphism of the space D(A∞) onto
itself.

Energetic space EA∞ of the operator A∞ is considered by the topology τA∞ ,
which is generated by a sequence of norms

[x]2n = ⟨A∞x, x⟩n = ⟨A∞ orb(A, x), orb(A, x)⟩n
= (Ax, x) + · · ·+ (Anx,An−1x). (4.4.6)

By virtue of (4.4.5) we have that [x]2n ≥ γ2⟨x, x⟩n. Hence, the topology τA∞ is
not weaker than the topology of the space D(A∞) and therefore they coincide, i.e.
EA∞ = D(A∞). In particular, this means that the orbital equation

A∞ orb(A, u) = orb(A, f) (4.4.7)

has the unique stable solution in D(A∞) for any right-hand side orb(A, u) ∈
D(A∞).

According to the statement b), A∞ is defined on whole space D(A∞) and is
continuous. According to the statement c), A∞ possesses a self-adjoint inverse
operator (A∞)−1 and is isomorphism onto the space D(A∞). Let A possesses an
orthogonal eigenfunctions φk corresponding to eigenvalues λk. In this case, A∞

possesses the orthogonal eigenfunctions orb(A,φk) corresponding to the eigenval-

ues λk. Then for x ∈ D(A∞), orb(A, x) =
∞∑
k=1

ak orb(A,φk) and by symmetry

of A, the following relations hold:

⟨A∞x, x⟩n =
〈
A∞

∞∑
k=1

ak orb(A,φk),
∞∑
k=1

ak orb(A,φk)
〉
n

=
〈 ∞∑
k=1

akA
∞ orb(A,φk),

∞∑
k=1

ak orb(A,φk)
〉
n

=
〈 ∞∑
k=1

λkak⟨orb(A,φk), ak orb(A,φk)⟩n

≥ λ1∥ orb(A, x)∥2n = λ1⟨x, x⟩n,

where λ1 = min{λk} and ak =
⟨orb(A,x),orb(A,φk)⟩n
⟨orb(A,φk),orb(A,φk)⟩n = (x,φk)

(φk,φk)
.

Next, we prove that the extended Ritz method for equation (4.4.7) converges
in the energetic Frecher space EA∞ of the operator A∞. The space EA∞ in this
case coincides with the Fréchet space D(A∞) and its topology is stronger than the
topology energetic Hilbert space HA of the operator A.
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The extended Ritz method is used for an approximate solution of the equation
(4.4.7) in the Fréchet space D(A∞), where A∞ is again the self-adjoint operator
with pure point spectrum. As basic functions the eigenfunctions of the operator
A∞ are chosen and it is proved that subspaces spanned by the first m eigenvec-
tor have orthogonal complement in the Fréchet space D(A∞). This means what
the approximate solutions do not depend on the number of norms generating the
tonology of the space D(A∞). It is proved the convergence of the sequences of
approximation solutions in the spaceD(A∞), whose topology is stronger than that
of the original Hilbert space (Theorem 4.4.4). It is proved that the given in Theo-
rem 4.4.5 algorithm is simultaneously central spline algorithm in the Fréchet space
D(A∞). Examples of self-adjoint and positive elliptical differential operators sat-
isfying the conditions of Theorem 4.4.4 are considered. It is further indicated that
the results obtained can be applied to the well-known differential operators of La-
grange, Lejandre and Tricomi.

The results of numerical experiments are presented, confirming justice theo-
retical research in the case of harmonic oscillator operator. For the last operator,
the space D(A∞) coincides with the Schwarz space S(R) of rapidly decreasing
functions [163]. Therefore, if as basis functions we take the eigenfunctions {φj}
of this operator, i.e. Hermite functions, then the sequence of approximate solu-
tions converges to an exact solution in the Schwarz space S(R), which topology is
stronger that the topology of Sobolev space.

4.4.2 Application of the extended Ritz method for approximate solutions to
an equation with a strongly degenerate elliptic operator

For an approximate solution of the equation (4.4.7) in the space D(A∞) we apply
extension of the Ritz method from Section 4.2 (approximate methods for solving
of operator equations in Fréchet spaces were previously also considered in [134,
202]). We will only need a special case of this method and therefore we do not
give its proof in the general case. As basis functions we choose the sequence of
eigenfunctions {φj} (resp. {orb(A,φj)}) of operator A (resp. A∞). System of
equations for determining coefficients of approximate solutions for arbitrary l ∈ N,
takes the form

m∑
k=1

[φk, φj ] lαk = (f, φj) l, j = 1, . . . ,m,

i.e.
m∑
k=1

⟨A∞φk, φj⟩lak = ⟨f, φj⟩ l, j = 1, . . . ,m,
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where

[φk, φj ] l = ⟨A∞φk, φj⟩ l = ⟨A∞ orb(A,φk, orb(A,φj)⟩
= (Aφk, φj) + (A 2φk, Aφj) + · · ·+ (Alφk, A

l−1φj)

= (λk + λ2kλj + · · ·+ λ lkλj
l−1)(φk, φj). (4.4.8)

If the sequence {φj} is orthogonal in H , from (4.4.8) we get that

[φk, φj ]l =

{
0, when k ̸= j,

[φj ]
2
l = (λj + λ3j + · · ·+ λj

2l−1), when k=j;

In addition, we have

⟨f, φj⟩ l = ⟨orb(A, f), orb(A,φj)⟩l
= (f, φj) + (Af,Aφj) + · · ·+ (A l−1f,A l−1φj)

= (f, φj) + λ2j (f, φj) + · · ·+ λ
2(l−1)
j (f, φj)

= (1 + λ2j + · · ·+ λ
2(l−1)
j )(f, φj). (4.4.9)

It follows that

αj =
(1 + λ2j + · · ·+ λj

2(l−1))(f, φj)

λj(1 + λ2j + · · ·+ λj 2(l−1))∥φj∥2
=

(f, φj)

λj∥φj∥2
.

Therefore, the approximate solution takes the form

orb(A, um) =
m∑
j=1

(f, φj)

λj∥φj∥2
orb(A,φj). (4.4.10)

If the sequence {φj} is orthonormal in H, then

orb(A, um) =
m∑
j=1

(f, φj)

λj
orb(A,φj). (4.4.11)

It should be noted that the approximate solutions (4.4.11) do not depend on l ∈ N.
Therefore, by virtue of the classical Ritz theorem, this sequence converges to the
solution of the equation (4.4.7) with respect to the energetic norm (4.4.6). Indeed,
in this case the canonical maps KA∞,n : EA∞ → EA∞/Ker[·]n are identity map-
pings In : D(A∞) → (D(A∞), [·]n) defined by the equality

Inx = In(x,Ax, . . .) = (x,Ax, . . . , A n−1x).
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The projection operators (4.2.1) have the form

A∞n (Inx) = In(A
∞x) = In((Ax,A

2x, . . . , )) = (Ax,A2x, . . . , Anx)

and act in Hilbert spaces (D̃(A∞), [·]n), where (D̃(A∞), [·]n) is completion of the
space (D(A∞), [·]n). But the norms of [·]n are isometric to the norms [·]A∞

n
for

each n ∈ N, where

[Inx]A∞
n

= ⟨A∞n Inx, Inx⟩1/2n = ((Ax, x) + · · ·+ (Anx,An−1x))1/2.

Therefore, the sequence {orb(A, um)} converges to (A∞)−1f = orb((A∞)−1, f)
in the energetic space EA∞ and therefore in the space D(A∞). This proves that
the following theorem takes place.

Theorem 4.4.4. Let A : D(A) ⊂ H → H be a self-adjoint and positive defi-
nite operator in the Hilbert space H with an orthogonal sequence of eigenfunc-
tions {φj}. Then the sequence of approximate solutions {um}, constructed by the
Ritz method (4.4.10), converges to the solution of the equation (4.4.7) in the space
D(A∞).

Next, we will show that the algorithm, constructed in Theorem 4.4.4 for ap-
proximate solutions to the equation (4.4.7) in the Fréchet space D(A∞), is simul-
taneously central and spline algorithm. For the metrization of the space D(A∞)
we will use the metric (4.3.7), constructed for nondecreasing sequences of norms
{ [ · ]n }.

Indeed, let I(f) = [L1(f), ·, Lm(f)] be non-adaptive information of cardi-
nality m, where Li(f) = (f, φi), i = 1, . . . ,m. The subspace KerI is a finite-
codimensional subspace in the energetic spaceEA∞ . Therefore, KerI has the topo-
logical complement KerI⊥=span{φ1, . . . , φm} inEA∞ . Let ei = (0, . . . , 1, . . . ),
where 1 is in the i-th place. Then ((φi, φi)/||φi||2)φi ∈ I−1(ei) and the best
approximation of the element φi in KerI⊥ is the same as φi. It follows that
the spline interpolatory ei is φi and the interpolatory spline y = I(f) has the
form σ =

∑n
i=1(f, φi)||φi||−2φi. The solution operator for equation (4.3.3) is

S = (A∞)−1, which realized an isomorphism of the space EA∞ onto itself. We
have

Sσ =

n∑
i=1

(f, φi)||φi||−2Sφi =
n∑
i=1

(f, φi)||φi||−2(A∞)−1φi

=
n∑
i=1

λ−1i (f, φi)||φi||−2φi = um,
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where um is an approximate solution of equation (4.3.3), constructed using the
extended Ritz method. Sσ = um is also an element of the best approximation
Sf = (A∞)−1f in the subspace KerI⊥ with respect to the energetic norms [·]n of
the energetic spaceEA∞ of the operatorA∞. The subspace KerI has an orthogonal
complement KerI⊥ inEA∞ . According to Theorem 3.6.2, the spline algorithm φs,
defined by the equality φs(I(f)) = um, is central.

It follows from this that it is fair

Theorem 4.4.5. Let A be a self-adjoint and positive operator with discrete spec-
trum in the Hilbert space H with an orthogonal sequence of eigenfunctions {φi}.
Let λi be the positive eigenvalue corresponding to the eigenfunction {φi} and let
um be the approximate solution of the equation A∞u = f defined by equality
(4.4.7). Then the algorithm φs(I(f)) = um is a linear spline and central algo-
rithm for the operator S = (A∞)−1 and information I(f) = [(f, φ1), ·, (f, φm)].

Moreover, the sequence of approximate solutions {um} converges to a solution
of equation (4.4.7) in the space EA∞ and in the space D(A∞).

The spaceD(A∞), with a nondecreasing sequence of hilbertian norms {|| · ||n}
is isomorphic to the projective limit of the sequence of Hilbert spaces

˜(D(An), || · ||n) with respect to mappings

πmn : ˜(D(Am), || · ||m) → (D(An), || · ||n) (n ≤ m)

and
Kn : D(A∞) → (D(An), || · ||n), n ∈ N,

where

πmn : (x,Ax,A2x, . . . , Am−1x) → (x,Ax,A2x, . . . An−1x)

and
Kn : (x,Ax,A2x, . . . ) → (x,Ax, . . . , An−1x).

The Fréchet spacesD(A∞) are important for studying the distribution of mod-
uli of eigenvalues of self-adjoint elliptic boundary value problems [160].

Let H be a complex separable Hilbert space and A a be a self-adjoint oper-
ator with pure point spectrum acting on H . For such operators, the eigenvalues
(counting with multiplicities) can be numbered in increasing order of modules:

0 ≤ |λ1| ≤ |λ2| ≤ · · · ≤ |λj | ≤ |λj+1| ≤ · · · → ∞ as j → ∞.

The function
N(λ) =

∑
|λj |≤λ

1
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gives the number of eigenvalues not exceeding the absolute value of the number λ.
Below sj are the approximation numbers of the operator A, defined as follows:

sn(A,D(A), H) = sn(A) = inf {∥A−K∥; dimR(K) ≤ n and K ∈ L(E)} ,
n = 0, 1, . . . ,

where R(K) is the image of the operator K.

Theorem 4.4.6 ( [160], Section 5.6.1). Let A be a self-adjoint operator with pure
point spectrum and let κ > 0. The following statements are equivalent:

a) N(λ) + 1 ∼ λκ + 1, λ ≥ 0;

b) 1 + |λj | ∼ j1/κ, j = 1, 2, . . . ;

c) sj(I;D(A), H) ∼ j−1/κ, j = 1, 2, . . . .

(The sign ∼ means that the right-hand side can be estimated from above and below
through the left-hand side multiplied by some constants independent of λ or j,
respectively.)

Theorem 4.4.7 ([160], Section 8.2.2). Let H be a separable Hilbert space and A
be a self-adjoint operator on H .

a) The space D(A∞) is Montel if and only if the operator A has a pure point
spectrum.

b) The space D(A∞) is nuclear if and only if the operator A has a pure point
spectrum and there exist numbers c > 0 and τ > 0 such that

N(λ) ≤ cλτ + 1.

c) The space D(A∞) is isomorphic to the space s of rapidly decreasing se-
quences if and only if the operator A has a pure point spectrum and there are
numbers c1 > 0, c2 > 0, τ1 > 0 and τ2 > 0 such that

c1λ
τ1 + 1 ≤ N(λ) + 1 ≤ c2λ

τ2 + 1.

Theorem 4.4.8 ([160], Section 8.3.1). Let Ω ⊂ Rn be an arbitrary domain and
◦
A,

defined by
◦
Au =

∑
|α|≤m

aα(x)D
αu, D(

◦
A) = C∞0 (Ω),

be symmetric operator in L2(Ω) with coefficients aα(x) of class C∞. Suppose fur-

ther that there exists a self-adjoint extension A of the operator
◦
A and that D(A∞)

is a nuclear Fréchet space. Then D(A∞) is isomorphic to the space s of rapidly
decreasing sequences.
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The isomorphism between the spaces D(A∞) and s is carried out by the map-
ping

f → {(f, φj)}∞j=1,

where {φj} forms a basis in D(A∞). For special spaces C∞((a, b)), C∞0 ((a, b)),
S(R) and others, there are many explicit bases that generate an isomorphic map-
ping on s. Thus, Mityagin [108] proved that the Chebyshev polynomials form a
basis in C∞((−1, 1)). Guillemot-Teissier [67] showed that Legendre polynomials
also form a basis in C∞((−1, 1)), since they are eigenfunctions of the classical
Legendre differential operator. The Hermite functions form a basis in S(R). This
statement also follows from the considerations below, since the Hermite functions
serve as eigenfunctions of the Hermite differential operator, which is a harmonic
oscillator operator. However, a number of important nuclear spaces are not cov-
ered by the above method. Examples include C∞0 (R), C∞(R), as well as nuclear
spaces of harmonic and analytic functions. (Definitions of these spaces are avail-
able from A. Pietsch [125].) Mityagin [108] proved that C∞(R) is isomorphic to
(s)N . This structural result and Theorem 4.4.8 show that C∞(R) cannot be rep-
resented as D(A∞), where A is a self-adjoint differential operator on L2(R). Let
us finally note a corollary from one of Rosenblum’s results ([160], Section 8.3.3),
in which the distributions of eigenvalues of the self-adjoint polyharmonic differ-
ential operator A with Dirichlet boundary conditions in unbounded domains are
studied. Rosenblum proved that there exists a domain Ω for which the operator
A has a pure point spectrum in L2(Ω) such that (contrary to the usual behavior of
eigenvalue distributions of differential operators)

N(λ) ∼ ecλ, c > 0.

This implies that the space D(A∞) is a Montel space, but not a nuclear space.

4.4.3 Examples of second order differential operators

Example 1. Let H be a Hilbert space with the inner product ( · ), S be a self-
adjoint and positive definite operator fromH to H with a sequence of eigenvectors
{φi}, F1-Fréchet space D(S∞) with the sequence of hilbertian norms

[x]2n = (S∞x, x)n = (Sx, x) + (S2x, Sx) + · · ·+ (Sn+1x, Snx), n ∈ N0,

where Vn = {x ∈ D(S∞); [x]n ≤ 1}, information

If = [ (Sf, φ1), . . . , (Sf, φm)] = (y1, . . . , ym),

and Ker I = {x ∈ D(A∞); [x, φ1] = 0, . . . , [x, φm] = 0}. His orthogonal sub-
space Ker I⊥ = span{φ1, . . . , φm}. Ker I has orthogonal complement in the
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Fréchet space D(S∞), since the best approximation of the element u ∈ D(S∞)
in Ker I⊥ does not depend on n, and the spline σ is the best approximation of the
element u in Ker I⊥. Hence, the conditions of Theorem 4.4.5 are met and, there-
fore, there is a spline algorithm for the solutions to the equation S∞u = f, which
is central. In fact, we have information (y1, . . . , ym) = [ (Su, φ1), . . . , (Su, φm)]
and find the element of best approximation σ of the element u in subspace Ker I,
which has an orthogonal complement Ker I⊥, spanned by φ1, . . . , φm. Therefore,
the spline σ is the best approximation for u in Ker I⊥ with respect to all energetic
norms [ · ]n and coincides with an approximate solution constructed by using the
Ritz method.

In particular, according to the results of Section 3.5, the conditions Theorem
4.4.5 satisfy:

a) Information I in the strict Fréchet–Hilbert spaces F1, for which the subspace
Ker I is again the strict Fréchet–Hilbert space.

b) Information I in the countable-Hilbert spaces with the nondecreasing se-
quence of norms {∥ · ∥n}, which is generated by continuous functionals of
the space (F1, ∥ · ∥1)′.

Let us now give the examples of symmetric and positive differential operators
satisfying the conditions of Theorem 4.4.4. These examples are taken mainly from
the works [?, 160].

Example 2. For an arbitrary region Ω ⊂ Rl, through C∞(Ω), as usual, denotes
the space of all infinitely differentiable functions, defined in Ω. Next, let ρ(x) ∈
C∞(Ω) be a positive function such that

1. For any multi-index γ there is Cγ > 0 such that |Dγρ(x)| ≤ Cγρ
1+|γ|(x),

for all x ∈ Ω.

2. For anyK > 0 there are the numbers εk > 0 and rk > 0 such that ρ(x) > K
if d(x) ≤ εk, or |x| ≥ rk, when x ∈ Ω (d(x) is distance from x to the
boundary ∂(Ω)).

Let Sρ(x)(Ω) denote a metrizable locally convex space

Sρ(x)(Ω) = {f ∈ C∞(Ω); ∥f∥n,α = sup ρn(x)|Dαf(x)| <∞,

for every n ∈ N0 and all multi-indexes α}. (4.4.12)

It should be noted that for each bounded domain Ω there exists a function ρ(x)
for which ρ−1(x) essentially coincides with d(x).
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It is known ([160], Section 6.2.3) that the space Sρ(x)(Ω) is the Fréchet space
which contains C∞0 (Ω) as dense subspace. In what follows, we will consider the
spaces Sρ(x)(Ω), which are contained in the space Lp(Ω) (1 ≤ p < ∞). This is
equivalent to the condition: there exists a > 0, for which ρ−a(x) ∈ L1(Ω). Due
to Theorem ( [160], Section 6.2.3), we have that the space Sρ(x)(Ω) is a nuclear
Fréchet space isomorphic to the space s of rapidly decreasing sequences. Below
it will be shown that the known Schwarz space S(R) represents a special case of
such spaces.

Let Ω ⊂ Rl be an arbitrary region and ρ(x) be the above weight function.
Further, let r ∈ N, and µ and ν be real numbers, and ν > µ+ 2r. Set

χq =
1

2 r
(ν(2 r − q) + µq), q = 0, 1, . . . , 2r.

The class Rr
µ,ν(Ω, ρ(x)) consists of all differential operators of the form

Au =

m∑
q=0

∑
|j|=2q

ρχ2q(x)bα(x)D
αu+

∑
|β|<2r

αβ(x)D
βu.

Here bα(x) ∈ C∞(Ω) (|α| = 2q, where q = 0, 1, . . . , r) are real functions, all
derivatives of which (including themselves) are bounded in Ω. In addition, it is
assumed that there exists a positive number C such that for all ξ ∈ Rn and x ∈ Ω,

(−1)r
∑
|α|=2 r

bα(x)ξ
α ≥ C|ξ|2r, b(0,...,0)(x) ≥ C,

(−1)q
∑
|α|=2 q

bα(x)ξ
α ≥ 0, q = 1, . . . , r − 1

(ellipticity condition). Finally, αβ(x) ∈ C∞(Ω) (0 ≤ |β| < 2r) and Dγαβ(x) =

o(ρχ|β|+|γ|) for any multi-index γ.
The class Rr

µ,ν(Ω, ρ(x)) is quite wide class of degenerate elliptic differential
operators ( [160], Section 6.2.1). Let’s give an example of an operator from this
class. Operator A given by the relations

Au = −∆u+ ρν(x)u, ν > 2, D(A) = C∞0 (Ω) , (4.4.13)

is essentially self-adjoint in L2(Ω), i.e. its closure A is a self-adjoint operator in
L2(Ω), D(A) =W 2

2 (Ω , 1 , ρ
2ν) ([160], Section 6.4.1) andA has pure point range.

Moreover, A is positive definite and, by Theorem 4.4.2, the spectrum of A is
discrete. Subsequence of the eigenfunctions {φj} of the operator A belong to the
space Sρ(x)(Ω). It is also proved that D(Aj) = W j

2 (Ω , 1 , ρ
2νj) ( [160], Section
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6.4.3) and the space Sρ(x)(Ω) is isomorphic to the space D(A∞), where the topol-
ogy of the space D(A∞) is given by a sequence of hilbertian norms (4.4.1), and
the topology of the space Sρ(x)(Ω) is given by the sequence { ∥ · ∥n,α}. Therefore,
if we consider the equation

−∆u+ ρν(x)u = f (4.4.14)

in the Fréchet space Sρ(x)(Ω) with a sequence of norms (4.4.12), then, by virtue of
statement b) of Theorem 4.4.3 (see also [160], Section 6.4.3), it has unique solution
for each f ∈ Sρ(x)(Ω). If the sequence of eigenfunctions {φj} is orthogonal in the
space L2(Ω), then the sequence of approximate solutions {um}, built by the Ritz
method and given by the equality (4.4.10), converges in the space Sρ(x)(Ω) to the
solution of equation (4.4.14).

Let us now give a specification of this result in the one-dimensional case for
harmonic oscillator operator

Au = −u′′(t) + t2u

without additional boundary conditions. It is self-adjoint ( [111], p. 387) and pos-
itive definite operator in the Hilbert space L2(R). From Molchanov’s theorem
( [16], p. 393) it follows that this operator has a purely discrete spectrum. There-
fore, according to Theorem 4.4.2, this spectrum is discrete. According to [126],
the space D(A∞) for the operator A is the Schwarz space S(R). Eigenfunctions
of the harmonic oscillator operator are Hermite functions (wave functions of har-
monic oscillator) ([129], p. 115), since(

− d2

dt2
+ t2

)
φj = (2j + 1)φj ,

where
φ0 = π−1/4e

t2

2

and

φj(t) = (2jj!)−1/2(−1)jπ−1/4e
t2

2

(
d

dt

)(j)

e−t
2

(j ≥ 1) . (4.4.15)

This means that λj = 2j + 1, j = 1, 2, . . . . Subsequence {φj} is an orthonor-
mal basis in the space L2(R) and, by virtue of the nuclearity of the space S(R),
an absolute basis in it. We consider the space S(R) with a sequence of hilbertian
norms



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 263

∥h∥n =

(
∥h∥2 +

∥∥∥∥(− d2

dt2
+ t2

)
h

∥∥∥∥2 + · · ·

+

∥∥∥∥(− d2

dt2
+ t2

)n−1
h

∥∥∥∥2)1/2

, (4.4.16)

where ∥ · ∥ is the norm of the space L2(R).
Let the operator A∞ be the restriction of the operator A to the space

S(R) ⊂ D(A) taking into account the topology of the last space. By virtue of
(4.4.11), the approximate solution of the equation A∞ orb(A, u) = orb(A, f) has
the form

orb(A, um) =
m−1∑
j=1

(f, φj)

2j + 1
orb(A,φj) , (4.4.17)

where {φj} are defined by the equality (4.4.15). The sequence of the approximate
solutions {orb(A, um)} converges to the solution of the equation A∞ orb(A, u) =
orb(A, f) in the topology of space S(R).

Jointly with S. A. Razmadze it is composed a program realizing the conver-
gence of the sequence of approximate solutions for various functions from the
space S(R). The obtained numerical results confirmed the above theoretical con-
clusions. Numerical analogues of the approximate solutions (4.4.17) converge to
the solution of the equation A∞ orb(A, u) = orb(A, f) for enough large norm
numbers from (4.4.16) for various functions from the space S(R).

The results obtained can be applied to essentially self-conjugate and positive
definite operators of Legendre Am,k (2k ≤ m) ( [160], Section 7.4.1) and Tricomi
Bn,k ([160], Section 7.6.3). There are also given the representations of the spaces
D(A

∞
m,k) ([160], Section 7.4.4) and D(B

∞
m,k) ([160], Section 7.6.3).

Example 3. Consider the differential operator B from ([?], p. 106), which has the
form

Bu = −1

x

[
d

dx

(
x
du

dx

)
− ν2

x
u

]
, ν2 = const > 0, 0 < x < 1.

We will consider it as an operator in the weighted space H = L2(x; 0, 1) of func-
tions that are quadratically summable with weight x on the interval (0, 1). The
domain of definition of D(B) consists of functions of the space L2(x; 0, 1) for
which u(x) and u′(x) are absolutely continuous on any segment of the form [ε, 1]
(0 < ε < 1); the product

√
xu′(x) is continuous on the segment [0, 1] and van-

ishes at x = 0; Bu ∈ H and u(1) = 0. In ( [?], p. 107), it is proved that D(B)
is dense in H , B is symmetric, positive definite in H , and has a discrete spectrum.
The generalized eigenvalues of the operator B have the form

λk = j2ν,k, k ∈ N , (4.4.18)
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λk = j2ν,k, k ∈ N , (4.4.19)

where jν,k is the k-th positive root of the Bessel function Jν(x), corresponding to
the normalized eigenfunctions

φk(x) =

√
2

Jν+1(jν,k)
Jν(jν,kx), k = 1, 2, . . . . (4.4.20)

It is known that

Jν(z) =
(z
2

)ν ∞∑
m=0

(−1)m( z2)
2m

m!Γ(ν +m+ 1)

and the series on the right-hand side converges in the whole plane of the complex
variable z (with the possible exception of z = 0) and allows member-by-member
differentiation. Hence, for ν ≥ 0, it turns out that Jν(z) = O(zν) and J ′ν(z) =
O(zν−1). Therefore, if ν > 1

2 , for the functionφk(x) defined according to (4.4.20),
we have

√
xφ′k(x) → 0 for x → 0, i.e. the generalized eigenfunctions φk(x) of

the operator B are in fact its ordinary eigenfunctions.
Approximate solutions orb(B, um) of the equationB∞ orb(B, u) = orb(B, f)

in the Fréchet space D(B∞), constructed using the generalized Ritz method, have
the form

orb(B, um) =
m∑
k=1

λ−1k

1∫
0

xf(x)dx orb(B,φk(x)),

where λk and φk are defined according to (4.4.18) and (4.4.20). The sequence
um converges in the space D(B∞) to a solution of the equation B∞ orb(B, u) =
orb(B, f) if f ∈ D(B∞).

Example 4. Let’s consider the Sturm–Liouville operator ([?], p. 101)

Au = − d

dx

[
p(x)

du

dx

]
+ q(x)u (4.4.21)

in the space L2[a, b]. We define the operator A on the set D(A) of functions con-
tinuous on the segment [a, b], having the absolutely continuous first derivative and
a square-integrable second derivative, under boundary conditions

u(a) = u(b) = 0. (4.4.22)

On the functions p(x) and q(x) we impose the conditions p, p′, q ∈ C[a, b], p(x) ≥
p0 = c > 0, q(x) ≥ 0. It is known that A is a positive definite operator. The norms
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in HA and in
◦
W

(1)
2 (a, b) are equivalent. Since embedding of the space HA into

L2(a, b) is completely continuous, the spectrum of the operator A is discrete.
Finding the spectrum of the operator A considered here is equivalent to the

problem, which is called the Sturm–Liouville problem: find values of the parameter
λ for which nontrivial solutions of the equation

d

dx

(
p(x)

du

dx

)
− q(x)u+ λu = 0 (Au = λu),

exist satisfying the boundary conditions (4.4.22).

In some special cases, the Sturm-Liouville problem is solved effectively:

Example 4.1. p(x) ≡ 1, q(x) ≡ 0.
The question comes down to finding those values of λ for which the differential

equation
d2u

dx2
+ λu = 0

(
A = − d2

dx2

)
has a nontrivial solution satisfying the conditions

u(a) = u(b) = 0.

It is proved ([?], p. 105) that the eigenvalues λk and eigenfunctions φk(x) are
given by the formulas

λk =
k2π2

(b− a)2
, k ∈ N ,

φk(x) =

√
2

b− a
sin

πk(x− a)

b− a
, k ∈ N .

Approximate solutions of the equationA∞ orb(A, u) = orb(A, f) in the Fréchet
spaces D(A∞) have the form (4.4.11).

Example 4.2. Consider the operator

A = − d2

dx2
+ I

(
Au = −d

2u

dx2
+ u

)
under the boundary conditions

u′(a) = u′(b) = 0.

This operator is positive definite, its eigenvalues are

λk = 1 +
k2π2

(b− a)2
, k ∈ N ,
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and the corresponding eigenfunctions are equal to

u0(x) = 0, φk(x) =

√
2

b− a
cos

kπ(x− a)

b− a
, k ∈ N . (4.4.23)

Approximate solutions of the equation A∞ orb(A, u) = orb(A, f),

−d
2u

dx2
+ u = f,

in the spaceD(A∞), constructed using the generalized Ritz method, have the form
(4.4.11).

Example 5. Consider the operator

Au = −d
2u(x)

dx2
+ q(x)u(x)

in the space H = L2(0, 1). Let q(x) be a real function continuous on [0, 1] and
D(A) be the set of all functions u(x) with the following properties: u(x) and u′(x)
are absolutely continuous for x ∈ [0, 1], u(0) = u(1) = 0 and u′′(x) ∈ L2(0, 1). It
is easy to verify that A is a symmetric operator and D(A) is dense in H . Suppose
that q(x) is such that the equation Au = 0 has no solution equal to zero at x = 0
and x = 1, other than the trivial u ≡ 0. In this case, it is proved that R(A) = H ,
which implies that A is a self-adjoint operator. If q(x) ≥ 0, then A will be a
positive definite operator with discrete spectrum ([112], pp. 81, 102). For q(x) =
x2, this operator was studied above.

Example 6. Beltrami operator δ.
Let S be the unit sphere of l-dimensional Euclidean space Rl, and

ϑ1, ϑ2, . . . , ϑl−1 be the spherical coordinates of the point θ ∈ S. On the sphere
S we define the class of functions C(2)(S) as follows. Let f(θ) be a function de-
fined on S. Let us construct a spherical layer Σ = {x : ρ1 ≤ |x| ≤ ρ2, x ∈ Rl},
where ρ1 and ρ2 are arbitrary, but fixed positive numbers. We can assume that
ρ1 < 1 < ρ2, so S ⊂ Σ. We extend the function f(θ) to the layer Σ using the
formula f∗(x) = f

(
x
|x|
)
. It is clear that the extended function f∗(x) is constant on

any ray passing through the origin, and therefore does not depend on ρ = |x|. The
class C(2)(S) is defined as follows: f ∈ C(2)(S) if f∗ ∈ C(2)(Σ).

The operator δ is defined on the set C(2)(S) as follows:

δ = −
l−1∑
j=1

1

qj sin
l−j−1 ϑj

∂

∂ϑj

(
sinl−j−1 ϑj

∂

∂ϑj

)
,
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where q1 = 1, qj = (sinϑ1 sinϑ2 · · · sinϑ2j−1)2, j ≥ 2.
In the space H = L2(S) this operator is symmetric and the values λn =

n(n+ l − 2), n = 1, 2, . . . , are its eigenvalues of the multiplicity

kn,l = (2n+ l − 2)
(l + n− 3)!

(l − 2)!n!
.

The eigenfunctions corresponding to the eigenvalue λn are the spherical functions
Y

(k)
n,l (θ), 1 ≤ k ≤ kn,l. The operator δ has no other eigenvalues and eigenfunctions

( [?], p. 239). {Y (k)
n,l } is an orthonormal complete system in L2(S). Since all

eigenvalues of λn are positive, we conclude that δ∞ is a positive definite operator,
and the spectrum of λn is discrete.

We number the spherical functions Y (k)
n,l in the following way. It is assumed

that l ≥ 2. If 1 ≤ k ≤ k1,l = l, then we take λk = l(l − 1); ϕk(θ) = Y
(k)
1,l (θ)

and if k1,l + · · · + kj,l < k ≤ k1,l + · · · + kj+1,l, then λk = (j + 1)(j + l −
1); ϕk(θ) = Y

(k−(k1,l+···+kj,l))
j+1,l (θ). If we substitute these λk and ϕk in (4.4.10),

then we will obtain a sequence {um} for the approximate solution of the equation
δ∞ orb(δ, u) = orb(δ, f). For such a sequence, Theorem 4.4.5 is valid in the space
D(δ∞). Then the algorithm ϕs(I(f)) = um is a linear spline and central algorithm
for the operator (δ∞)−1 and information I(f) = [(f, ϕ1), · · · , (f, ϕm)].





C H A P T E R 5

Stability and spline algorithms for computerized
tomography problems

The problem of determining the solution to an equation of the form Au = f with
the operator A, acting from the space E into a similar space F , is called correctly
posed on a pair of spaces (E,F ) if the following conditions are fulfilled: 1) the
image R(A) of the operator A coincides with F (solvability condition); 2) the so-
lution is determined uniquely; 3) the inverse of the operator A is continuous on
F (stability condition). This concept belongs to J. Hadamard. He also owns a
classic example of an ill-posed problem – the Cauchy problem for the Laplace
equation. As it later turned out, the need to solve this particular problem arises
in a wide variety of areas of mathematics and natural science. Ill-posed problems
are: solutions of integral equations of the 1-st kind; differentiation of functions
known approximately; numerical summation of Fourier series; analytical continu-
ation of functions; inverse problems of gravimetry; a number of biophysical prob-
lems; supersonic flow around bodies, etc. Ill-posed problems include a wide class
of so-called inverse problems arising in physics, technology and other branches
of knowledge, in particular, the problem of processing the results of physical ex-
periments. Recently, ill-posed problems of X-ray computed tomography, which
have important applications in diagnostic medicine and in problems of testing the
strength of materials, have been intensively studied.

The development of the theory and methods for solving ill-posed (unstable)
problems is associated with the names of prominent mathematicians A. N. Tikho-
nov, G. I. Marchuk, M. M. Lavrentiev, V. K. Ivanov, F. Netterer, A. Louis and
others.

A. N. Tikhonov owns the following generalization of the classical (according
to Hadamard) concept of correctness, which is based on the fundamental idea of
restriction the domain of definition of the original operator [156]. Namely, the
problemAu = f is called Tikhonov-correct (conditionally correct) if 1) it is known

269
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a priori that a solution exists for some class of data from F and belongs to the given
set M ; 2) the solution is unique in the class M ; 3) infinitesimal variations of the
right-hand side f that do not remove the solution from the class M correspond to
infinitesimal variations of the solution.

This chapter considers the ill-posed equation Ku = f in the Hilbert space H
for a compact self-adjoint operator K with positive eigenvalues. It is assumed that
the conditions of existence and uniqueness are fulfilled, but the stability condition
is not satisfied, i.e. the inverse operator K−1 is not continuous. In [156], for some
ill-posed problems, a metric compact space E is considered, which the operator K
maps onto itself isomorphically. Therefore, such equations in the space E have a
unique stable solution. Similarly, we carry over the above incorrect equation to the
Fréchet space E, in which the operator K is an isomorphism of the space E onto
itself. More precisely, the Fréchet spaceE, as a set, is a part ofH and the restriction
K to the Fréchet space E is a self-adjoint operator on E that maps the space E
isomorphically onto itself. For an approximate solution of the resulting equation
in the Fréchet space E, we use the generalized Ritz method from Sections 4.3–4.4.
A condition is given under which this method is a spline algorithm. The obtained
results are used to construct a spline algorithm for an approximate solution of the
computerized tomography problem.

5.1 Ritz method for the approximate solution of equations with compact op-
erators

Let K be a linear, self-adjoint, positive, injective and compact operator in the
Hilbert space H with dense image. Let {φk} be some orthogonal sequence of
eigenelements of the operator K and λk be the sequence of eigenvalues corre-
sponding φk, k ∈ N. Then K has the form Ku =

∑∞
k=1 λk(φk, φk)

−1(u, φk)φk,
where λk → 0, λk > 0. In Section 1.5, it is proved that {φk} is a complete system
in H , the inverse of K−1 to the operator K is self-adjoint, positive definite and has
the form

K−1x =

∞∑
k=1

λ−1k (x, φk)(φk, φk)
−1φk .

The sequence λ−1k is unbounded and tends to infinity. Therefore, K−1 is a
self-adjoint operator with a discrete spectrum and dense domain of definition.

The spaceD(K−∞) and operatorK∞. Consider the Fréchet spaceD(K−∞) =
∞⋂
n=0

D(K−n) with the hilbertian norms

∥f∥2n = ∥f∥2 + ∥K−1f∥2 + · · ·+ ∥K−nf∥2, n ∈ N0,



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 271

which are generated by the inner products

⟨x, y⟩n = (x, y) + (K−1x,K−1y) + · · ·+ (K−nx,K−ny), n ∈ N0,

x, y ∈ D(K−∞), n ∈ N0.

As is known, an arbitrary Fréchet space is isomorphic to the subspace of the
product of a sequence of Banach spaces. In our case, the Fréchet space D(K−∞)
is isomorphic to the subspace M of the Fréchet space HN and this isomorphism is
realized by the mapping

x ∈ D(K−∞) → Orb (K−1, x)

= (x,K−1x,K−2x, . . . ,K−nx, . . . ) ∈M ⊂ HN0 . (5.1.1)

This means that the Fréchet spaceD(K−∞) is isomorphic to the space of all orbits
of the operatorK−1 at the point x. The topology of the Fréchet spaceHN0 is given
by the following seminorms:

∥f∥2n = ∥f0∥2 + ∥f1∥2 + ∥f2∥2 + · · ·+ ∥fn∥2, f = {fk} ∈ HN0 ,

which are generated by the semi-scalar products

⟨x, y⟩n = (x0, y0) + (x1, y1) + (x2, y2) + · · ·+ (xn, yn),

x = {xk}, y = {yk} ∈ HN0 , n ∈ N0.

Let us define the operator K−∞ : D(K−∞) → D(K−∞) according to the
equality

K−∞x = {K−1x,K−2x, . . . ,K−nx, . . . }.

This operator is continuous because it is defined on the entire Fréchet space
D(K−∞). It is symmetric and positive definite on the Fréchet space D(K−∞),
since for an arbitrary n ∈ N0 and x, y ∈ D(K−∞), the equality

⟨K−∞x, y⟩n = ⟨x,K−∞y⟩n

and the inequalities

[x]2n = ⟨K−∞x, x⟩n ≥ Cn⟨x, x⟩n (5.1.2)

are valid, where

[x]2n =: ⟨K−∞x, x⟩n = (K−1x, x) + (K−2x,K−1x) + · · ·+ (K−n−1x,K−nx),
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i.e. [x]n are the norms of the energetic space EK−∞ of the operator K−∞. Let us
prove the inequality (5.1.2). Indeed, we have

[x]21 = ⟨K−∞x, x⟩0 = (K−1x, x)

=

( ∞∑
k=1

λ−1k (x, φk)φk,
∞∑
k=1

(x, φk)φk

)
=
∞∑
k=1

λ−1k (x, φk)
2 ≥ C0⟨x, x⟩0,

where C0 = min{λ−1k ; k ∈ N0} and

⟨K−∞x, x⟩1 = (K−1x, x) + (K−2x,K−1x)

≥ C0(x, x) +

( ∞∑
k=1

λ−2k (x, φk)φk,

∞∑
k=1

λ−1k (x, φk)φk)

= C0(x, x) +

∞∑
k=1

λ−3k (x, φk)
2 ≥ C0(x, x) + C0

∞∑
k=1

λ−2k (x, φk)
2

≥ C0(x, x)2.

The inequality (5.1.2) is proved similarly for arbitrary n ∈ N0.
So, in the Fréchet space D(K−∞), there are two sequences of norms

∥f∥2n = ∥f∥2 + ∥K−1f∥2 + · · ·+ ∥K−n+1f∥2, n ∈ N0,

and

[f ]n =: ⟨K−∞f, f⟩1/2n = ((K−1f, f) + (K−2f,K−1f) + · · ·
+(K−n−1f,K−nf))1/2, n ∈ N0.

From the inequality (5.1.2) it follows that the second sequence of norms gen-
erates a stronger topology in the Fréchet space D(K−∞) and, therefore, coincide.

It is clear that for the basis sequence {φk} of the Hilbert space H , the se-
quence {orb(K−1, φk)} is also eigenelement of the operatorK−∞. Therefore, the
operator K−∞ has a dense image in the Fréchet space D(K−∞) and the operator
(K−∞)−1 exists and is continuous by statement b) of Theorem 4.2.2. The operator
(K−∞)−1 is self-adjoint, since the operator K−∞ is self-adjoint (statement c) of
Theorem 4.2.2). Therefore, the operator K−∞ is an isomorphism of the Fréchet
space D(K−∞) onto itself and the equation (K−∞)−1u = f in the Fréchet space
D(K−∞) has a unique stable solution. Let us denote the operator (K−∞)−1 by
K∞ (the notation K∞, and not K∞, was chosen to distinguish this operator from
the operator A∞ considered in Section 4.4). The operator K∞ = (K−∞)−1 co-
incides with the restriction of the operator KN from the Fréchet space HN to the



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 273

Fréchet space D(K−∞). Note that

K∞(u) = (K−∞)−1(u) = (Ku,KK−1u, . . . ,KK−n+1u, . . . )

= (Ku, u,K−1u, . . . ,K−n+2u, . . . )

and therefore

K−∞K∞(orb(K−1, u)) = K∞(K−∞ orb(K−1, u))

= K∞(K−1u,K−2u, . . . ,K−nu, . . . )

= (u,K−1u, . . . ,K−nu, . . . ) = orb(K−1, u).

The equation Ku = f in the Hilbert space H is ill-posed and for f ∈ D(K−∞)
we transfer it from H into the Fréchet space D(K−∞). Namely, f must be re-
placed by orb(K−1, f) = (f,K−1f, . . . ) and Ku by K∞u = orb(K−1,Ku) =
(Ku, u,K−1u, . . . ). For simplicity, we write the transferred equation in the form

K∞u = f (5.1.3)

or
K∞ orb(K−1, u) = orb(K−1, f),

hoping that this agreement will not lead to misunderstandings. Due to the fact that
K∞ is an isomorphism of D(K−∞) onto itself, the equation (5.1.3) has a unique
and stable solution in the Fréchet space D(K−∞), i.e. it is correct.

We appeared in a similar situation as A. Tikhonov in his work [156]. In this
work, in particular, for some ill-posed problems, a metric compact space E was
considered, which the operator K mapped isomorphically onto itself. Therefore,
such equations in the spaceE have a unique stable solution. Similarly, the ill-posed
problem

Ku = f,

with the self-adjoint operator K considered above, we transferred to the Fréchet
space E = D(K−∞). The restriction K∞ of the operator K to this space is a self-
adjoint operator. Moreover, K∞ is an isomorphism of the Fréchet space D(K−∞)
onto itself and therefore the equation (5.1.3) in the Fréchet space D(K−∞) has
stable solution.

Consider D(K−∞) equipped with a sequence of hilbertian norms

{x}n = ⟨K∞x, x⟩1/2n = ((Kx, x) + (KK−1x,K−1x)

+ · · ·+ (K−n+1x,K−nx))1/2, n ∈ N0, (5.1.4)
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which is generated by the inner products

{x, y}n = ⟨K∞x, y⟩n = (Kx, y) + (KK−1x,K−1y)

+ · · ·+ (K−n+1x,K−ny), n ∈ N0.

According to (5.1.4), we get that for n ∈ N0,

{x}2n = (Kx, x) + (KK−1x,K−1x) + · · ·+ (K−n+1x,K−nx)

≥ (Kx, x) + C0∥x∥2 + C0∥K−1x∥2 + · · ·+ C0∥K−n+1x∥2

= (Kx, x) + C0∥x∥2n−1 ≥ C0∥x∥2n−1.

This also means that the sequences of norms {{·}n} and {∥ · ∥n} generate com-
parable topologies on D(K−∞). The Fréchet space D(K−∞), equipped with a
sequence of hilbertian norms {{·}n}, we call the energetic space of the operator
K∞ and denote it by EK∞ . Therefore, the Fréchet spaces EK∞ and D(K−∞) are
isomorphic. To approximately solve the equation, we use the extended Ritz method
in the space EK∞ . Coefficients of the approximate solution um =

∑m
k=1 akφk are

determined from the following system of equations:
m∑
k=1

ai{φk, φi}n = (f, φk)n, i = 1, 2, . . . ,m, n ∈ N0,

i.e.

m∑
k=1

ai(K∞φk, φi)n = (f, φk)n, i = 1, 2, . . . ,m, n ∈ N0.

In general, if {φk} is an arbitrary linearly independent orthogonal sequence,
the coefficients ak depend on n. Now we will prove that, in our case, they do not
depend on n. Indeed, we have

⟨K∞φk, φi⟩n = (Kφk, φi) + (KK−1φk,K
−1φi) + · · ·+ (K−n+1φk,K

−nφi)

= λk(φk, φi)(1 + λ−1k λ−1i + · · ·+ λ−nk λ−ni ),

i.e.

⟨K∞φk, φi⟩n =

{
0 if k ̸= i,

λk(φk, φk)(1 + λ−2k + · · ·+ λ−2nk ) if k = i.

Besides,

⟨f, φk⟩n = (f, φk) + (K−1f,K−1φk) + · · ·+ (K−nf,K−nφk)

= (f, φk) + (f,K−2φk) + · · ·+ (f,K−2nφk)

= (1 + λ−2k + · · ·+ λ−2nk )(f, φk).
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Therefore, it turns out that

ak = λ−1k (f, φk)(φk, φk)
−1.

Hence the approximate solution of equation (5.1.3) obtained by using extended
Ritz method takes the form

orb(K−1, um) =

m∑
k=1

(f, φk)((φk, φk)λk)
−1 orb(K−1, φk). (5.1.5)

Let y = I(f) = [L1(f), L2(f), . . . , Lm(f)] be a non-adaptive information of
cardinality m on D(K−∞), where Li(f) = (f, φi), i, . . . ,m. Ker I is a subspace
of finite codimension inD(K−∞) and (Ker I)⊥ = span{φ1, φ2, . . . , φm}. Spline
σm interpolatory y has the shape

σm =
m∑
k=1

(f, φk)(φk, φk)
−1φk. (5.1.6)

The solution operator for the equation K∞u = f is S = (K∞)−1 = K−∞

and it realizes an isomorphism of the space D(K−∞) onto itself. From (5.1.6) it
follows that

Sσm =
m∑
k=1

(f, φk)(φk, φk)
−1Sφk =

m∑
k=1

(f, φk)(φk, φk)
−1(K∞)−1φk

=
m∑
k=1

(f, φk)(φk, φk)
−1K−∞φk =

m∑
k=1

λ−1k (f, φk)(φk, φk)
−1φk = um,

since

K−∞(φk) = (K−1φk,K
−2φk, . . . ,K

−nφk, . . . ) = orb(K−1,K−1φk)

= λ−1k (φk,K
−1φk, . . . ,K

−1φk, . . . ) = λ−1k orb(K−1, φk) = λ−1k φk.

Sσm = um is the best approximation element for Sf = (K∞)−1f in the subspace
(KerI)⊥ with respect to the energetic norms {·}n of the energetic space EK∞ of
the operator K∞ for all n ∈ N0.

Indeed, the unique best approximation element for Sf = (K∞)−1f in the
subspace (KerI)⊥ with respect to the hilbertian norm {·}n in the pre-Hilbert space
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(EK∞ , {·}n) has the form

m∑
k=1

{(K∞)−1f, φk}n{φk, φk}−1n φk

=
m∑
k=1

⟨K∞(K∞)−1f, φk⟩n{φk, φk}−1n φk

=
m∑
k=1

(f, φk)((φk, φk)λk)
−1φk = um.

Therefore, this element of the best approximation does not depend on n.
The best approximation of this kind in locally convex spaces has been consid-

ered by many mathematicians (see review in [132]). It follows that the subspace
Gm spanned by the functions φ1, . . . , φm has an orthogonal complement Ker I
in EK∞ . It should be noted that the orthogonality in Fréchet spaces significantly
differs from the orthogonality in Hilbert spaces (see Section 2.4).

From the completeness of the system φk it follows that the sequence of con-
structed best approximations elements {um} tends to (K∞)−1f in the energetic
space EK∞ (see Theorem 4.4.5). Indeed, we will use the same scheme that was
used to prove Theorem 4.3.4. In this case, we also define the canonical mappings,
which are the identity mappings Jn defined by the following equalities:

Jn(x) = Jn orb(K
−1, x) = orbn(K

−1, x), n ∈ N0.

The projective operators of the operator K∞ have the form

K∞,n(Jn(x)) = Jn(K∞(x)) = Jn(Kx, x,K
−1x,K−2x, . . . ,K−n+1x, . . . )

= (Kx, x,K−1x,K−2x, . . . ,K−n+1x).

They map the Hilbert space (D(K̃−∞), {·}n) into itself, where (D(K̃−∞), {·}n) is
the completion of the pre-Hilbert space (D(K−∞), {·}n). In this space
(D(K−∞), {·}n), we define the energetic space (D(K−∞), {·}n)K∞,n of the op-
erator K∞,n and the energetic norm according to the formula

[Jn(x)]K∞,n = ⟨K∞,n(Jn(x)), Jn(x)⟩n = ((Kx, x) + (KK−1x,K−1x)

+ (KK−2x,K−2x) + · · ·+) + (K−n+1x,K−nx))1/2

= ((Kx, x) + (x,K−1x) + (K−1x,K−2x) + · · ·
+ (K−n+1x,K−nx))1/2, n ∈ N.
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It is clear that {·}n are isometric to the norms of [·]K∞,n and the spaces
(D(K−∞), {·}n)K∞,n are isometric to the spaces (D(K−∞), {·}n) for all n ∈ N0.

According to the classical Ritz Theorem (only for a positive operator), we find
that for all n∈N0, the sequence of approximate solutions {um} converges to the ele-
ment (K∞)−1f with respect to the norm [·]K∞,n in the space (D(K−∞), {·}n)K∞,n

for all n, where it represents a sequence of partial sums. Therefore, due to iso-
metricity, it also converges in the Fréchet space EK∞ .

On the other hand, the following inequalities are valid:

[f ]n = ((K−1f, f) + (K−2f,K−1f) + · · ·+ (K−n−1f,K−nf))1/2

≤ {f}n+1 = ((Kf, f) + (f,K−1f) + (KK−2f,K−2f)

+ · · ·+ (K−nf,K−n+1f))1/2, n ∈ N0.

This means that the sequence of norms {{·}n} on the space D(K−∞) defines
a stronger topology than {[·]n} .

From the above it follows that the following statement is true.

Theorem 5.1.1. Let K : H → H be a compact, self-adjoint, positive and injec-
tive operator with dense image and orthogonal sequence of eigenelements φj . Let
λj be the eigenvalues corresponding to the eigenelements φj and um are defined
according to (5.1.5). Then the algorithm φs(I(f)) = um is linear spline for the so-
lution operator S = K−1∞ and information I(f) = [(f, φ1), (f, φ2), · · · (f, φm)].
In addition, the sequence of approximate solutions {um} converges to the solution
of equation (5.1.3) in the energetic space EK∞ of the operator K∞ with respect to
the norms (5.1.4), as well as in the space D(K−∞).

We now give several examples of self-adjoint and positive definite operators
in the Hilbert space from Section 1.5 for which the operator K−∞ satisfies the
conditions of Theorem 5.1.1.

5.1.1 Application for some differential and integral operators

1. Inverse of QHO

For the QHO from Section 4.3, the inverse selfadjoint and positive operator K =
A−1 in the space L2(−∞,∞) has the form

K(u) =

∞∑
k=1

(2k + 1)−1(u, φk)φk.

For this operator K, consider the equation K∞u = f in the space D(K−∞) =
D(A∞) = S(R). In this case, the energetic space EK∞ for K∞ is S(R). For this
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equation, the spline algorithm will be
m∑
k=1

(2k + 1)(f, φk)φk = um. According to

statement b) of Theorem 3.6.2, this algorithm is linear in the space EK∞ with the
sequence of energetic norms.

2. Integral equations of the first kind

The discussed Examples 2.1–2.3 below are compiled according to Examples 2.1,
2.6 and 2.11 of the second chapter of the third part of the book [77].

2.1. Consider the following integral equation of the first kind:

Ku(t) =

b∫
a

K(s, t)u(s) ds = f(t), (5.1.7)

where

K(s, t) =

{
(s− a)(t− b)(a− b)−1, a ≤ s ≤ t ≤ b,

(t− a)(s− b)(a− b)−1, a ≤ t ≤ s ≤ b.

It is well known [77] that K(s, t) is the Green function for the symmetric and pos-
itive operator A = −d2/dt2 in the Hilbert space L2[a, b] with boundary conditions
f(a) = f(b) = 0. D(A) is a set of functions having absolutely continuous first-
order derivatives and square-summable second-order derivatives on [a, b]. D(A∞)
consists of functions having square-summable derivatives of infinite order on [a, b].
This space coincides with the countably normed Sobolev space of infinite order
W∞[a, b] (see Section 2.6). The operator K∞, that is the restriction of the integral
operator K on the space D(A∞) = D(K−∞), is a topological isomorphism and
the equation (5.1.7) has a unique and stable solution. The eigenvalues and corre-
sponding orthonormal eigenfunctions of the operator A are λk = k2π2/(b − a)2

and φk(t) =
√

2
b−a sin πk(t−a)

b−a , k ∈ N. An approximate solution of the equation
(5.1.7) has the following form:

orb(K−1, um(t))

=

m∑
k=1

2k2π2

(b− a)2

b∫
a

f(s) sin
πk(s− a)

b− 1
ds orb

(
K−1, sin

πk(t− a)

b− a

)
.

For this sequence, the above reasoning is valid and the sequence {um} converges
in the space EK∞ to a solution of the equation (5.1.7). According to Theorem
5.1.1, this algorithm is linear and spline.
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2.2. Consider the integral equation of the first kind (5.1.7), where

K(s, t) =

{
(es + e2a−s)(et + e2b−t)2−1(e2b − e2a)−1, a ≤ s ≤ t ≤ b,

(et + e2a−t)(es + e2b−s)2−1(e2b − e2a)−1, a ≤ t ≤ s ≤ b.

It is known that K(s, t) is the Green function for the symmetric and positive op-
erator Af = −d2f/dt2 + f in the Hilbert space L2[a, b] with the boundary con-
dition f ′(a) = f ′(b) = 0. D(A) is a set of functions having absolutely continu-
ous first-order derivatives and square-summable second-order derivatives on [a, b].
D(A∞) consists of functions that have square-summable derivatives of infinite or-
der on [a, b]. This space coincides with the countably normed Sobolev space of
infinite order W∞[a, b] (see Section 2.4). The operator K∞, that is, the restric-
tion of the integral operator K on the space D(A∞) = D(K−∞), is a topolog-
ical isomorphism and the equation (5.1.7) has a unique and stable solution. The
eigenvalues and corresponding orthonormal eigenfunctions of the operator A are

λk = 1 + k2π2/(b− a)2 and φk(t) =
√

2
b−a cos πk(t−a)b−a , k ∈ N.

An approximate solution to the equation (5.1.7) has the following form:

orb(K−1, um(t)) =

m∑
k=1

(
1 +

2k2π2

(b− a)2

)
2

b− a

b∫
a

f(s) cos
πk(s− a)

b− 1
ds

× orb

(
K−1, cos

πk(t− a)

b− a

)
.

For this sequence, the above reasoning is valid and the sequence {orb(K−1, um(t))}
converges in the space EK∞ to a solution of the equation (5.1.7). According to
Theorem 5.1.1, this algorithm is linear and spline.

2.3. Consider the integral equation of the first kind (5.1.7), where a = −∞,
b = ∞ and

K(s, t) =

{
−π1/2I(−∞, s)I(t,∞) exp s2+t2

2 , s ≤ t,

−π1/2I(s,∞)I(−∞, t) exp s2+t2

2 , s ≥ t,

where I(u, v) =
∫ v
u e
−t2 dt. It is known that K(s, t) is the Green function for

the symmetric and positive definite degenerate hyperelliptic operator Af(t) =
−d2f/dt2 + (t2 + 1)f in the Hilbert space L2(R) with the boundary condition
f(−∞) = f(∞) = 0. D(A) is a set of functions having absolutely continuous
first-order derivatives and square-summable second-order derivatives on (−∞,∞).
D(A∞) consists of functions that have summable derivatives of infinite order on
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(−∞,∞). This space contains a countable Hilbert–Sobolev space of infinite or-
der W∞(R) [21]. The operator K∞, that is, the restriction of the integral op-
erator K on the space D(A∞) = D(K−∞), is a topological isomorphism and
the equation (5.1.7) has a unique and stable solution. The eigenvalues and corre-
sponding orthonormal eigenfunctions of the operator A are λk = 2k and φk(t) =

(−1)k−1(k − 1)−1/4((k − 1)!)−1/2π−1/421−ket
2/2 dk−1e−t2

dtk−1 , k ∈ N. Using these
functions φk we construct an approximate solution to the equation (5.1.7)

orb(K−1, um(t)) = 2
m∑
k=1

k

∞∫
−∞

f(s)φk(s) ds orb(K−1, φk(t)).

For this sequence, the above reasoning is valid and this sequence {um} converges
in the space EK∞ to a solution of the equation (5.1.7). According to statement b)
of Theorem 5.1.1, this algorithm is linear and spline.

5.2 Approximate solution of equations containing operators admitting SVD

Let H and M be Hilbert spaces and let {φk}, {ψk} be orthogonal systems in H
and M , respectively. Further, let A be an operator acting from H to M having a
singular decomposition:

Au =
m∑
k=1

σk(u, φk)ψk , u ∈ H, σk > 0. (5.2.1)

These operators in the space D((A∗A)−n) were considered in Section 1.6.
This generalized solution satisfies the equation

A∗Au = A∗f (5.2.2)

and have the form

u+ =

∞∑
k=1

(σk(ψk, ψk)(φk, φk))
−1(f, ψk)φk . (5.2.3)

Consider the Fréchet space D((A∗A)−1)∞ := D((A∗A)−∞) with the se-
quence of norms

∥u∥n = (∥u∥2n + ∥(A∗A)−1u∥2n + · · ·+ ∥(A∗A)−nu∥2n)1/2, n ∈ N0,

which are generated by the inner products

⟨u, v⟩n = (u, v) + ((A∗A)−1u,A∗A)−1v) + · · ·+ ((A∗A)−nu, (A∗A)−nv),

u, v ∈ D((A∗A)−∞), n ∈ N0.
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The restriction of the operator (A∗A)−1 on the Fréchet space D((A∗A)−∞)
coincides with the restriction of the operator (A∗A)−N from the space HN to the
Fréchet space D((A∗A)−∞).

By virtue of (5.1.1), we have the isomorphism

D((A∗A)−∞) ∋ u = (u, (A∗A)−1u, (A∗A)−2u, . . . )

= orb
(
(A∗A)−1, u

)
∈M ⊂ HN .

The definition of the orbital operator (A∗A)−∞ takes the form

(A∗A)−∞ orb((A∗A)−1, u) = ((A∗A)−1u, (A∗A)−2u, . . . )

= orb
(
(A∗A)−1, (A∗A)−1u

)
.

Its inverse operator (A∗A)∞ = ((A∗A)−∞)−1 takes the form

(A∗A)∞ orb((A∗A), u) = ((A∗A)u, u, (A∗A)−1u, (A∗A)−2u, . . . )

= orb
(
(A∗A)−1u, (A∗A)u

)
.

Moreover, since the operator (A∗A)−∞ is self-adjoint and positive definite in
the countable Hilbert space D((A∗A)−∞), it acts isomorphically from the Fréchet
space D((A∗A)∞) to itself. Therefore, the operator (A∗A)∞ is also an isomor-
phism from the Fréchet space D((A∗A)−∞) onto itself, i.e. the equation

(A∗A)∞u = f, f ∈ D((A∗A)−∞),

has a unique stable solution in Fréchet space D((A∗A)−∞). From here we also
obtain that the equation

(A∗A)∞u = A∗g, A∗g ∈ D((A∗A)−∞), (5.2.4)

has the unique stable solution.
Let us consider the space D((A∗A)−∞) with a sequence of energetic norms of

the operator (A∗A)∞, which have the form

{u}n = ⟨(A∗A)∞u, u⟩1/2n = ((A∗Au, u) + (u, (A∗A)−1u)

+ · · ·+ ((A∗A)−n+1u, (A∗A)−nu), n ∈ N0.

If the sequences {φk} and {ψk} are orthogonal and

lim
k→∞

σk(φk, φk)(ψkψk) = 0 , (5.2.5)
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then A is compact. A∗A is also compact and the formula (5.1.5) can be applied.
The approximate solution takes the form

um =

m∑
k=1

(σ2k(φk, φk)(ψk, ψk)
2)−1(A∗f, φk)φk

=

m∑
k=1

(σ2k(ψk, ψk)(φk, φk)
2)−1(f,Aφk)φk

=

m∑
k=1

(σk(ψk, ψk)(φk, φk))
−1(f, ψk)φk .

This means that the approximate solution um of the equation (5.2.2) coincides
with m-th partial sum of a generalized solution in the Moore–Penrose sense rep-
resented by equality (5.2.3). Let us take into account this remark and replace in
Theorem 5.1.1 operator K by A∗A, where A has singular decomposition (5.2.1).
In this case, it is valid

Theorem 5.2.1. Let H and M be Hilbert spaces and let A be an operator with
singular decomposition (5.2.1), where {φk}, {ψk} are orthogonal systems in the
spaces H and M , respectively, and the condition (1.6.7) is satisfied. Then

um = φs(I(f)) =
m∑
k=1

(σk(ψk, ψk)(φk, φk))
−1(f, ψk)φk

is a linear spline algorithm for the solution operator S = (A∗A)−1∞ and informa-
tion I(f) = [(f, φ1), · · · , (f, φm)]. Moreover, these approximate solutions con-
verge to the solution of the equation (5.2.4) in the energetic space E(A∗A)∞ of the
operator (A∗A)∞, and also in the space D((A∗A)−∞).

5.3 Application of the obtained results for an approximate solution of a CT
problem

Computerized tomography (CT) is the numerical reconstruction of functions from
their linear or plane integrals or from integrals over arbitrary manifolds. CT has
applications in various fields. The most famous example of the use of CT is in
x-ray diagnostics. We considered the physical scheme of the process in Section
1.7.

Here we will use the well-known singular decompositions [114] of the Radon
transform to construct spline algorithms for the computerized tomography problem
in some Fréchet spaces, where these problems are correct. We will use the notation
of Section 1.7.
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Recall that the mapping of a function defined on the p-dimensional Euclidean
space Rp to the set of its integrals over hyperplanes in Rp is called the Radon
transform. More precisely, if Sp−1 is the unit sphere in Rp, θ ∈ Sp−1 and s ∈ R1,
then

Ru(θ, s) =

∫
(x,θ)=s

u(x) dx =

∫
θ⊥

u(sθ + y) dy, (5.3.1)

where integration is carried out over a hyperplane perpendicular to the vector θ and
located at a distance s (taking into account the sign) from the origin.

An operator defined on the Schwartz space S(Rp) admits continuous continu-
ation from the space L2(Rp) to L2(Z). It is known that the operator (5.3.1) admits
a singular value decomposition. For ν = p

2 , this expansion has the form ([114], p.
114)

Ru(θ, s) =
∞∑
m=0

∑′

l≤m
σml

N(n,l)∑
k=1

(u, umlk)L2(Ωn)fmlk(θ, s), (5.3.2)

where in
∑′ the summation occurs over the values l for which l + m is an even

number; the sequences umlk and fmlk are orthonormal bases in the spaces L2(Rp)
and L2(Z), respectively.

The functions umlk from (5.3.2) have the form

umlk(x) = qml(|x|2)|x|lYlk
(
x

|x|

)
, x ∈ Ωp,

where qml are polynomials of order m satisfying the conditions

1

2

1∫
0

tl+
n−2
2 qml(t)qkl(t) dt =

{
1, m = l,

0, m ̸= l,

and which coincide with the accuracy of normalization with the Jakobi polynomials
Gk
(
l + n−2

2 , l + n−2
2 , t

)
,

fmlk(θ, s) = c(m)Ylk(θ)vm(s), vm(s) = (1− s2)
p−1
2 C

p
2
m(s),

C
p
2
m are Gegenbauer polynomials, i.e. algebraic polynomials of m-th order, or-

thogonal to [−1, 1] with weight (1 − s2)
p−1
2 and normalized by the condition

C
p
2
m(−1) = 1; c(m) =

( ∫ 1
−1(1 − s2)

p−1
2 v2m(s) ds

)− 1
2 is a normalization co-

efficient, Ylk(θ) is linear independent spherical harmonics of l-th order, where
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k = 1, 2, . . . , N(p, l),

N(p, l) =
(2l + p− 2)(p+ l − 3)!

l!(p− 2)!
, N(p, 0) = 1.

The positive singular values σml are given by the equality

σ2ml = |Sp−2| π
p−1
2

Γ(p+1
2 )

1∫
−1

C
p
2
m(t)C

p−2
2

l (t)(1− t2)
p−3
2 dt,

m ∈ N0, l = m,m− 2, . . . , |Sp−2| is surface area of the unit (p− 2)-dimensional
sphere.

It is known ( [114], p. 39) that in the Schwarz space S(Rn) the operator R is
injective. Since S(Rp) is dense in L2(Ω

p), it is clear that R is also injective in
L2(Ω

p). The above also implies the density of ImR in L2(Z).
Thus, a generalized solution in the Moore–Penrose sense of the equation Ru =

f is the unique solution to the equation R∗Ru = R∗f , which belongs to ImR∗,
where R∗ is the conjugate operator of R in the Hilbert sense. Taking into account
(5.3.2) and the above formulas, we obtain

(R∗Ru)(x) =
∞∑
m=0

∑′

l≤m
σ2ml

N(m,l)∑
k=1

(u, umlk)L2(Ω)umlk(x).

Let us define the space D((R∗R)−∞) using the equality

D((R∗R)−∞) ∋ u = (u, (R∗R)−1u, (R∗R)−2u, . . . ) = orb((R∗R)−1, u)

and the sequence of hilbertian norms

∥u∥n =
(
∥u∥2 + ∥(R∗R)−1u∥2 + · · ·+ ∥(R∗R)−nu∥2

) 1
2 , n ∈ N0,

which are generated by the inner products

(u, v)n = (u, v) + ((R∗R)−1u, (R∗R)−1v) + · · ·+ ((R∗R)−nu, (R∗R)−nv).

The orbital operator (R∗R)−∞ : D((R∗R)−∞) → D((R∗R)−∞) is deter-
mined by the equality

(R∗R)−∞u = {(R∗R)−1u, (R∗R)−2u, . . . } = Orb
(
(R∗R)−1, (R∗R)−1u

)
.
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Its inverse operator (R∗R)∞ = ((R∗R)−∞)−1 takes the form

(R∗R)∞u = {(R∗R)u, u, (R∗R)−1u, (R∗R)−2u, . . . }
= Orb

(
(R∗R)−1, (R∗R)−1u

)
.

The orbital operator (R∗R)−∞ is self-adjoint and positive definite in the count-
able Hilbert spaceD((R∗R)−∞), it is an isomorphism of the spaceD((R∗R)−∞)
onto itself. Therefore, its inverse operator (R∗R)∞ is an isomorphism of the
Fréchet space D((R∗R)−∞) onto itself and the equation

(R∗R)∞u = f (5.3.3)

has the unique stable solution.
Approximate solutions defined according to (5.1.4) have the form

um(x) =
m∑
j=0

∑′

l≤j
σ−2jl

N(p,l)∑
k=1

(R∗f, umlk)L2(Ωp)umlk(x).

From this and from the formula (5.2.3) it turns out that

um(x) =
m∑
j=0

∑′

l≤j
σ−1jl

N(p,l)∑
k=1

(f, fjlk)ujlk(x).

In the case of p = 2 it turns out ( [114], p. 115) that σ2ml = 4π
m+1 for any l,

N(2, l) = 2, Yl1(t) = cosπlt, Yl2(t) = sinπlt, um(s) = (1 − s2)
1
2C1

m(s) =

(1− s2)
1
2
sin(n+1) arccos s

sin arccos s , c(m) =
( ∫ 1
−1(1− s2)

3
2 (C1

m(s))
2ds)−

1
2 =

√
2
π .

According to Proposition 1.7.1, we have that the system {vνmlk, uνmlk, σml},
m ≥ 0, 0 ≤ l ≤ m, k = 1, . . . , N(n, l), where vνmlk, umlk, σml are defined
according to (1.6.14)–(1.6.16), represents a singular system for the Radon trans-
formation R acting from L2(Ω

n,W−1ν ) to L2(Z,w
−1
ν ). In other words,

Ru(ω, s) =

∞∑
m=0

∑
l≤m

′
σml

N(n,l)∑
k=1

(u, vνmlk)L2(Ωn,W−1
ν ) · u

ν
mlk(ω, s),

where
∑′ means that the summation is carried out only for even m+ l.

If vνmlk, uνmlk, σml, l ≤ m, 1 ≤ k ≤ N(n, l), are presented according to
(1.6.14)–(1.6.16), then

lim
m→∞

σml∥uνmlk∥ · ∥vνmlk∥ = 0.

We can apply Theorem 5.2.1 and find that it is valid
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Theorem 5.3.1. Let {vνrlk, uνrlk, σrl}, l ≤ r, 1 ≤ k ≤ N(n, l), be a singular
system for the Radon transform R, which acts from L2(Ω

n,W−1ν ), ν > n/2 − 1,
into the space L2(Z,w

−1
ν ). Then the algorithm

φs(I(f))(x) =

m∑
r=0

∑
l≤r

′
σrl

N(n,l)∑
k=1

(f, uνrlk)L2(Z,w
−1
ν )v

ν
rlk(x), x ∈ Ωn, (5.3.4)

where
∑′ means that the summation is carried out only for even m + l, is lin-

ear spline for the solution operator S = (R∗R)−1∞ and non-adaptive information
I(f) = [(f, uν001), . . . , (f, u

ν
mmN(n,m))]. In addition, these approximate solutions

converge to the solution of the equation (5.3.3) in the energetic space E(R∗R)∞ , as
well as in the space D((R∗R)−∞).

We can rewrite (5.3.4) in the form

φs(I(f))(x) =Wν(x)

m∑
r=1

qr(x),

where

qr(x) =
∑
l≤r

hrl|x|lP
(ν−n/2,l+n/2−1)
(r−l)/2 (2|x|2 − 1)Ylk(x/|x|),

hrl = drlσrl

N(n,l)∑
k=1

(f, wν(s)C
ν
r (s)Ylk(ω))L2(Z,w

−1
ν ),

and
∑′ means that summation is carried out only for even m+ l.
We now consider the case when H := L2(Rp, wp) is the space of square-

integrable functions on Rp with Hermite weight wp(x) = πp/2 exp(|x|2) with
product (f, g)H =

∫
Rp f(x) · g(x)wp(x) dx. In [33], it is proved that the Radon

operator R is a continuous operator from H to the Hilbert space M := L2(Sp−1 ×
R, w1) with inner product (f, g)M =

∫
Sp−1

∫
R f(u, s)g(u, s)w1(s) ds du, where

Sp−1 is the unit sphere in Rp, and the weight function w1(s) has the form w1(s) =
π1/2 exp(s2). The acting from H to M operator R has a singular decomposi-
tion [33]. To describe this decomposition, we give some notation: {Ylk, k =
1, . . . , N(p, l)} is orthogonal basis of spherical functions defined on Sp−1, where
l ∈ N0 and N(p, l) = (2l+p−2)(p+l−3)!

l!(p−2)! , p ≥ 2; ν = p/2 − 1; Cνl is Gegenbauer

polynomial of order l and index ν; L(α)
k denotes the k-th normalized Laguerre

polynomial;

gνmlk(u, s) = Ykl(u)
Hm(s)

w1(s)
, u ∈ Sp−1, s ∈ R;
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Hm is the m-th Hermite polynomial, which is normalized so that the functions
gνmlk are orthonormal in the space M ;

σ2lm =
|Sp−2|
Cνl (1)

1∫
−1

tmCνl (t)(1− t2)ν−1/2dt;

qνmlk(x) = (−1)(m−l)/2σ2lm((m− l)/2)!2m
|x|l

wp(|x|)
Ylk(x/|x|)L

(l+ν)
(m−l)/2(|x|

2).

In [33], it is proved that (gνmlk, q
ν
mlk, σml) represents a singular system for R.

Theorem 5.3.2. Let H and M be the above-defined Hilbert spaces and R be the
Radon operator acting from H to M . Then the algorithm

φs(I(f))(x) =
m∑
r=0

∑′

l≤r

1

σrl

N(p,l)∑
k=1

(f, gνrlk)Mq
ν
rlk(x)((q

ν
rlk, q

ν
rlk)H)

−1, x ∈ R,

where
∑′ means that the summation is carried out only for even values of the

numbersm+ l, is a linear spline for the solution operator S = (R∗R)−1∞ and non-
adaptive information I(f) = [(f, gν001), . . . , (f, g

ν
mmN(p,m))]. In addition, approx-

imate solutions converge to the solution (5.3.3) in the energetic space E(R∗R)∞ , as
well as in the space D((R∗R)−∞).





C H A P T E R 6

Orbitization of quantum mechanics and central spline
algorithms in Fréchet–Holbert spaces of all orbits

“Quantum mechanics is probably the most successful scientific theory ever in-
vented. It has an astonishing range of applications from quarks and leptons to
neutron stars and white dwarfs and the accuracy with which its underlying ideas
have been tested is equally impressive. Yet, from its very inception, prominent
physicists have expressed deep reservations about its conceptual foundations and
leading figures continue to argue that it is incomplete in its core. Time and again,
attempts have been made to extend it in a nontrivial fashion. Some of these propos-
als have been phenomenological, aimed at providing a ‘mechanism’ for the state
reduction process. Thus, while there is universal agreement that quantum mechan-
ics is an astonishingly powerful working tool, in the ‘foundation of physics circles’
there has also been a strong sentiment that sooner or later one would be forced to
generalize it in a profound fashion.”

To this aim we may be guided by the “correspondence principle” as stated
by P. A. M. Dirac: “Classical Mechanics must be a limiting case of quantum me-
chanics. We should expect to find that important concepts in classical mechanics
correspond to important concepts in quantum mechanics and, from the understand-
ing of the general nature of the analogy between classical and quantum mechanics,
we may hope to get laws and theorems in quantum mechanics appearing as sim-
ple generalizations of well-known results in classical mechanics.” By analogy of
“correspondence principle”: quantum mechanics is a limiting case of finite n-order
orbital quantum mechanics, because when n = 0 we obtain quantum mechanics.
We should expect to find that important concepts in quantum mechanics corre-
spond to important concepts in finite n-order orbital quantum mechanics and, from
the understanding of the general nature of the analogy between quantum and fi-
nite n-order orbital quantum mechanics, we may hope to get laws and theorems
in finite n-order orbital quantum mechanics appearing as simple generalizations of

289
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well-known results in quantum mechanics. But, infinite-order orbital quantum me-
chanics, which uses the technique of Fréchet spaces, is essentially a generalization
of quantum mechanics, where the Schrödinger equation takes on a new meaning.
Due to its importance, we call this process of generalization of quantum mechanics
the orbitization of quantum mechanics.

Mathematical models are often used to describe theoretical physical phenom-
ena of quantum mechanics. The models then mathematically manipulate and ana-
lyze particle theories and hypotheses, i.e. the explanation of particle phenomena is
organized through mathematical theories and theoretical models.

“The right way of creating new physics is different: one should begin with a
beautiful mathematical idea. But it should be really beautiful! No special relations
to physics is compulsory. But if it is really beautiful, it will certainly match useful
physical applications, though it is not predefined, what sort of applications and
where: it depends on physical consequences which may be extracted from the
mathematical scheme” (P. A. M. Dirac).

In this process of mutual development of mathematics and theoretical physics,
existing models are developed and new mathematical models of physics are cre-
ated, which more adequately describe the quantum mechanical processes.

6.1 Orbits of observable operators at the wave functions, orbital spaces, or-
bital operators and orbital equations containing hamiltonian of quantum
harmonic oscillator (QHO)

Our mathematical idea is to create finite orbits and orbits of observable selfadjoint
operators position, momentum and energy at the states of quantum Hilbert space
L2(R) (“quantum Hilbert space” means simply the Hilbert space associated with
a given quantum system ([68], Section 13.1, p. 255)). Also the creation of Hilbert
space of finite orbits and the graded Fréchet–Hilbert space of all orbits whose el-
ements are the orbits of the observable operators at some elements of the space
L2(R). The definition of the orbital operators corresponding to these observable
operators in these spaces of orbits is given. For more adequate studying of the
particle behavior the equations containing orbital operators are considered. The
equations containing orbital operators of hamiltonian of QHO in the Hilbert space
of finite orbits and in the graded Fréchet–Hilbert space of all orbits was considered
in [170].

The definitions of finite orbits and of orbits was introduced, respectively, in
[169] and [163]. We present the following reasoning from [163]: let H be a
Hilbert space. Let A be a linear operator mapping H into itself. We will call the
sequence orb(A, x) = (x,Ax,A2x, . . . ) the orbit of the operator A at the point x,
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i.e. orb(A, x) is an element of the spaceHN . IfAjx ∈ H only for j = 0, 1, . . . , n,
then we denote the finite sequence (x,Ax, . . . , Anx) by orbn(A, x) and call it the
n-orbit of the operator A at the point x ∈ H , i.e. orbn(A, x) is an element of the
space Hn+1. In [145], the following concept was introduced: let X be a linear
metric space and A be a linear continuous operator mapping X into itself. We will
write ϑ(A, x) = {Anx;n ∈ N0} and call ϑ(A, x) the orbit of x ∈ X with respect
to the operator A. Note that, in this case the set ϑ(A, x), is a subset of the linear
metric space X .

Therefore, in [163], the notion of an orbit of A at a point is introduced, while
in [145] is introduced the notion of orbit of x with respect to the operator A, i.e.
these notions are different as subsets, are different as terms and notations. In [163],
the continuity of the operator A is not assumed. We also consider the concepts of
an orbital operator An (see [169]) that acts in the Hilbert spaces of finite orbits and
orbital operator A∞ that acts in the Fréchet–Hilbert spaces of all orbits [163] (see
also [183]).

The orbital spaces and equations associated with the ill-posed problems were
also considered in [168]. The Hilbert spaces of finite orbits and Fréchet–Hilbert
space of all orbits represent generalization of the quantum Hilbert space and are
obtained from this space by strengthening its topology. Note that the Fréchet space
of all orbits D(H∞) is defined as projective limit of the sequence {D(Hn)} of
finite orbital spaces. When n = 0, the Hilbert space of finite n-orbits coincide with
the quantum Hilbert space, and the notion of the orbital operators corresponding to
all above mentioned observable operators also coincides with the operators in quan-
tum mechanics. We believe, that orbital quantum mechanics essentially improves
the possibility to consider new computational processes that are not contained in
the frames of Banach spaces and had not been considered up to now.

One of the axioms of quantum mechanics states, “To each real-valued function
f on the classical phase space there is associated a self-adjoint operator f̂ on the
quantum Hilbert space”. The operator f̂ is called the quantization of f . There
is considered the quantization’s of a few very special classical observables, such
as position, momentum, and energy ( [68], Section 13, p. 255). For a particle
moving in R the classical phase space is R2 with the pairs (x, p), where x being
the particle’s position and p being its momentum. In that case if the function f is
the position function, f(x, p) = x, then the associated operator f̂ is the position
operator X , given by multiplication by x, i.e. quantization of position function is
position operator X , defined by equality

Xψ(x) = xψ(x) (6.1.1)

If f is the momentum function f(x, p) = p, then f̂ is the momentum operator
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P , defined by equality

Pψ(x) = −iℏdψ
dx

(x), (6.1.2)

where ℏ is the Plank’s constant. Note that quantization of xp, i.e. (xp)ˆ is neither
XP nor PX , they are not self-adjoint and XP ̸= PX . In this case a reasonable
candidate for the quantization would be x̂p = 1

2(XP + PX).
It is well-known that the position and momentum operators do not commute,

but satisfy the relation

[X,P ] = XP − PX = iℏI, (6.1.3)

on D([X,P ]) = D(XP ) ∩D(PX), where [X,P ] is the commutator and I is the
identity operator on the space L2(R). D(XP ) = {u ∈ D(P ), Pu ∈ D(X)}),
and likewise for D(PX). This relation is known as the canonical commutation
relation.

One of the important model systems in quantum mechanics is the harmonic os-
cillator. This is a system capable of performing harmonic oscillations. In physics,
the model of a harmonic oscillator plays an important role, especially in the study
of small oscillations of systems around a position of stable equilibrium. An exam-
ple of such oscillations in quantum mechanics is the oscillations of atoms in solids,
molecules, ets. The harmonic oscillator in quantum mechanics is the quantum ana-
logue of the simple harmonic oscillator. However, here we consider not the forces
acting on the particle, but the hamiltonian, that is total energy for a harmonic oscil-
lator, in which there is a parabolic potential energy. For the hamiltonian H of the
quantum harmonic oscillator the following representation is valid

Hψ =
P 2ψ

2m
+m

ω2X2ψ

2
= − ℏ2

2m

d2ψ

dx2
+
m

2
ω2X2ψ = aP 2ψ + bX2, (6.1.4)

where m is the mass of the particle, ω is the frequency of oscillator a = 1
2m ,

b = mω2

2 , P 2ψ = −ℏ2 d
2ψ(x)
dx2

and X2ψ = x2ψ(x). According to ( [68], Section
13.1), the hamiltonian H is quantization of classical hamiltonian H(x, p) = ap2 +
bx2, since each term contains only x or only p. The first term in the hamiltonian
represents the kinetic energy of the particle, and the second term represents its
potential energy.

The mathematical model of quantum mechanics describe quantum-mechanical
systems by vectors of separable complex quantum Hilbert space ( [68], Section
13.1, p. 255) H and with unbounded self-adjoint operators defined on them. The
quantum Hilbert space in this case is usually Hilbert space L2(R), the elements of
which are called states of quantum-mechanical systems. To each observable physi-
cal quantities corresponds a self-adjoint operator on H . Such classical observables
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are above mentioned hamiltonian H of the quantum harmonic oscillator, which
corresponds to the observable “energy”, the position operator X and momentum
operator P .

In the case of particle moving in real line R, the operators H, X and P are
described by unbounded self-adjoint operators in H = L2(R. Neither the position
nor the momentum operator are defined as mappings the entire Hilbert spaceL2(R)
into itself. After all, for ψ ∈ L2(R) the function xψ(x) may fail to be in L2(R).
Similarly, a function ψ in L2(R) may fail to be differentiable, and even if it is
differentiable, the derivative may fail to be in L2(R). The operators X and P are
unbounded operators in the space L2R).

Later, in the 50s of the XX century, the basic concepts of quantum mechanics
were represented by the methods of the theory of generalized function. It is very
important that in the space of generalized functions observable operators became
continuous. But the application of the basic and generalized function spaces are
difficult because of the non-metrizability of their topologies. In Section 2.5, the
topologies of basic and generalized functions are presented as projection and in-
ductive limits of the family of strict Fréchet–Hilbert spaces and their strong duals,
which simplifies the use of these spaces.

In this situation, it became necessary to replace the quantum Hilbert space with
the graded Fréchet–Hilbert spaces, and to extend there the theories of self-adjoint
operators and computational methods. For this purpose, we have developed the
best approximation theory in Fréchet spaces [193, 198], it was studied topological
and geometrical properties of strict Fréchet–Hilbert spaces [201]. The extension
of selfadjoint operators theory in Fréchet–Hilbert spaces was began in [85,86] and
continued for graded Fréchet–Hilbert spaces in [163]. It was extended the Ritz
method ( [163], see also [162]), the least squares method [202], the theories of
spline [167] and central algorithms [168].

While strengthening the quantum Hilbert space topology for the hamiltonian H
of QHO are obtained Hilbert spaces of finite orbits D(Hn), n ∈ N0. This is the
space of the states on which the operator H acts n-times. D (Hn) is identified as
the space of n-orbits orbn (H,ψ) = (ψ,Hψ, . . . ,Hnψ) ([170], see also [209]). In
this case the particle that is in the state ψ is subjected to potential energy and the
observer gives us Hψ, which is still the state because Hψ ∈ D(H) ⊂ H . It is
still instantly acted upon by the potential energy of H and the observer gives us the
state H2ψ. After n-action, the particle enters the Hnψ state. Totally these states
can be described by an n-orbit orbn(H, ψ) = (ψ,Hψ,H2ψ, . . . ,Hnψ).

Continues this process infinitely we get to the infinite sequence orb (H, ψ) =
(ψ,Hψ,H2ψ, . . . ,Hnψ, . . . ), which we call the orbit of operator H at the point
ψ [170].

The unbounded self-adjoint operator H form self-adjoint orbital operators Hn :
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D (Hn) ⊂ (L2 (R))n+1 → Im Hn ⊂ (L2(R))n+1 defined by equality

H0(ψ) = ψ, Hn (orbn (H, ψ)) = orbn (H,Hψ) , n ≥ 1 .

It is defined also the self-adjoint orbital operator H∞ : D (H∞) → D (H∞)
by equality

H∞ orb(H, ψ) = orb(H,Hψ),

i.e. action of orbital operator H∞ on orb(H, ψ) means the action H on all coordi-
nates of the orbit in the space of all orbitsD(H∞). D (H∞) is a well-known space
and after the introduction of orbital operator H∞, the space D (H∞) acquired new
content. This Fréchet–Hilbert space of all orbits coincides to the Schwartz space
of rapidly decreasing functions S(R). The significance of this space for quantum
mechanics is also denoted in [13]. D(H∞) is the projective limit of the sequence
of spaces {D(Hn)}, i.e. the study of computational processes in space D (H∞)
can be reduced to the study of computational processes in space D(Hn) [170].
In computational mathematics problems, this means that the equation given in the
Fréchet–Hilbert space D (H∞) is projected onto the D (Hn) spaces and calcula-
tion of the ε-complexity in the Fréchet space of all orbits is reduced to calculate
the ε-complexity in some n-orbit Hilbert space. Note that the self-adjoint operator
H∞ is topological isomorphism onto the space D (H∞). That is, the flaw of von
Neumann’s theory was somewhat corrected. This orbital operator H∞ has also
recently appeared in the paper [210].

The equation Hu = f containing the operator H, which in the space D(Hn)
(resp. in the space D(H∞)) has the form Hn(orbn (H, u)) = orbn (H, f) (resp.
H∞ orb(H, u) = orb(H, f)), is considered. For the obtained equations, a lin-
ear spline central algorithm is constructed in the Hilbert space D (Hn) (resp. in
the Fréchet space D(H∞)) [170]. Construction of spline algorithms for the ill-
posed problem of computerized tomography in the spaces of orbits D(R∗R)−n)
and D(R∗R)−∞), where R is Radon transform, is given in [208] and [168]. Sim-
ilarly, the ε-complexity will be calculated for the computerised tomography prob-
lem in the Hilbert space of finite orbits and spline algorithms built in the Fréchet
space of all orbits. Analogously are defined the spaces D(Xn) and D(X∞), op-
erators Xn and X∞ for the position operator X . As well are defined the spaces
D(Pn) and D(P∞), operators Pn and P∞ for the momentum operator P [210].

Generalization of canonical commutation relations between Xn and Pn in the
space of orbits has the following form

XnPn orbn(X,ψ)− PnXn orbn(X,ψ) = iℏ orbn(X,ψ)

and is given in [210]. In this paper, the generalization of Heisenberg uncertainly
principle for orbital operators is also given. The norms of orbital spaces D(Xn)
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and D(Pn) are strengthening the topology of the space L2(R). The creation of
orbits of operators, orbital spaces, orbital operators, we call orbitization and the
results obtained orbital quantum mechanics.

While orbitization of the quantum Hilbert space the states of the quantum-
mechanical systems is replaced by the space of the orbits of the operators at the
states. The self-adjoint operators in the quantum Hilbert space are replaced by an
orbital self-adjoint operator in the Hilbert space of finite orbits and in the Fréchet–
Hilbert space of all orbits, allowing for a more adequate description of the ob-
servable quantities. Orbitization also considers creation of equations containing
orbital operators in the corresponding orbital spaces [209]. The properties of oper-
ators is changed as a result of orbitisation. In particular, the unbounded quantum
harmonic oscillator operator becomes a topological isomorphism in the Fréchet–
Hilbert spaces of all orbits, in this case it coincides with the Schwartz space of
rapidly decreasing functions. The work [13] is dedicated to the special importance
of this space for quantum mechanics.

Thus, the represented orbits orbn (H,ψ), orb(H,ψ) and the orbital operators
Hn and H∞ more adequately describe the state of the particle because we have
the whole infinite sequence of observer data on the particle. For the required mod-
eling accuracy, the study of computational processes associated with an infinite
sequence of observer data is reduced to the study of computational processes with
a finite data sequence. This was considered in [170], for calculation of the in-
verse of the harmonic oscillator in the spaces of orbits and in [168] for comput-
erized tomography problem. This process is coordinated by a functional (quasi-
norm of metric) built specifically by us in Section 2.4. That is, it is a matter of
bringing an infinite coordinate computational process to a finite coordinate com-
putational process based on certain requirements or other considerations for ac-
curacy. Orbital quantum mechanics will similarly study orbits, orbital operators,
orbital spaces and orbital equations for position and momentum observables X
and P . As well as for operators of creation C, annihilation A and numerical N .
Each of the considered operators produce n-finite orbits orbn(H, ψ), orbn(X,ψ),
orbn(P,ψ), orbn(C,ψ), orbn(A,ψ), orbn(N,ψ) (n ∈ N0) and orbits orb(H, ψ),
orb(X,ψ), orb(P,ψ), orb(C,ψ), orb(A,ψ), orb(N,ψ) in the state ψ of quantum
Hilbert space. They also generate n-finite orbital operators Hn, Xn, Pn, Cn, An,
Nn, which act accordingly on the Hilbert space of finite n-orbits D(Hn), D(Xn),
D(Pn), D(Cn), D(An), D(Nn). These operators also generate orbital opera-
tors H∞, X∞, P∞, C∞, A∞, N∞ that operate accordingly , D(H∞), D(X∞),
D(P∞), D(C∞), D(A∞), D(N∞ in the Fréchet space of all orbits. The quan-
tization of classical physics and our creation of the basis for finite n-order orbital
quantum mechanics and infinite-order orbital quantum mechanics are schemati-
cally given in the following table (when n = 0, a classical case is obtained).
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Classical
phase space
R2. Pairs
(x, p) with

Q u a n t i z a t i o n O r b i t i z a t i o n of ob-
servable operators in the case
of Hilbert space of n-orbits

O r b i t i z a t i o n of ob-
servable operators in the case
of Fréchet–Hilbert space of all
orbits

x being the
particle’s po-
sition and p

being its mo-
mentum

The
quantum
Hilbert
space
L2(R2)

Observable
operators
obtained
from Quan-
tization of
classical
function

The quantum
Hilbert space
of n-orbits

The finite orbital
operators
corresponding to
observable
operators

The
quantum
Fréchet–
Hilbert
space of
all orbits

orbital operators
corresponding
to observable
operators

The position
function,
f(x, p)=x

The
quantum
Hilbert
space
L2(R2)

The
associated
operator f̂
is the
self-adjoint
position
operator
Xψ(x) =

xψ(x)

The Hilbert
space of
finite orbits
D(Xn) =

D(Xn) ⊂
(L2(R2))n

(n ∈ N)

The finite orbital
operatorXn :

D(Xn) →
D(Xn),
Xn orbn(X,ψ)=

orbn(X,Xψ)

corresponding to
X (n ∈ N)

The
quantum
Fréchet–
Hilbert
space of
all orbits
D (X∞)

The orbital op-
erator X∞ :

D(X∞) →
D(X∞),
X∞orb(X,ψ)=

orb(X,Xψ)

corresponding to
operatorX

The momen-
tum function
f(x, p)=p

The
quantum
Hilbert
space
L2(R1)

The
momentum
self-adjoint
operator
Pψ =

−ihdψ/dx

The Hilbert
space of
finite orbits
D(Pn) =

D(Pn) ⊂
(L2(R1))n

(n ∈ N)

The finite orbital
operator
Pn : D(Pn) →
D(Pn),
Pn orbn(P, ψ)=

orbn(P, Pψ)

corresponding to
P (n ∈ N)

The
quantum
Fréchet–
Hilbert
space of
all orbits
D(P∞)

The orbital op-
erator P∞ :

D(P∞) →
D(P∞),
P∞ orb(P, ψ)=

orb(P, Pψ) cor-
responding to
operator P

The energy
classical
hamiltonian
H(x, p) =

ap2 + bx2

The
quantum
Hilbert
space
L2(R1)

The
selfadjoint
quantum
Harmonic
oscillator
(QHO)
Hψ =

aP 2ψ +

bX2ψ

The Hilbert
space of
finite orbits
D(Hn) =

D(Hn) ⊂
(L2(R1))n

(n ∈ N)

The finite orbital
operatorHn :

D(Hn) →
D(Hn),
Hn orbn(H,ψ)=

orbn(H,Hψ)

corresponding to
QHOH
(n ∈ N)

The
quantum
Fréchet–
Hilbert
space of
all orbits
D(H∞)

The orbital op-
erator H∞ :

D(H∞) →
D(H∞),
H∞ orb(H,ψ)=

orb(H,Hψ)

corresponding to
operatorH

The creation
operator C

The
quantum
Hilbert
space
L2(R1)

The creation
operator
Cψ =

−ihdψ/dx+
x/2

Hilbert
space of
finite orbits
D(Cn) =

D(Cn) ⊂
(L2(R1))n

(n ∈ N)

The finite orbital
operator
Cn orbn(C,ψ)=

orbn(C,Cψ)

corresponding to
C (n ∈ N)

The
quantum
Fréchet–
Hilbert
space of
all orbits
D(C∞)

The orbital op-
erator C∞ :

D(C∞) →
D(C∞),
C∞ orb(C,ψ)=

orb(C,Cψ)

corresponding to
operator C

The
annihilation
operatorA

The
quantum
Hilbert
space
L2(R1)

The
annihilation
operator
Aψ =

ihdψ/dx+

x/2

Hilbert space
of orbits
D(An) =

D(An) ⊂
(L2(R1))n

(n ∈ N)

The orbital
operator
An orbn(A,ψ)=

orbn(A,Aψ)

corresponding to
A (n ∈ N)

The
quantum
Fréchet–
Hilbert
space of
all orbits
D(A∞)

The orbital op-
erator A∞ :

D(A∞) →
D(A∞),
A∞ orb(A,ψ)=

orb(A,Aψ)

corresponding to
operatorA
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In classical
physics, all
observables
commute

ψ ∈
D(X) ∩
D(P )

Canonical
commuta-
tion relation
(XP −
PX)ψ =

ihψ

The state of
quantum
system
ψn = (ψ1,

. . . , ψn) ∈
D(Xn) ∩
D(Pn)

Canonical
commutational
relation
(XnPn −
PnXn)ψn=

ihψn

The state
of
quantum
system
ψ= (ψ1,

. . . , ψn,

. . . ) ∈
D(X∞)∩
D(P∞)

Canonical com-
mutational rela-
tion (X∞P∞ −
P∞X∞)ψ =

ihψ

Equation in
phase space
H(x, p) =

ap2 + bx2

The
quantum
Hilbert
space
L2(R1)

The
equation
Hu = f

The
n-orbital
Hilbert space
D(Hn)

Orbital equation
Hn orbn(H,ψ)=

orbn(H, f),
constructed linear
spline central
algorithm

The orbital
Fréchet–
Hilbert
space
D(H∞)

Orbital equation
H∞ orb(H,ψ)=

orbn(H
∞, f),

constructed linear
spline central
algorithm

This new mathematical model - orbital quantum mechanics essentially im-
proved the possibilities of computations and gives possibility to consider new com-
putational processes that not contained in the frames of Hilbert spaces and was not
considered up to now.

6.2 A generalization of the canonical commutation relation and Heisenberg
Uncertainty Principle for the orbital operators

6.2.1 Finite orbits of operators at the states, orbital operators corresponding
to the position and the momentum operators in the Hilbert space of
finite n-orbits

Let n ∈ N0 and consider elements of the space L2(R), to which the power of
position operator Xn = X(Xn−1) (X0 is the identical operator) can be applied.
The space of such elements is denoted by D(Xn), besides D(X0) = L2(R). It is
well known that for all ψ ∈ D(X), the quantity ⟨ψ,Xψ⟩ is real. More generally,
if all of ψ,Xψ, . . . ,Xnψ belong to D(X), then ⟨ψ,Xnψ⟩ is real. By n-orbits of
the operator X at the point ψ ∈ L2(R) we mean a finite sequence

orbn(X,ψ) := (ψ,Xψ, . . . ,Xnψ) = (ψ, xψ, . . . , xnψ). (6.2.1)

The space D(Xn) we identify with the space of n-orbirs of the operator X . For
the injective operator, each of the orbits orbn(X,ψ) is uniquely determined by the
element ψ ∈ L2(R), which we call the generated element of orbit (6.2.1).

We define now the orbital operator

Xn : D(Xn) ⊂ (L2(R))n+1 → ImXn ⊂ (L2(R))n+1

corresponding to the position operator (6.1.2) defined by the equality

X0(ψ) = ψ, Xn(orbn(X,ψ)) = orbn(X,Xψ), n ∈ N. (6.2.2)
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According to (6.2.2) the following representation is valid

Xn(ψ,Xψ, . . . ,X
nψ) = (Xψ,X2ψ, . . . ,Xn+1ψ)

= (xψ, x2ψ, . . . , xn+1ψ) = xorbn(X,ψ);

also ψ,Xψ, . . . ,Xnψ, belong to the domain of definition of the operator X . The
orbital operator Xn can be extended to D(X)n+1 ⊂ (L2(R))n+1 by means of the
following equality

Xn(ψ0, ψ1, . . . , ψn) = (Xψ0, Xψ1, . . . , Xψn) = x(ψ0, ψ1, . . . , ψn).

We can turn D(Xn) into a Hilbert space using the following inner product

⟨orbn(X,φ), orbn(X,ψ)⟩n
= (φ,ψ) + (Xφ,Xψ) + · · ·+ (Xnφ,Xnψ), n ∈ N0, (6.2.3)

and with the norm corresponding to (6.2.3)

∥orbn(X,ψ)∥n = ⟨(ψ,ψ) + (Xψ,Xψ) + · · ·+ (Xnψ,Xnψ)⟩1/2n

= (∥ψ∥2 + ∥Xψ∥2 + ∥X2ψ∥2 + · · ·+ ∥Xnψ∥2)1/2, (6.2.4)

where (·, ·) and ∥ · ∥ are the inner product and the norm of L2(R). It is easy to
see that the operator Xn is a linear unbounded symmetric operator in the Hilbert
space D(Xn) with a dense image. In ([68], Section 9, Corollary 9.1), it is proved
also that the position operator X is self-adjoint in L2(R). Therefore, the orbital
operator Xn has an analogous property in the space D(Xn).

According to the standard definitions of the probability theory, the expected
value of the position is

E(X) =

∞∫
−∞

x|ψ(x)|2dx,

provided that the integral is absolutely convergent ([68], Section 3, formula (3.2)).
More generally, we can compute any moment of the position i.e. the expected
value of the power m of the position as ([68], Section 3, formula (3.3))

E(Xm) =

∞∫
−∞

xm|ψ(x)|2dx, m ∈ N,

assuming again the convergence of the integral. A key idea in quantum theory is
to express the expected values of various quantities (position, momentum, energy,
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etc.) in terms of operators and the inner product in the Hilbert space L2(R). In the
case of position operator this expression of expected value has the following form

E(Xm) = ⟨ψ(x), Xmψ(x)⟩, m ∈ N.

In this case norm (6.2.4) of the spaceD(Xn) is expressed by the integral as follows

∥orbn(X,ψ)∥2n = (ψ,ψ) + (ψ,X2ψ) + · · ·+ (ψ,X2nψ)

= (ψ,ψ) + E(X2) + · · ·+ E(X2m)

=

∞∫
−∞

|ψ(x)|2dx+

∞∫
−∞

x2|ψ(x)|2dx+ · · ·+
∞∫
−∞

x2m|ψ(x)|2dx

=

∞∫
−∞

|ψ(x)|2(1 + x2 + · · ·+ x2m)dx.

By analogy to (6.2.1) we define

orbn(P,ψ) : = (ψ, Pψ, . . . , Pnψ)

= (ψ, (−iℏ)dψ/dx, . . . , (−iℏ)ndnψ/dxn), n ∈ N0, (6.2.5)

as well as the space D(Pn).
Now let us define the orbital operator

Pn : D(Pn) ⊂ (L2(R))n+1 → ImPn ⊂ (L2(R))n+1

corresponding to the momentum operators (6.1.2) defined by the equality

P0(ψ) = ψ, Pn(orbn(P,ψ)) = orbn(P, Pψ), n ≥ 1. (6.2.6)

According to (6.2.5) the following representation holds

Pn(ψ, Pψ, . . . , P
nψ) = ((−iℏ)d/dx)norbn(P,ψ)

= (−iℏ)d/dx)n(ψ, Pψ, . . . , Pnψ).

We assume that ψ, Pψ, . . . , Pnψ belong to the domain of definition of the operator
P . The orbital operator Pn = ((−iℏ)d/dx)n corresponding to the momentum
operator P can be extended to D(P )n+1 ⊂ (L2(R))n+1 as follows

Pn(ψ0, ψ1, . . . , ψn) = (Pψ0, Pψ1, . . . , Pψn)

= ((−iℏ)dψ0/dx, (−iℏ)dψ1/dx, . . . , (−iℏ)dψn/dx).
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Indeed, if orbn(X,ψ) ∈ D(Pn), then Pnorbn(X,ψ) = (Pψ, PXψ, . . . , PXnψ).
We can turn D(Pn) into a Hilbert space using the following inner product

⟨orbn(P,φ), orbn(P,ψ)⟩n = (φ,ψ) + (Pφ, Pψ) + · · ·+ (Pnφ, Pnψ), n ∈ N0,

and with the corresponding norm

∥orbn(P,ψ)∥n = ((ψ,ψ) + (Pψ, Pψ) + · · ·+ (Pnψ, Pnψ))1/2

= (∥ψ∥2 + ∥Pψ∥2 + ∥P 2ψ∥2 + · · ·+ ∥Pnψ∥2)1/2. (6.2.7)

Due to ( [68], Proposition 3, equality (3.13)) for the norm (6.2.7) the following
representation holds:

∥orbn(P,ψ)∥2n = (ψ,ψ) + (ψ, P 2ψ) + · · ·+ (ψ, P 2nψ)

=

∞∫
−∞

|ψ̂(k)|2dk +
∞∫
−∞

|ℏk|2|ψ̂(k)|2dk + · · ·+
∞∫
−∞

|ℏk|2n|ψ̂(x)|2dk

=

∞∫
−∞

|ψ̂(k)|2(1 + |ℏk|2 + · · ·+ |k̄h|2n)dk,

where under the integral ψ̂(k) we understand the Fourier transform of the function
ψ. (ψ, Pmψ) is interpreted as the expected value of them-th power of the momen-
tum E(Pm). It is known that the momentum operator P is essentially self-adjoint
in L2(R) ( [68], Section 9, Proposition 9.29). Therefore, the operator Pn has the
analogous property in the Hilbert space D(Pn).

Remark 6.2.1. It was noted that the function |ψ(x)|2 is the probability density for
the position of the particle. This means that the probability that the particle belongs
to some set E ⊂ R is

∫
E |ψ(x)|2dx ([68], Section 3.3, p. 58). For this prescription

to make sense, ψ should be normalized so that
∫
R |ψ(x)|2dx = 1. The probability

that the particle belongs to some set E ⊂ R must be the same in the space D(Hn)
and analogously should be equal to

⟨orbn(H, ψ), orbn(H, ψ)⟩n,E/∥orbn(H, ψ)∥2n

=
(∫
E

|ψ(x)|2dx+

∫
E

|Hψ(x)|2dx+ · · ·+
∫
E

|Hnψ(x)|2dx
)/

∥orbn(H, ψ)∥2n≤1.

The wave function ψk(x) is a solution to the Schrodinger equation

Hψ(x) = Ekψ(x),
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where H is defined by equality (6.1.4), Ek = ℏω(k + 1/2), k ∈ N0, and

ψk(x) = (−1)k(2kk!
√
π)−1/2dke−x

2
/dxk, k ∈ N0.

We also note that

Hnorbn(H, ψk) = Ekorbn(H, ψk), n, k ∈ N0.

It turns out that for the functions ψk

⟨orbn(H, ψk), orbn(H, ψk)⟩n,E/∥orbn(H, ψk)∥2n

=
(
(1 + E2

k + · · ·+ E2n
k )

∫
E

|ψk(x)|2dx
) /

∥ψk∥2(1 + E2
k + · · ·+ E2n

k )

=

∫
E

|ψk(x)|2dx, k, n ∈ N0.

This means that, in the considered case, the probability of location of a particle in
the set E will again be

∫
E |ψk(x)|2dx.

6.2.2 Generalized canonical commutation relation for orbital operators cor-
responding to the momentum and position operators in the Hilbert
space of n-finite orbits

We prove now the generalized canonical commutation relations between Xn and
Pn that in the case n = 0 coincides with equality (6.1.3).

Theorem 6.2.1. For the commutator [Xn, Pn] = XnPn − PnXn the following
statements hold true:

a) If (ψ0, ψ1, . . . , ψn) ∈ D([Xn, Pn]) = D(XnPn) ∩D(PnXn), then

[Xn, Pn](ψ0, ψ1, . . . , ψn) = iℏ(ψ0, ψ1, . . . , ψn).

b) If orbn(P,ψ) ∈ D(XnPn) and orbn(X,ψ) ∈ D(PnXn), then

XnPnorbn(P,ψ)− PnXnorbn(X,ψ)

= (iℏIψ,XP 2ψ − PX2ψ, . . . ,XPn+1ψ − PXn+1ψ).

c) If orbn(X,ψ) ∈ D(XnPn) and orbn(P,ψ) ∈ D(PnXn), then

XnPnorbn(X,ψ)− PnXnorbn(P,ψ)

= (iℏIψ,XPXψ − PXPψ, . . . ,XPXnψ − PXPnψ).
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Proof. a) [Xn, Pn](ψ0, ψ1, . . . , ψn) = XnPn(ψ0, ψ1, . . . , ψn)

−PnXn(ψ0, ψ1, . . . , ψn)

= Xn(Pψ0, Pψ1, . . . , Pψn)− Pn(Xψ0, Xψ1, . . . , Xψn)

= (XPψ0, XPψ1, . . . , XPψn)− (PXψ0, PXψ1, . . . , PXψn)

= ((XP − PX)ψ0, (XP − PX)ψ1, . . . , (XP − PX)ψn)

= (iℏψ0, iℏψ1, . . . , iℏψn) = iℏ(ψ0, ψ1, . . . , ψn).

b)XnPnorbn(P,ψ)−PnXnorbn(X,ψ)=Xnorbn(P, Pψ)−Pnorbn(X,Xψ)

= (XPψ,XP 2ψ, . . . ,XPn+1ψ)− (PXψ,PX2ψ, . . . , PXn+1ψ)

= (XPψ − PXψ,XP 2ψ − PX2ψ, . . . ,XPn+1ψ − PXn+1ψ).

c) XnPnorbn(X,ψ)− PnXnorbn(P,ψ)

= XnPn(ψ,Xψ, . . . ,X
nψ)− PnXn(ψ, Pψ, . . . , P

nψ)

= Xn(Pψ, PXψ, . . . , PX
nψ)− Pn(Xψ,XPψ, . . . ,XP

nψ)

= (XPψ,XPXψ, . . . ,XPXnψ)− (PXψ,PXPψ, . . . , PXPnψ)

= (XPψ − PXψ,XPXψ − PXPψ, . . . ,XPXnψ − PXPnψ).

Corollary. Statement a) of Theorem 6.2.1 implies

1. If orbn(X,ψ) ∈ D([Xn, Pn]) = D(XnPn) ∩D(PnXn), then

[Xn, Pn]orbn(X,ψ) = iℏorbn(X,ψ).

2. If orbn(P,ψ) ∈ D([Xn, Pn]) = D(XnPn) ∩D(PnXn), then

[Xn, Pn]orbn(P,ψ) = iℏorbn(P,ψ).

If n = 0, in all cases for the first coordinate we obtain the following canonical
commutation relation

[Xn, Pn]ψ = [X,P ]ψ = XPψ − PXψ = iℏIψ.

Now we investigate the orbitization of the operator H and established relation-
ship between the orbital operators Hn, Xn and Pn.
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Theorem 6.2.2. The following statements are valid:
a) LetB : D(B) ⊂ H → H and C : D(C) ⊂ H → H be the linear operators

in a Hilbert space H and (B + C)n be the n-orbital operator, corresponding to
the operator B + C. Then for the orbital operators Bn and Cn, corresponding to
B and C, the equality

(B + C)n(ψ0, ψ1, . . . , ψn) = Bn(ψ0, ψ1, . . . , ψn) + Cn(ψ0, ψ1, . . . , ψn)

holds for (ψ0, ψ1, . . . , ψn)∈D(Bn)∩D(Cn). In particular, (B+C)norbn(B,ψ)=
Bnorbn(B,ψ)+Cnorbn(B,ψ), but orbn(B+C,ψ) ̸= orbn(B,ψ)+orbn(C,ψ).

For the orbital operator (BC)n, corresponding to BC, the equality

(BC)n(ψ0, ψ1, . . . , ψn) = BnCn(ψ0, ψ1, . . . , ψn)

holds for (ψ0, ψ1, . . . , ψn) ∈ D(Bn)∩D(Cn). In particular, (BC)norbn(B,ψ) =
BnCnorbn(B,ψ) and (BC)norbn(C,ψ) = BnCnorbn(C,ψ).

b) For the operator Hn = (aP 2 + bX2)n, corresponding to the hamiltonian
H, the following equalities are valid:

Hn(ψ0, ψ1, . . . , ψn) = (aP 2 + bX2)n(ψ0, ψ1, . . . , ψn)

= (aP 2
n + bX2

n)(ψ0, ψ1, . . . , ψn)

= aP 2
n(ψ0, ψ1, . . . , ψn) + bX2

n(ψ0, ψ1, . . . , ψn).

c) Hnorbn(H, ψ) = ((aP 2+bX2)ψ, (aP 2+bX2)2ψ, . . . , (aP 2+bX2)n+1ψ).
d) Hnorbn(H, ψ) = ((aP 2

norbn(aP
2 + bX2, ψ) + bX2

norbn(aP
2 + bX2, ψ).

e) If orbn(P,ψ) ∈ D(XnPn) and orbn(X,ψ) ∈ D(PnXn), then

XnPnorbn(P,ψ) + PnXnorbn(X,ψ)

= (XPψ + PXψ, 2PXPψ, . . . ,XPn+1ψ + PXn+1ψ).

Proof. a) (B+C)n(ψ0, ψ1, . . . , ψn) = ((B+C)ψ0, (B+C)ψ1, . . . , (B+C)ψn) =
(Bψ0 + Cψ0, Bψ1 + Cψ1, . . . , Bψn + Cψn) = (Bψ0, Bψ1, . . . , Bψn) +
(Cψ0, Cψ1, . . . , Cψn) = Bn(ψ0, ψ1, . . . , ψn) + Cn(ψ0, ψ1, . . . , ψn).

(BC)n(ψ0, ψ1, . . . , ψn) = (BCψ0, BCψ1, . . . , BCψn)

= Bn(Cψ0, Cψ1, . . . , Cψn) = BnCn(ψ0, ψ1, . . . , ψn).

b) Hn(ψ0, ψ1, . . . , ψn) = (aP 2 + bX2)n(ψ0, ψ1, . . . , ψn). It follows from a)
that (aP 2 + bX2)n(ψ0, ψ1, . . . , ψn) = (aP 2

n + bX2
n)(ψ0, ψ1, . . . , ψn) =

aP 2
n(ψ0, ψ1, . . . , ψn) + bX2

n(ψ0, ψ1, . . . , ψn).
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c) Hnorbn(H, ψ) = Hnorbn(aP
2 + bX2, ψ) = ((aP 2 + bX2)ψ, (aP 2 +

bX2)2ψ, . . . , (aP 2 + bX2)n+1ψ).
d) Hnorbn(H, ψ) = (aP 2 + bX2)norbn(H, ψ) = ((aP 2 + bX2)ψ, (aP 2 +

bX2)Hψ, . . . , (aP 2+bX2)Hnψ) = ((aP 2ψ+bX2ψ), (aP 2Hψ+bX2Hψ), . . . ,
(aP 2Hnψ + bX2Hnψ) = (aP 2ψ, aP 2Hψ, . . . , aP 2Hnψ) + (bX2ψ, bX2Hψ,
. . . , bX2Hnψ) = aP 2

norbn(H, ψ)+bX2
norbn(H, ψ) = aP 2

norbn(aP
2+bX2, ψ)+

bX2
norbn(aP

2 + bX2, ψ).
e) We obtain the equality XnPnorbn(P,ψ) + PnXnorbn(X,ψ) = (XPψ +

XPψ,XP 2ψ + PX2ψ, . . . ,XPn+1ψ + PXn+1ψ). According to ([68], Section
1.13, formula (13.4)), we obtain that XP 2ψ + PX2ψ = 2PXPψ and this can
be expressed as the Weil quantization of f(x, p) = xp2, i.e. the following relation
holds:

Qweil(xp
2) = 1/3(XP 2ψ+PX2ψ+PXPψ) = 1/2(XP 2ψ+PX2ψ) = PXP.

Therefore, we get

XnPnorbn(P,ψ) + PnXnorbn(X,ψ)

= (XPψ +XPψ, 2PXPψ, . . . ,XPn+1 + PXn+1ψ).

In comparing different quantization schemes it is important to see that two different
expressions may describe the same operator.

The operators P and X are secondary commuting, i.e. [[P,X], P ] = 0 and
[[P,X], X] = 0. If pairs of operators satisfy canonical commutation relation, then
they are secondary commuting.

Proposition 6.2.3. For the orbital operators Xn and Pn, corresponding to X and
P , we have

[[Xn, Pn], Pn] ≡ 0, [[Xn, Pn], Xn] ≡ 0.

6.2.3 The Fréchet space of all orbits and a generalization of the canonical
commutation relations

Note that for a general positive definite operator A with a discrete spectrum (like
the hamiltonian H is), the space D(A∞) circumstantially was studied in ( [160],
Chapter 8), where D(A∞) was the whole symbol and A∞, did not have sense
if taken separately. According to ( [138], Section X.6), D(A∞) is the set of all
infinitely differentialle elements of A and is denoted by C∞(A). In [163], we have
defined the operator A∞ as follows

A∞(ψ,Aψ, . . . , Anψ, . . . ) = (Aψ,A2ψ, . . . , An+1ψ, . . . ), (6.2.8)
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or A∞orb(A,ψ) = orb(A,Aψ).
Due to this notation, the space D(A∞) acquare new meaning that differs from

the classical case. Namely, now D(A∞) is also the domain of definition of the
operator A∞, defined by equality (6.2.8).

We denote by D(X∞) the intersection ∩∞n=0D(Xn) of the spaces D(Xn).
This means that we can apply the operator X to a function from D(X∞) infinitely
many times. So that f ∈ D(X∞) if and only if f ∈ L2(R) together with the its
products by arbitrary polynomials.

The space D(X∞) is isomorphic to the space of all orbits orb(X,ψ) =
{ψ,Xψ, . . . ,Xnψ, . . . } of the operator X at the states ψ and this isomorphism
is obtained by the mapping D(X∞) ∋ ψ → orb(X,ψ).

It is easy to prove that the space D(Xn) ⊃ D(X∞) ⊃ D(H∞), where H
is the hamiltonian of quantum harmonic oscillator. D(H∞) is isomorphic to the
Schwartz space of rapidly decreasing functions [170] and is a nonempty set of
second category.

The topology of the space D(X∞) is generated by the sequence of norms
(6.2.4). The space D(X∞) is also the domain of definition of the operator X∞

defined by

X∞(ψ(x), Xψ(x), . . . , Xn−1ψ(x), . . . )

= D(X∞(orb(X,ψ)) = xorb(X,ψ). (6.2.9)

It will be also noted below that the spaceD(X∞) can be represented as a projective
limit of a sequence of the Hilbert spaces {D(Xn)}.

Problem 6.2.1. It is not known whether the metrizable LCS D(X∞) is nuclear
and countable-Hilbert.

In the case of a momentum operator P the space of all orbits D(P∞) with the
sequence of norms (6.2.7) is defined analogously. The space D(P∞) is also the
domain of definition of the operator P∞ defined by the equality

P∞(ψ, Pψ, . . . , Pnψ, . . . ) = (Pψ, P 2ψ, . . . , Pn+1ψ, . . . ). (6.2.10)

This means thatP∞(ψ, Pψ, . . . , Pnψ, . . . ) = ((−iℏ)d/dx)∞orb(P,ψ), where
the operator P∞ is indeed defined by the equality

P∞orb(P,ψ) = ((−iℏ)dψ/dx)∞orb(P,ψ)

= ((−iℏ)dψ/dx, (−iℏ)2d2ψ/dx2, . . . , (−iℏ)n+1dn+1ψ/dxn+1, . . . ),

According to ( [68], p. 569, Theorem 10.7.5), the operator P as an operator in
L2(R) is self-adjoint. Therefore, according to ( [163], Theorem 3, statement b),
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the operator P∞ defined by equality (6.2.10) is self-adjoint in the Fréchet space
D(P∞).

Problem 6.2.2. It is not known whether the Fréchet space D(P∞) is nuclear and
countable-Hilbert.

Theorem 6.2.4. For the commutator

[X∞, P∞] = X∞P∞ − P∞X∞,

whereX∞ is defined bythe equality (6.2.9) and P∞ is defined by equality (6.2.10),
the following relations are taking place:

a) If (ψ0, . . . , ψn, . . . ) ∈ D([X∞, P∞]) = D(X∞P∞) ∩D(P∞X∞), then

[X∞, P∞](ψ0, . . . , ψn, . . . ) = iℏ(ψ0, . . . , ψn, . . . ).

b) If orb(P,ψ) ∈ D(X∞P∞) and orb(X,ψ) ∈ D(P∞X∞), then

X∞P∞orb(P,ψ)− P∞X∞orb(X,ψ)

= iℏ(Iψ,XP 2ψ − PX2ψ, . . . ,XPn+1ψ − PXn+1ψ, . . . ).

c) If orb(X,ψ) ∈ D(X∞P∞) and orb(P,ψ) ∈ D(P∞X∞), then

X∞P∞orb(X,ψ)− P∞X∞orb(P,ψ)

= iℏ(Iψ,XPXψ − PXPψ, . . . ,XPXnψ − PXPnψ, . . . ).

The statement a) gives us a direct generalization of the canonical commutation
relation. The statements b) and c) also represent a generalization of the canonical
commutation relation.

Corollary. It follows from the statement a) of Theorem 6.2.4 that

1. If orb(X,ψ) ∈ D([X∞, P∞]) = D(X∞P∞) ∩D(P∞X∞), then

X∞P∞orb(X,ψ)− P∞X∞orb(X,ψ) = iℏorb(X,ψ).

2. If orb(P,ψ) ∈ D([X∞, P∞]) = D(X∞P∞) ∩D(P∞X∞), then

X∞P∞orb(P,ψ)− P∞X∞orb(P,ψ) = iℏorb(P,ψ).

Now we investigate the orbitization of the hamiltonian operatorHψ = aP 2ψ+
bX2ψ and established relationship between the orbital operators H∞, X∞ and
P∞.
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Proposition 6.2.5. The following representations are valid:

a) For the orbital operator H∞ = (aP 2+bX2)∞, corresponding to the hamil-
tonian H, the following relation holds true

(H∞)2(ψ0, . . . , ψn, . . . ) = (H2)∞(ψ0, . . . , ψn, . . . ).

b) For the orbital operator H∞ = (aP 2+ bX2)∞, the following relation holds
true

H∞(ψ0, . . . , ψn, . . . ) = (aP 2 + bX2)∞(ψ0, . . . , ψn, . . . )

= (aP 2 + bX2)∞(ψ0, . . . , ψn, . . . )

= (aP 2)∞(ψ0, . . . , ψn, . . . ) + (bX2)∞(ψ0, . . . , ψn, . . . ).

c) Further, H∞orb(H, ψ) = H∞orb(aP 2+bX2, ψ) = ((aP 2+bX2)ψ, (aP 2+
bX2)2ψ, (aP 2 + bX2)3ψ + · · · , (aP 2 + bX2)n+1ψ + · · · ).

d) Finally, H∞orb(H, ψ) = (aP 2+bX2)∞orb(H, ψ) = (aP 2)∞orb(H, ψ)+
(bX2)∞orb(H, ψ)).

Proof. a) We have

(H∞)2(ψ0, . . . , ψn, . . . ) = H∞(Hψ0, . . . ,Hψn, . . . ) = (H2ψ0, . . . ,H2ψn, . . . )

= (H2)∞(ψ0, . . . , ψn, . . . ).

The statements b), c) and d) are proved analogously to the statements b), c) and d)
of Theorem 6.2.2.

Remark 6.2.2. The probability that the particle belongs to a set E ⊂ R calculated
for the space D(H∞) for the wave function ψ, is determined by the limit

lim
n→∞

⟨orbn(H, ψ), orbn(H, ψ)⟩n,E/∥orbn(H, ψ)∥2n.

This limit exists, since the sequence increases and is bounded from above by the
number 1. The limit lim

n→∞
⟨orbn(H, ψk), orbn(H, ψk)⟩n,E/∥orbn(H, ψk)∥2n again

exists and is equal to
∫
|ψk(x)|dx because it is the same for all n, k ∈ N0.
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6.2.4 Generalization of Heisenberg uncertainty principle

Let Ψ = (ψ0, ψ1, . . . , ψn), where ψj ∈ L2(R), j = 0, 1, . . . , n. If Ψ =
(ψ0, ψ1, . . . , ψn) and Φ = (φ0, φ1, . . . , φn) belong to (L2(R))n+1, then their in-
ner product ⟨Ψ,Φ⟩n is defined by the equality

⟨Ψ,Φ⟩n =
n∑
j=0

(ψj , φj), n ∈ N0,

where (·, ·) is the inner product in L2(R). For an operator V acting in L2(R)
we consider, as above, the operator Vn(Ψ) = (V ψ0, V ψ1, . . . , V ψn) acting on
(L2(R))n+1.

Let us define the mean value of Vn in the space (L2(R))n+1 as

µ := µΨ(Vn) = ⟨VnΨ,Ψ⟩n.

For the linear selfadjoint operators S and T acting in L2(R) we have

⟨TnΨ,Ψ⟩n =

n∑
j=0

(Tψj , ψj) =

n∑
j=0

(ψj , Tψj) = ⟨Ψ, TnΨ⟩n.

Thus Tn is selfadjoint on (L2(R))n+1 and therefore µΨ(Tn) is a real number. The
same can be said on the value µΨ(Sn). Now consider the value

varΨ(Tn) = ⟨(T − µI)2nΨ,Ψ⟩n =
n∑
j=0

∫
R

(T − µI)2ψj(q)ψj(q)dq, (6.2.11)

where I is identical operator in L2(R). Since µ is real and Tn is selfadjoint,
varΨ(Tn) is a nonnegative real number and we can introduce the standard devi-
ation of Tn

sdΨ(Tn) =
√

varΨ(Tn). (6.2.12)

The value sdΨ(Sn) is defined analogously.

Theorem 6.2.6 (Heisenberg uncertainty principle). Let S, T be linear selfadjoint
operators in the space L2(R) and moreover Sn and Tn are defined on (L2(R))n+1.
Then the operator Cn = [Sn, Tn] satisfies the equality

|µΨ(Cn)| ≤ 2sdΨ(Sn)sdΨ(Tn). (6.2.13)
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Proof. Let us define
µ1 = µΨ(Sn), µ2 = µΨ(Tn)

and
An = Sn − µ1In, Bn = Tn − µ2In, In = Id(L2(R))n+1 .

Since µ1 and µ2 are real numbers, An and Bn are selfadjoint operators on
(L2(R))n+1. It is easy to verify that Cn = [Sn, Tn] = [An, Bn] and according
to the statements d) and e) of Theorem 6.2.2, we obtain

µΨ(Cn) = ⟨(AB −BA)nΨ,Ψ⟩n = ⟨AnBnΨ,Ψ⟩n − ⟨BnAnΨ,Ψ⟩n
= ⟨BnΨ, AnΨ⟩n − ⟨AnΨ, BnΨ⟩n. (6.2.14)

We obtain from here that

|µΨ(Cn)| = 2|Im⟨BnΨ, AnΨ⟩n| ≤ 2|⟨BnΨ, AnΨ⟩n|
≤ 2∥AnΨ∥n · ∥BnΨ∥n (6.2.15)

(here ∥ · ∥n denotes the norm in (L2(R))n+1). Further we have

∥BnΨ∥n = ∥(Tn − µ2In)Ψ∥n = (⟨(T − µ2I)
2
nΨ,Ψ⟩n)1/2

=
√

varΨ(Tn) = sdΨ(Tn).

Analogously we obtain that ∥AnΨ∥n = sdΨ(Sn) and Theorem 6.2.6 is proved.

If the conditions of Theorem 6.2.6 are satisfied, then in inequality (6.2.13) the
equality sign is attained if and only if the two inequalities in (6.2.15) turn into
equalities. This can happen in the following three cases: 1. BnΨ = 0; 2. AnΨ =
0; 3. BnΨ = cAnΨ for some constant c. If BnΨ = 0, then TnΨ − µ2Ψ = 0, i.e.
then Ψ is an eigenvector for Tn with the eigenvalue µ2. This means that ψj , j =
0, 1, . . . , n, are eigenvectors for the operator T, i.e. Tψ0 = µ2ψ0, . . . , Tψn =
µ2ψn. This condition will be valid, for example, if Ψ = orbn(T, ψ), where ψ is the
eigenvector of T corresponding to µ2 (in such a case the relation Tn(orbn(T, ψ)) =
µ2orbn(T, ψ) will be valid). A similar conclusion is obtained while considering
the second case: AnΨ = 0 if and only if ψj , j = 0, 1, . . . , n are eigenvectors for
the operator S. This condition will be valid, for example, if Ψ = orbn(S, ψ), where
ψ is an eigenvector of S corresponding to the eigenvalue µ1. Now we consider
the third case, when BnΨ = cAnΨ for some constant c. According to (6.2.15),
|µΨ(Cn)| = 2|Imc⟨AnΨ, AnΨ⟩n| = 2|c∥⟨AnΨ, AnΨ⟩n|. Thus c = iγ, γ ∈ R,
i.e.

BnΨ = iγAnΨ.
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Thus, we have
(Tn − µ1In)Ψ = iγ(Sn − µ2In)Ψ

or
(Tn − iγSn)Ψ = (µ2− iγµ1)Ψ,

i.e. Ψ is an eigenvector of Tn − iγSn. Conversely, if Ψ is an eigenvector for
Tn − iγSn with some eigenvalue λ = c + id in C, without loss of generality we
assume that ∥Ψ∥n = 1. Then

(c− id)∥Ψ∥2n = ⟨Ψ, (Tn − iγSn)Ψ⟩n = ⟨Ψ, TnΨ⟩n + ⟨iγΨ, SnΨ⟩n.

We have from here that c = ⟨Ψ, TnΨ⟩n = µ2 and d = −γ⟨Ψ, SnΨ⟩n = −γµ1.
Therefore, (6.2.14) and (6.2.15) hold, and in (6.2.13) the equality takes plase). We
conclude that the equality in (6.2.13) is attained, for example, if Ψ = orbn(T −
iγS, ψ), where ψ is an eigenvalue of T − iγS.

It follows from Theorem 6.2.6 that for the position operatorX and the momen-
tum operator P the following is true

sdΨ(Xn)sdΨ(Pn) ≥
ℏ
2
∥Ψ∥2n. (6.2.16)

In Theorem 6.2.6 the uncertainty principle is proved for every Ψ, belonging to the
domain D(SnTn) ∩ D(TnSn). Now we will see that if Sn and Tn are taken to
be the usual position and momentum orbital operators Xn and Pn, the uncertainty
principle is valed if Ψ belongs to both D(Xn) and D(Pn).

Theorem 6.2.7. Suppose that Ψ = (ψ0, ψ1, . . . , ψn) belongs to D(Xn) ∩D(Pn).
Then inequality (6.2.16) holds.

Proof. First let us prove that

⟨XnΨ, PnΨ⟩n = ⟨PnΨ, XnΨ⟩n − iℏ⟨Ψ,Ψ⟩n. (6.2.17)

We have

⟨XnΨ, PnΨ⟩n = ⟨(Xψ0, Xψ1, . . . , Xψn), (Pψ0, Pψ1, . . . , Pψn)⟩n

=
n∑
j=0

(Xψj , Pψj); (6.2.18)

(Xψj , Pψj) = lim
a→0

(
Xψj(x),−iℏ

ψj(x+ a)− ψj(x)

a

)
= lim

a→0

( iℏ
a
(xψj(x), ψj(x+ a))− iℏ

a
(Xψj(x), ψj(x)

)
.
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In the first inner product we make a substitution x = y − a, and in the second we
replace x by y. Then

(Xψj , Pψj) = lim
a→0

( iℏ
a
((y − a)ψj(y − a), ψj(y))−

iℏ
a
(Xψj(y), ψj(y)

)
= lim

a→0

( iℏ
a
(yψj(y − a), ψj(y))−

iℏ
a
(yψj(y), ψj(y))− iℏ(ψj(y − a), ψj(y))

)
= lim

a→0

(
−iℏ(ψj(y − a)− ψj(y)

−a
, yψj(y))− iℏ(ψj(x), ψj(x))

)
= (Pψj , Xψj)− iℏ(ψj(x), ψj(x)).

Therefore, (6.2.18) implies (6.2.17).
From (6.2.17) we obtain for arbitrary real α and β that

⟨(Xn − αIn)Ψ, (Pn − βIn)Ψ⟩n = ⟨(Pn − βIn)Ψ, (Xn − αIn)Ψ⟩n − iℏ⟨Ψ,Ψ⟩n.

Therefore,

⟨Ψ,Ψ⟩n =
1

iℏ
⟨(Pn − βIn)Ψ, (Xn − αInΨ)⟩n

− 1

iℏ
⟨(Xn − αIn)Ψ, (Pn − βIn)Ψ)⟩n

≤ 2

ℏ
∥(Xn − αIn)Ψ)∥n · ∥(Pn − βIn)Ψ∥n, (6.2.19)

where In denotes identical operator in (L2(R))n+1. If we substitute here α =
⟨XnΨ,Ψ⟩n and β = ⟨PnΨ,Ψ⟩n, by (6.2.11) and (6.2.12), respectively then we
get

|⟨Ψ,Ψ⟩n| ≤
2

ℏ
sdΨ(Xn) · sdΨ(Pn).

Theorem 6.2.7 is proved.

If the conditions of Theorem 6.2.7 are satisfied, then in inequality (6.2.16),
the equality sign is attained if and only if in the last line of (6.2.19) we have the
equality. The equality will hold in that line if and only if one of (Xn − αI)Ψ
and (Pn − βI)Ψ is zero or (Pn − βI)Ψ is a pure-imaginary multiple of (Xn −
αI)Ψ. Since we assume that Ψ is non zero element in (L2(R))n+1, the first case
is impossible. Thus we must consider only the condition

(Xn − αI)Ψ = iγ(Pn − βI)Ψ, (6.2.20)

where γ is a nonzero real number, α = ⟨Ψ, XnΨ⟩n and β = ⟨Ψ, PnΨ⟩n. Similar to
the reasoning carried out in the analysis of Theorem 6.2.6, for our case it turns out



312 D. Zarnadze, D. Ugulava

that (6.2.20) is equivalent to the assertion that Ψ is an eigenvector for the operator
Xn − iγPn for some nonzero real number γ. The equation (6.2.20) is satisfied for
the vector Ψ(x) ∈ (L2(R))n+1, all of whose coordinates ψ(x) are of the form

ψ(x) = C exp
(x2
γℏ

− α

γℏ
+
iβ

ℏ

)
, C ∈ R, γ < 0.

For example, we can take a function ψ(x) = C exp(x2/(γℏ)), γ < 0, C ∈ R, for
which α = β = 0.

Theorems 6.2.6 and 6.2.7 in the case n = 0 were proved, respectively, in ([88],
p. 579–580) and in ([68], p. 246–248).

6.3 Generalization of canonical commutational relations for orbital opera-
tors of Creation and Annihilation. Twice commutability of these opera-
tors

Introduced by Dirac creation and annihilation operators have widespread applica-
tions in quantum mechanics, notably in the study of quantum harmonic oscillators
and many-particle systems. Modern quantum physics almost unthinkable without
them. We create finite orbits and orbits of creation, annihilation and numerical
operators at the states of quantum Hilbert space L2(R) . The Hilbert space of fi-
nite orbits and the Fréchet–Hilbert space of all orbits which elements are the orbits
of these operators at some elements of the space L2(R) are definite and studied.
Moreover, the notion of orbital operators corresponding to these operators in the
spaces of orbits is introduced and studied. We establish well-known canonical
commutation relations for orbital operators corresponding to the creation and an-
nihilation operators in the Hilbert space of finite orbits and in the Fréchet–Hilbert
space of all orbits.

In Section 6.3.1, finite orbits of the creation operator C and of the annihilation
operator A at the states, as well n-orbital operators Cn and An corresponding to
creation and annihilation operators in the Hilbert space of finite orbits are defined.
According to the definition of orbital operators Cn and An it is naturally to deter-
minate its value on the element (φ0, φ1 . . . , φn) ∈ (D(C))n+1 ∩ (D(A))n+1. We
need this while proving of canonical commmutation relations between Cn and An
because we must also consider the value Cn on the orbits of the operator A and the
value An on the orbits of the operator C at some states. Some relations between
orbital operatorsNn corresponding to numerical operatorN and with the operators
Cn and An are also established. The generalized canonical commutation relations
between Cn and An are proved that in the case n = 0 coincides with the classical
one.
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In Section 6.3.2, orbits of creation and annihilation operators at states, the
Fréchet–Hilbert spaces of all orbits D(C∞) and D(A∞), the orbital operators C∞

and A∞ in these spaces are studied and generalized canonical commutation rela-
tion is proved. The analogous relationship between orbital operator N∞, C∞ and
A∞ is established.

6.3.1 Orbital operators corresponding to the creation and annihilation oper-
ators in the Hilbert space of finite orbits

A creation operator is differential operator that have the following form ( [13],
p.541)

C = −d/dx+ x/2. (6.3.1)

An annihilation operator is usually denoted by ([13], p.541)

A = d/dx+ x/2. (6.3.2)

Note that under the names of creation and annihilation operators, the lightly modi-
fied operators 1√

2
(d/dx+x) and 1√

2
(−d/dx+x) are often considered and denoted,

respectively, by a∗ and a ([68], Section 11.4). As well, they are denoted by A† and
A ([138], ch. V). They are often also denoted by â† and â, or by a+ and a. The an-
nihilation operator thus defined reduces the number of particles in a given state by
one, and the creation operator increases this number by one. Neither the creation
nor the annihilation operator are defined as mappings on the entire Hilbert space
L2(R) into itself. After all, for φ ∈ L2(R) the functions Cφ and Aφ may fail to
be in L2(R). By definition, domain of definition D(C) of the operator C consists
of all ψ ∈ L2(R) such that Cψ ∈ L2(R). The operators C and A are unbounded
operators in L2(R).

It is well-known that the creation and the annihilation operators do not com-
mute, but satisfy the relation

[A,C] = AC − CA = I (6.3.3)

on D([A,C]) = D(AC) ∩D(CA), D(CA) = {u ∈ D(A), A(u) ∈ D(C)} and
likewise for D(AC). In (6.3.3) [A,C] is the commutator and I is identity operator
on the space L2(R). Really

AC = x2/4− d2/dx2 + 1/2I, CA = x2/4− d2/dx2 − 1/2I, AC − CA = I.

The relation (6.3.3) is known as the canonical commutation relation.
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n-orbits of the annihilation and creation operators (6.3.1) and (6.3.2) in the
state φ are defined as

orbn(A,φ) = (φ,Aφ,A2φ, . . . , Anφ)

= (φ, (d/dx+ x/2)φ, . . . , (d/dx+ x/2)nφ),

and

orbn(C,φ) = (φ,Cφ,C2φ, . . . , Cnφ)

= (φ, (−d/dx+ x/2)φ, . . . , (−d/dx+ x/2)nφ). (6.3.4)

It is well known ([13], formula (56)) that

Cψj =
√
j + 1ψj+1, (6.3.5)

where

ψj(x)=(−1)j(2π)−1/4(j!)−1/2 exp(x2/4)dj exp(−x2/2)/dxj , j∈N0, (6.3.6)

are wave functions of harmonic oscillator.
For the orbit of creation operator (6.3.1) in the state ψj we have

orbn(C,ψj) = {ψj , Cψj , . . . , Cnψj}
= (ψj ,

√
j + 1ψj+1,

√
j + 1

√
j + 2ψj+2, . . . ,

√
j + 1 . . .

√
j + nψj+n)

and

Cnorbn(C,ψj) = (Cψj , C
2ψj , . . . , C

n+1ψj)

= (
√
j + 1ψj+1,

√
j + 1

√
j + 2ψj+2, . . . ,

√
j + 1 . . .

√
j + n+ 1ψj+n+1).

It is well-known([13], formula (53)), that

Aψj =
√
jψj−1. (6.3.7)

Therefore

orbn(A,ψj) = (ψj , Aψj , A
2ψj , . . . , A

nψj)

= (ψj ,
√
jψj−1,

√
j
√
j − 1ψj−2, . . . ,

√
j
√
j − 1 . . .

√
j − n+ 1ψj−n)

and

Anorbn(A,ψj) = (Aψj , A
2ψj , . . . , A

n+1ψj)

= (
√
jψj−1,

√
j
√
j − 1ψj−2, . . . ,

√
j
√
j − 1 . . .

√
j + nψj−n−1).
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We have

ACψj = A(
√
j + 1ψj+1) =

√
j + 1Aψj+1 = (j + 1)ψj .

The operator
N = CA = x2/4− d2/dx2 − 1/2,

is called the number operator. We have that

Nψj = CAψj = C(
√
jψj−1) =

√
jCψj−1 = jψj

and

Nn(φ0, . . . , φn) = (Nφ0, . . . , Nφn) for (φ0, . . . , φn) ∈ D(Nn) = (D(N))n+1.

Theorem 6.3.1. The following representation are valid:

a) If (φ0, φ1, . . . , φn) ∈ D(Nn), then

Nn(φ0, φ1, . . . , φn) = CnAn(φ0, φ1, . . . , φn).

b) For the functions ψj , defined by formula (6.3.6), we have that

Nnorbn(A,ψj) =
(
jψj , (j − 1)

√
jψj−1, (j − 2)

√
j
√
j − 1ψj−2, . . . ,

(j − n)
√
j
√
j − 1 . . .

√
j − n+ 1ψj−n

)
, j ∈ N0,

ψj−n = 0, if j < n.

c) For the functions ψj , defined by formula (6.3.6), we have

Nnorbn(C,ψj) =
(
jψj ,

√
j + 1(j + 1)ψj+1,

√
j + 1

√
j + 2(j + 2)ψj+2, . . . ,√

j + 1
√
j + 2 . . .

√
j + n(j + n)ψj+n

)
.

d) orbn(C +A,ψ) ̸= orbn(C,ψj) + orbn(A,ψj), if n ≥ 2.

Proof. a) Let (φ0, φ1, . . . , φn) ∈ D(Nn), then

Nn(φ0, φ1, . . . , φn) = (Nφ0, Nφ1, . . . , Nφn)

= (CAφ0, CAφ1, . . . , CAφn) = Cn(Aφ0, Aφ1, . . . , Aφn)

= CnAn(φ0, φ1, . . . , φn).
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b) Taking into account that Nψj = CAψj = C(
√
jψj−1) = jψj , j ∈ N0, we

have

Nnorbn(A,ψj)

= CnAn(ψj ,
√
jψj−1,

√
j
√
j − 1ψj−2, . . . ,

√
j
√
j − 1 . . . ,

√
j − n+ 1ψj−n)

= (Nψj , N
√
jψj−1, N

√
j
√
j − 1ψj−2, . . . ,

N
√
j
√
j − 1 . . . ,

√
j − n+ 1ψj−n)

= (jψj , (j − 1)
√
jψj−1, (j − 2)

√
j
√
j − 1ψj−2, . . . ,

(j − n)
√
j
√
j − 1 . . .

√
j − n+ 1ψj−n),

ψj−n(x) = 0, if j < n;

c) Nnorbn(C,ψj)

= CnAn(ψj ,
√
j + 1ψj+1,

√
j + 1

√
j + 2ψj+2, . . . ,√

j + 1
√
j + 2 . . .

√
j + nψj+n)

= (Nψj , N
√
j + 1ψj+1, N

√
j + 1

√
j + 2ψj+2, . . . ,

N
√
j + 1

√
j + 2 . . .

√
j + nψj+n)

= (jψj ,
√
j + 1(j + 1)ψj+1,

√
j + 1

√
j + 2(j + 2)ψj+2, . . . ,√

j + 1
√
j + 2 . . .

√
j + n(j + n)ψj+n).

d) The proof is clear.

We prove now the generalized canonical commutation relations between oper-
ators Cn and An. These relations, in the case n = 0 coincide with the classical
one.

Theorem 6.3.2. For the commutator [An, Cn] = AnCn − CnAn the following
relations are hold:

a) If (φ0, φ1, . . . , φn) ∈ D([An, Cn]) = D(AnCn) ∩D(CnAn), then

AnCn(φ0, φ1, . . . , φn)− CnAn(φ0, φ1, . . . , φn) = (φ0, φ1, . . . , φn).

b) If orbn(A,φ) ∈ D(CnAn) and orbn(C,φ) ∈ D(AnCn), then

AnCnorbn(C,φ)− CnAnorbn(A,φ

= (Iψ,AC2φ− CA2φ, . . . , ACn+1φ− CAn+1φ).
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c) If orbn(A,φ) ∈ D(AnCn) and orbn(C,φ) ∈ D(CnAn), then

AnCnorbn(C,φ)− CnAnorbn(A,φ)

= (Iψ,ACAφ− CACφ, . . . , ACAnφ− CACnφ).

Proof. a) AnCn(φ0, φ1, . . . , φn)− CnAn(φ0, φ1, . . . , φn)

= An(Cφ0, Cφ1, . . . , Cφn)− Cn(Aφ0, Aφ1, . . . , Aφn)

= (ACφ0, ACφ1, . . . , ACφn)− (CAφ0, CAφ1, . . . , CAφn)

= ((AC − CA)φ0, (AC − CA)φ1, . . . , (AC − CA)φn) = (φ0, φ1, . . . , φn).

b) AnCnorbn(C,φ)− CnAorbn(A,φ)

= AnCn(φ,Cφ,C
2φ, . . . , Cnφ)− CnAn(φ,Aφ,A

2φ, . . . , Anφ)

= An(Cφ,C
2φ, . . . , Cn+1φ)− Cn(Aφ,A

2φ, . . . , An+1φ)

= (ACφ− CAφ,AC2φ− CA2φ, . . . , ACn+1φ− CAn+1φ)

= (Iφ,AC2φ− CA2φ, . . . , ACn+1φ− CAn+1φ).

Analogously will be proved statement
c) AnCnorbn(A,φ)− CnAnorbn(C,φ)

= AnCn(φ,Aφ,A
2φ, . . . , Anφ)− CnAn(φ,Cφ,C

2φ, . . . , Cnφ)

= An(Cφ,CAφ, . . . , CA
nφ)− Cn(Aφ,ACφ, . . . , AC

nφ)

= (ACφ− CAφ,ACAφ− CACφ, . . . , ACAnφ− CACnφ)

= (Iφ,ACAφ− CACφ, . . . , ACAnφ− CACnφ).

The statements a) and b) give the direct generalizations of canonical commuta-
tion relation. The statements c) and d) also are generalizations of canonical com-
mutation relation.

Corollary. From statement a) of Theorem 6.3.2 it follows that:

a) If orbn(C,φ) ∈ D([An, Cn]) = D(CnAn) ∩D(AnCn), then

AnCnorbn(C,φ)− CnAnorbn(C,φ) = orbn(C,φ).

b) If orbn(A,φ) ∈ D(AnCn − CnAn) = D(CnAn) ∩D(AnCn), then

AnCnorbn(A,φ)− CnAnorbn(A,φ) = orbn(A,φ).

c) [Nn, Cn] = Cn and [Nn, An] = −An.
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According to well-known distributional property, we have

[Nn, Cn] = [CnAn, Cn] = Cn[An, Cn] + [Cn, Cn]An = Cn.

As well

[Nn, An] = [CnAn, An] = Cn[An, An] + [Cn, An]An = −An.

If we introduce in D(Cn) the inner product

⟨orbn(C,φ), orbn(C,χ)⟩n
= (φ, χ) + (Cφ,Cχ) + · · ·+ (Cnφ,Cnχ), n ∈ N0, (6.3.8)

and the corresponding norm

∥orbn(C,φ)∥n = (∥φ∥2 + ∥C2φ∥2 + · · ·+ ∥Cnφ∥2)1/2, (6.3.9)

where (·, ·) and ∥ · ∥ are inner product and norm in the space L2(R), then it will
turn into a prehilbert space. The same can be said about D(An). The operator Cn
is linear unbounded operator in the spaceD(Cn) with a dense image. Analogously
is defined the Hilbert space D(An) in which, the inner product and the norm are
defined by formulas (6.3.8) and (6.3.9) with the replacement ofC byA. The spaces
D(Cn) and D(An) can be turned into Hilbert spaces by changing the domains
of the operators A and C. Namely, as the domain of definition of the operators
(6.3.1) and (6.3.2) we consider the set U ∩ V . The set U consits of all functions
φ ∈ L2(R) which are absolutely s on every finite interval on R and such that
φ′ ∈ L2(R). The set V consists of all functions ψ ∈ L2(R) such that xψ(x) ∈
L2(R). It is well-known that the operator i ddx with the domain of definition U
is selfadjoint ( [96], p. 396). Taking into account that a function φ ∈ U satisfy
the equality φ(−∞) = φ(∞) = 0 ( [96], p. 394), we verify that the operators
d
dx and − d

dx with the domain of definition U are conjugate with each other. If we
take into account yet selfadjointness of the position operator of quantum mechanics
Xψ(x) = xψ(x), ψ ∈ V , we obtain that the annihilation and creation operators
(6.3.1) and (6.3.2) with the domain of definition U ∩ V , are conjugate with each
other. Every adjoint operator is closed ( [96], p. 353). Therefore, the operators A
and C with the domain of definition U ∩V are closed and we can turn D(Cn) into
a Hilbert space with the inner product (6.3.8) and corresponding norm (6.3.9). The
same can be said about D(An).

Theorem 6.3.3. If as the domain of definition of the operators (6.3.1) and (6.3.2) is
considered the set U ∩V , then the sequence {orbn(A,ψk)} (resp. {orbn(C,ψk)}),
n, k ∈ N0, is an orthogonal basis in D(An), (resp. in D(Cn)).
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Proof. We prove theorem for the Annihilation operator A (for the Creation opera-
tor C the proof is carried out in a similar way). The orthogonality of the sequence
{orbn(A,ψk)} in the space D(An) follows from the orthogonality of {ψk(x)} in
L2(R) and from the formulae (6.3.5) and (6.3.7). Because of the sequence {ψk(x)}
is a basis in L2(R), we have for ψ(x) ∈ L2(R) that

ψ(x) =

∞∑
k=0

akψk(x),

where
ak =

∫
R

ψ(x)ψk(x)dx, k ∈ N0.

Because of Ajψ ∈ L2(R), j = 1, 2, . . . , n, we have for ψ ∈ L2(R)

Ajψ(x) =

∞∑
k=0

bjkψk(x),

where
bjk =

∫
R

Ajψ(x)ψk(x)dx.

Due to the fact that the operators A and C are mutually conjugate to each other, we
obtain

bjk =

∫
R

ψ(x)Cjψk(x)dx.

In its turn

Cjψk = Cj−1Cψk = Cj−1
√
k + 1ψk+1 =

√
k + 1

√
k + 2 . . .

√
k + jψk+j .

Therefore

bjk =
√

(k + 1)(k + 2) . . . (k + j)

∫
R

ψ(x)ψk+j(x)dx

=
√

(k + 1)(k + 2) . . . (k + j)ak+j

and

Ajψ(x) =
∞∑
k=0

√
(k + 1)(k + 2) . . . (k + j)ak+jψk(x) =

∞∑
k=0

ak+jA
jψk+j(x)

=

∞∑
k=j

akA
jψk(x).
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We have that

Ajψk = Aj−1(Aψk) =
√
kAj−1ψk−1 =

√
k(k − 1)Aj−2ψk−2

=
√
k!Aj−kψ0, j − k ≥ 1.

But
Aψ0 = const

( d
dx
e−x

2/4 +
x

2
e−x

2/4
)
= 0.

Thus Ajψk(x) = 0, if k = 0, 1, . . . , j − 1, and it is proved that

Ajψ(x) =

∞∑
k=0

akA
jψk(x).

Therefore, for the orbn(A,ψ) the following representation is valid

orbn(A,ψ) =
∞∑
n=0

akorbn(A,ψk).

This equality proves the Theorem 6.3.3.

6.3.2 Orbital operators corresponding to the creation and annihilation oper-
ators in the Fréchet–Hilbert space of all orbits

In this section the orbital operators corresponding to the creation and annihilation
operators in the Fréchet–Hilbert space of all orbits are constructed. It is easy to
prove that algebraically D(H∞) ⊂ D(C∞) ⊂ D(Cn), where C is the creation
operator and H is the hamiltonian of QHO. D(H∞) is isomorphic to the Schwartz
space of rapidly decreasing functions [170] and is nonempty set of second category.
The topology of the spaceD(C∞) is generated with the sequence of norms (6.3.9).
As well D(C∞) is also the domain of definition of the operator C∞ defined by
equality

C∞(φ(x), Cφ(x), . . . , Cn−1φ(x), . . . ) = orb(C,Cφ)

= (Cφ(x), C2φ(x), . . . , Cn+1φ(x), . . . ), (6.3.10)

It will be also noted that the space D(C∞) is represented as projective limit of the
sequence of the Hilbert spaces {D(Cn)} and is Fréchet–Hilbert space.

Problem 6.3.1. It is not known whether the Fréchet space D(C∞) is nuclear and
countable-Hilbert.
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In the case of annihilation operator A analogously is defined the space of all
orbits D(A∞). The space D(A∞) is also the domain of definition of the operator
A∞ defined by equality

A∞(φ,Aφ, . . . , Anφ, . . . ) = (Aφ,A2φ, . . . , An+1φ, . . . ), (6.3.11)

This means that A∞(φ,Aφ, . . . , Anφ, . . . ) = (d/dx + x/2)∞orb(A,φ), where
the operator A∞orb(A,φ) is really defined by equality

(d/dx+ x/2)∞orb(A,φ)

= ((d/dx+ x/2)φ, (d/dx+ x/2)2φ, . . . , (d/dx+ x/2)n+1φ, . . . ).

According to the statement a) of Theorem 6.3.1, we have

N∞orb(C,ψj) = C∞A∞orb(C,ψ) = (
x2

4
− d2

dx2
+

1

2
)∞orb(C,ψj)

= (jψj ,
√
j + 1(j + 1)ψj+1, . . . ,

√
j + 1

√
j + 2 . . .

√
j + n(j + n)ψj+n, . . . ).

Problem 6.3.2. It is not known whether the LCSD(A∞) is nuclear and countable-
Hilbert.

Theorem 6.3.4. For the commutator [A∞, C∞] = A∞C∞ − C∞A∞, where C∞

andA∞ are defined, respectivaly, by equalities (6.3.10) and (6.3.11), the following
relations are hold:

a) If (φ0, . . . , φn, . . . ) ∈ D([A∞, C∞]), then

[A∞, C∞](φ0, . . . , φn, . . . ) = (φ0, . . . , φn, . . . ).

b) If orb(A,φ) ∈ D(C∞A∞) and orb(C,ψ) ∈ D(A∞C∞), then

(A∞C∞orb(C,φ)− C∞A∞orb(A,φ)

= (Iφ,AC2φ− CA2φ, . . . , ACn+1φ− CAn+1φ, . . . ).

c) If orb(A,φ) ∈ D(A∞, C∞) and orb(C,φ) ∈ D(C∞A∞), then

A∞C∞orb(A,φ)− C∞A∞orb(C,φ)

= (Iφ,ACAφ− CACφ, . . . , ACAnφ− CACnφ, . . . ).

The statement a) gives us the direct generalization of canonical commutation
relation. The statements b) and c) also are generalization of canonical commutation
relation.
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Corollary. From the statement a) of Theorem 6.3.4 it follows that

a) If orb(A,φ) ∈ D([A∞, C∞]), then

[A∞, C∞]orb(A,φ) = orb(A,φ).

b) If orb(C,φ) ∈ D([A∞, C∞]), then

[A∞, C∞]orb(C,φ) = orb(C,φ).

c) [N∞, C∞] = C∞ and [N∞, A∞] = A∞.

Really, according distributivity property, we have

[N∞, C∞] = [C∞A∞, C∞] = C∞[A∞, C∞] + [C∞, C∞]A∞ = C∞.

As well

[N∞, A∞] = [C∞A∞, A∞] = C∞[A∞, A∞] + [C∞, A∞]A∞ = −A∞.

6.4 Central spline algorithms for calculation of the inverse of one dimen-
sional hamiltonian of QHO on Schwartz space

In this section H denotes a separable complex Hilbert space with the norm ∥ · ∥
generated by inner product (·, ·). Let A : D(A) ⊂ H → H be a linear, symmetric,
positive operator with a discrete spectrum of positive eigenvalues and dense image.
The spectrum of A is called discrete, if it consists of a countable set of eigenvalues
with a single limit point at infinity.

Let n ∈ N0 be a fixed nonnegative whole number and consider the elements of
the space H , to which the operator An = A(An−1) can be applied, where A0 is
the identical operator. The space of such elements is denoted by D(An), besides,
D(A0) = H . By n-orbits of the operator A at the point x ∈ H we mean a finite
sequence orbn(A, x) := (x,Ax, . . . , Anx), n ∈ N0. The spaceD(An) we identify
with the space of n-orbits of the operator A. We can turn D(An) into a pre-Hilbert
space using the inner product

⟨orbn(A, x), orbn(A, y)⟩n := (x, y)n

= (x, y) + (Ax,Ay) + · · ·+ (Anx,Any), n ∈ N0. (6.4.1)

We consider the equation Au = f in the space D(An), in fact, it has the form

An(orbn(A, u)) = orbn(A, f), (6.4.2)
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where the operatorAn : D(An) = (D(A))n+1 ⊂ Hn+1 → ImAn = (ImA)n+1 ⊂
Hn+1 is defined by the equality

A0(u) = u, An(orbn(A, u)) = orbn(A,Au), n ≥ 1. (6.4.3)

We call An as n-orbital operator, which corresponds to the operator A, and (6.4.2)
is called the n-orbital equation in the space D(An).

For the approximation solution of the equation (6.4.2), a linear central spline
algorithm in the space D(An) is constructed in Section 1.4 (Theorem 1.4.2). The
convergence of the sequence of approximate solutions to the generalized solution
is proved.

It was arisen the problem of construction of linear central spline algorithms
in Fréchet spaces of all orbits. The definitions of linear central spline algorithms,
which is given in ( [158], Sections 5.7 and 3.2), are generalized in Chapter 3 of this
monography for solution operators acting in locally convex metrizable spaces. For
the case of a linear normed space, our definitions of spline and central algorithms
coincide with those given in [158]. For nonnormable spaces the study of such
questions was begun in ( [157], Chapter 1).

We transfer the equationAu = f also in the Fréchet space of all orbitsD(A∞),
which is represented as projective limit of the sequence of the spaces {D(An)}.
Really, the space D(A∞) = ∩∞n=0D(An), and the topology of these spaces are
generated with the sequence of norms

∥x∥n =
(
∥x∥2 + ∥Ax∥2 + · · ·+ ∥Anx∥2

)1/2
, n ∈ N0. (6.4.4)

The space D(A∞) is isomorphic to the space of all orbits orb(A, x) of operator A.
This isomorphism (actually it is an isometry) is obtained by the mapping

D(A∞) ∋ x→ orb(A, x) :=
(
x,Ax, . . . , Anx, . . .

)
.

The space D(A∞) circumstantially was studied in ( [160], Chapter 8), where
D(A∞) was whole symbol and A∞ taken separately meant nothing. In [163],
we have defined the operator A∞ as follows:

A∞
(
x,Ax, . . . , An−1x, . . .

)
=
(
Ax,A2x, . . . , Anx, . . .

)
. (6.4.5)

Due to this notation, now D(A∞) is the domain of definition of the operator A∞.
It will be also noted that, according to statement d) of Theorem 4.4.2, the operator
A∞ is selfadjoint and positive definite in the Fréchet space D(A∞). The operator
A∞ is defined on the whole space and, by generalized Hellinger–Teoplitz theorem,
is continuous. Moreover,A∞ is a topological isomorphism onto the spaceD(A∞),
and the equation

A∞ orb(A, u) = orb(A, f) (6.4.6)
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admits a unique stable solution (A∞)−1 orb(A, f) = S(orb(A, f)), where S =
(A∞)−1 is an inverse operator to A∞.

In Section 6.4.2, for the approximation solution of the equation (6.4.6), a lin-
ear central spline algorithm in the space D(A∞) is constructed. The convergence
of the sequence of approximate solutions to the exact solution is proved. In Sec-
tion 6.4.3, we apply the results obtained for the general operators to the quantum
harmonic oscillator operator in the spaces of orbits.

6.4.1 Construction of a linear central spline algorithms in the Fréchet space
of all orbits

Let F1 be a complex linear space with a nonincreasing sequence of absolutely con-
vex absorbed sets {Vn}. We denote by F1 the metrizable LCS which is generated
by a nondecreasing sequence of seminorms {∥·∥n} and Vn = {f ∈ E, ∥f∥n ≤ 1},
i.e. ∥ · ∥n is the Minkowski functional for Vn.

D. Zarnadze constructed a metric with absolutely convex balls having the fol-
lowing form:

d(x, y) =



∥x− y∥1 if ∥x− y∥1 ≥ 1,

2−n+1 if ∥x− y∥n < 2−n+1 and
∥x− y∥n+1 ≥ 2−n+1 (n ∈ N),

∥x− y∥n+1 if 2−n ≤ ∥x− y∥n+1 < 2−n+1 (n ∈ N),
0 if x− y = 0.

(6.4.7)

The Minkowski functionals qr(·) for the balls Kr of the metric (6.4.7) are depen-
dent on the initial seminorms through the following simple equality:

qr(·) = r−1∥ · ∥n, where r ∈ In =

{
[1,∞[ if n = 1,

[2−n+1, 2−n+2[ if n ≥ 2.
(6.4.8)

Thus Kr = rVn, where Vn = {x ∈ E; ∥x∥n ≤ 1}, and r ∈ In. From this it also
follows that ∥x∥n = |x|, when |x| ∈ Int In, and ∥x∥n ≤ |x|, when |x| = 2−n+1,
n ∈ N, where |x| = d(x, 0) is quasinorm of metric d. Similarly to the case of a
normed linear space, Kr are simply expressed with the unit balls of the topology
generating seminorms (6.4.8). Defined by the metric (6.4.7), the balls Kr preserve
the geometry of the initial space.

The definitions of spline and spline algorithm for a solution operator S : F1 →
E, where E is metrizable LCS with the non-increasing sequence of absolute con-
vex absorbed sets Vn = {x ∈ E; ∥x∥n ≤ 1}, n ∈ N, and metric (6.4.7). Consider
the set F = {f ∈ F1 : d(f, 0) ≤ 1}.
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Let ε ≥ 0. It is known that U(f) = φ(If) is an ε-approximation of S(f) iff
|S(f)− U(f)| ≤ ε. Let

r1(I, y) = rad(S(I−1(y) ∩ F )
= inf{sup{|S(f)− g|; f ∈ I−1(y) ∩ F}; g ∈ E} = ε ∈ intIn.

According to the definition of Chebyshev radius, this means that Kε is smallest
ball that contains the set S(I−1(y)∩F ). But Kε = εVn according (6.4.8) and this
coincides with the ε ball of norm ∥ · ∥n when ε ∈ intIn. This means also that

rad(S(I−1(y) ∩ F )
= inf{sup{∥S(f)− g∥n; f ∈ I−1(y) ∩ F}; g ∈ E} = ε ∈ intIn.

We obtain that the ε-approximation of S(f) with respect to the metric d and with
respect to norm ∥ · ∥n is the same. As is known, ε-complexity is the minimal cost
of computing of ε-approximation with a prescribed ε-accuracy. Therefore, the ε-
complexity of problem with respect to the metric can be calculated by means of
ε-complexity with respect to norm.

Let now T : D(T ) ⊂ E → E be a linear operator, where E is a metric lcs.
An operator S : E → E is said to be the solution operator of an operator equation
Tu = f if u = Sf . If there exists an inverse to T , then S = T−1. In addition,
the central (resp., linear, spline, optimal) algorithm, approximating the solution
operator S, will be called the central (resp., linear, spline, optimal) algorithm for
the equation Tu = f .

It will be noted that in each nonnormable Fréchet space there exists an one-
dimensional subspace that admits no orthogonal complement subspace. In partic-
ular, this is valid for the space D(A∞) with the sequence of norms (6.4.4). This
means that in the Fréchet spaceD(A∞) there exists one-dimensional subspace that
admits no orthogonal complement subspace.

In the case E = D(A∞), the operator Kn, considered in Theorem 3.6.2, is
the identical map from D(A∞) in (D(An), ∥ · ∥n), i.e. Kn is defined by equality
Kn(orb(A, x)) = orbn(A, x). Let πmn be an identical map πmn : (D(Am), ∥ ·
∥m) → (D(An), ∥ · ∥n), i.e. πmn is defined by equality πmn(orbm(A, x)) =
orbn(A, x) (n ≤ m). The space D(A∞) is a projective limit of the sequence of
prehilbert spaces {(D(An), ∥ · ∥n)} with respect to the maps πmn (n ≤ m). This
means that the topology of Fréchet space is the weakest topology for which the
maps Kn are continuous ( [82], p. 232). Also, each element orb(A, f) ∈ D(A∞)
can be identified with the sequence {Kn orb(A, f)} = {orbn(A, f)}. In particu-
lar, the element orb(A, f) can be identified with the sequence {Kn orb(A, f)} =
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{orbn(A, f)}. It is simply to verify that the sequence {orbn(A, f)} converges to
the orb(A, f).

Projective operatorA∞n of the operatorA∞ on the Hilbert space (D(An), ∥·∥n)
is defined by the equality

A∞n (Kn orb(A, x)) = Kn(A
∞ orb(A, x)) = (Ax,A2x, . . . , An+1x).

It is not difficult to verify that the operator A∞n coincides with the operator An
defined by equality (6.4.3).

6.4.2 Construction of a linear central spline algorithm for equations contain-
ing QHO operator in the Fréchet–Hilbert spaces of all orbits

The quantum harmonic oscillator operator Au(t) = −u′′(t)+ t2u(t), t ∈ R, in the
Hilbert space of finite orbits D(An) we have considered in Section 1.4.

Consider the Schwartz space S(R) of rapidly decreasing functions on R with
the usually used sequence of norms

∥φ∥n,m = sup
t∈R

{∥tmdn/dtnφ(t)∥, n,m ∈ N}.

According to ( [138], Addition to Section 5.3), the spaces S(R) and D(A∞)
coincide and the sequences of norms {∥ · ∥n} and {∥ · ∥n,m} generate equivalent
topologies.

The operator A∞ is the restriction of the considered by us QHO operator A
on the space D(A∞), taking into account the topology (really, the operator A∞ is
the restriction of the operator AN from the Fréchet space (L2(R))N on the Fréchet
space D(A∞)). According to the equality D(A∞) = S(R), the operator A∞ is
also a restriction on the space S(R), taking into account the topology. The QHO
operator on the space S(R) was also considered in [13].

It follows from the statement d) of Theorem 4.4.3 that the equation (6.4.6)
has the unique and stable solution. To solve the equation (6.4.6) approximately
in the space D(A∞) = S(R), we construct a spline for the nonadaptive infor-
mation I(f) = [L1(f), . . . , Lm(f)], where Li(f) = (orb(A, f), orb(A, hi)),
i = 0, 1, . . . ,m, are continuous functionals on S(R), where {hk}, k ∈ N, is
the orthogonal basis on L2(R) defined by (1.4.10). The subspace Ker I is a finite
codimensional subspace in the spaceD(A∞). The spline orb(A, σm) interpolatory
y = I(f) is given by the equality (1.4.6). It is the best approximation element of
orb(A, f) in the subspace

span{orb(A, h0), orb(A, h1), . . . , orb(A, hm)}



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 327

with respect to the norm (6.4.4) and coefficients in (1.4.6) do not depend on n. This
means that the subspace Ker I admits an orthogonal complement subspace

Ker I⊥ = span{orb(A, h0), orb(A, h1), . . . , orb(A, hm)}

in the Fréchet space D(A∞). Consider the spline algorithm

orb(A, um) = S(orb(A, σm)) =

m∑
k=0

λ−1k (f, hk) orb(A, hk), (6.4.9)

where S is the solution operator of the equation (6.4.6), i.e. the inverse of the
operator A∞ in the space D(A∞).

Theorem 6.4.1. Let A : D(A) ⊂ L2(R) → L2(R) be the QHO operator acting
in the Hilbert space L2(R) and A∞ be the operator (6.4.5) acting in the space
of all orbits D(A∞) = S(R). Then the algorithm (6.4.9) is a linear central
spline algorithm for the approximate solution of the orbital equation (6.4.6) in
the space S(R). The sequence {orb(A, um)} of the approximate solutions (6.4.9)
converges to the exact solution orb(A, u0) of the orbital equation (6.4.6) in the
space D(A∞) = S(R). Moreover, the following estimates hold:

a) For every n and m,

∥ orb(A, u0)− orb(A, um)∥n ≤ ∥ orb(A, f)− orb(A, σm)∥n;

b) For every n ∈ N0 there exists m0 = m0(n) such that for every m > m0(n),

∥ orb(A, u0)− orb(A, um)∥n ≤ | orb(A, f)− orb(A, σm)|;

c) For every m,

| orb(A, u0)− orb(A, um)| ≤ | orb(A, f)− orb(A, σm)|.

Proof. According to the statement b) of Theorem 3.6.2, orb(A, σm) is a center or
all sets I−1(y) ∩ Vk, for which this intersections are non-empty. The correspon-
dence spline algorithm φs(y) = S(orb(A, σm)) is linear and central in the Fréchet
space D(A∞). It is simply to matter that the sequence of approximate solutions
{(orb(A, um)} converges to

∑∞
k=0 λ

−1
k (f, hk) orb(A, hk). From the existence and

uniqueness of the exact solution it follows that

orb(A, u0) = S(orb(A, f)) =
∞∑
k=0

λ−1k (f, hk) orb(A, hk),
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i.e. the sequence of the approximate solutions {orb(A, um)} converges to the exact
solution in the space D(A∞).

a) We have that if f ∈ D(A∞), then

orb(A, f) =
∞∑
k=0

(f, hk) orb(A, hk)

and

orb(A,Af) =
∞∑
k=0

(Af, hk) orb(A, hk) =
∞∑
k=0

(f,Ahk) orb(A, hk)

=
∞∑
k=0

λk(f, hk) orb(A, hk),

where λk = 2k + 1 is the k-th eigenvalue of QHO operator A. Then

(A∞ orb(A, f), orb(A, f))

=

( ∞∑
k=0

λk(f, hk) orb(A, hk),

∞∑
k=0

(f, hk) orb(A, hk)

)

≥ λ0

( ∞∑
k=0

(f, hk) orb(A, hk),

∞∑
k=0

(f, hk) orb(A, hk)

)
= (orb(A, f), orb(A, f)).

Hence, it follows that for all n ∈ N0,

(A∞ orb(A, f), orb(A, f))n ≥ (orb(A, f), orb(A, f))n. (6.4.10)

While

(A∞ orb(A, f), orb(A, f))n ≤ ∥A∞ orb(A, f)∥n∥ orb(A, f)∥n, n ∈ N0,

from (6.4.10) it follows that ∥ orb(A, f)∥n ≤ ∥A∞ orb(A, f)∥n, i.e.

∥ orb(A, u0)− orb(A, um)∥n ≤ ∥A∞ orb(A, u0)−A∞ orb(A, um)∥n
= ∥A∞S orb(A, f)−A∞(orb(A, um)∥n = ∥ orb(A, f)− orb(A, σm)∥n,

and the statement a) of Theorem 6.4.1 is proved.
b) Let | orb(A, f) − orb(A, σm)| := Em(f). It follows from the relation

limm→∞ ∥ orb(A, f) − orb(A, σm)∥n = 0, n ∈ N0, that limm→∞Em(f) = 0.
Therefore, there exists a number m0 = m0(n) such that for every m ≥ m0(n),
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Em(f) < 2−n+1. Then Em(f) ∈ Ip+1 = [2−p, 2−p+1[ for some n ≤ p. Ac-
cording to (6.4.8), if Em(f) ∈ Int Ip+1, we obtain ∥ orb(A, f)− orb(A, σm)∥p =
Em(f), and if Em(f) = 2−p, then ∥ orb(A, f) − orb(A, σm)∥p ≤ 2−p. That
is, ∥ orb(A, f) − orb(A, σm)∥p ≤ Em(f), and since n ≤ p, ∥ orb(A, f) −
orb(A, σm)∥n ≤ ∥ orb(A, f)− orb(A, σm)∥p = Em(f) for all m ≥ m0(n).

c) According to the statement a), for every n and m,

∥ orb(A, u0)− orb(A, um)∥n ≤ ∥ orb(A, f)− orb(A, σm)∥n.

From (6.4.7) and (6.4.8) follows the following property of quasinorm | · |: if for
arbitrary u, v ∈ S(R) the inequalities ∥u∥n ≤ ∥v∥n hold for all n ∈ N, then
|u| ≤ |v|. From this property follows the statement c) of Theorem 6.4.1.

Remark 6.4.1. The construction of central algorithm for the equation containing
the Schrödinger operator in space of finite orbits is performed in Section 1.4 for
the orbital equation H∞ orb(H, ψ) = orb(H, f) with the orbital operator H∞ for
the hamiltonian in the Fréchet space of all orbits D(H∞).

6.5 Central spline algorithms for calculation of the inverse of multidimen-
sional hamiltonian of QHO on Schwartz space

In this section the hamiltonian of the multidimensional QHO

Hpu(t) = −∆pu(t) + |t|2u(t) (6.5.1)

in Hilbert space L2(Rp) is considered, where ∆pu(t) =
∑p

j=1
∂2u
∂t2j

is the Laplace

operator, t = (t1, . . . , tp) and |t|2 = t21 + t22 + · · · + t2p. We shall denote p-
dimensional vectors of a Euclidean space Rp by x, y, t, and p-dimensional multi-
indices by k,n. p-dimensional multi-indices are p-dimensional vectors with whole
non-negative coordinates. The set of such vectors we denoted by Qp. For vectors
x, y ∈ Rp, x = (x1, . . . , xp), y = (y1, . . . , yp), the notions x ≤ y (or x ≥ y)
means that xj ≤ yj (or xj ≥ yj) for every j = 1, . . . , p. Similar convention is
followed for multi-indices.

The domain D(Hp) of the operator Hp is defined as the set of functions u(t),
t ∈ Rp, that satisfy the following conditions: u(t) and partial derivatives of the
first order ∂

∂tj
u(t), j = 1, . . . , p, are continuous on Rp, belong to L2(Rp) and

lim
|t|→∞

u(t) = 0, lim
|t|→∞

∂
∂αj

u(t) = 0, j = 1, . . . , p; all partial derivatives of the

second order ∂2

∂t2j
u(t), j = 1, . . . , p, and |t|2u(t) belong to L2(Rp). It is proved in

( [137], Section 5.5, 5.13) that this condition is satisfied if: for n = 2 all partial
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derivatives of order 2 belong to L2(R2), and for p ≥ 3 all partial derivatives of
order l ≥ p/2 belong to L2(Rp).

Let us prove that the operator Hp is symmetric and positive on D(Hp). Using
integrating by parts twice, for u, v ∈ D(Hp) we obtain that

(Hpu, v) =

∫
(−∆pu(t) + |t|2u(t), v(t))dt

=

p∑
j=1

∫
−∂

2u(t)

∂t2j
v(t)dt+

∫
|t|2u(t)v(t)dt

=

p∑
j=1

∫
−u(t)∂

2v(t)

∂t2j
dt+

∫
|t|2u(t)v(t)dt

= (u(t),Hpv),

where (·, ·) is the inner product in L2(Rp) and integral is taken on Rp.This means
that Hp is symmetric. Next, again using integrating by parts, we obtain

(Hpu, u) = −
p∑
j=1

∫
(−∆pu(t) + |t|2u(t))u(t)dt

=

p∑
j=1

∫
−∂

2u(t)

∂t2j
u(t)dt+

∫
|t|2u(t)u(t)dt

=

p∑
j=1

∫
−∂u(t)

∂tj

∂u(t)

∂tj
dt+

∫
|t|2u(t)u(t)dt

=

p∑
j=1

∫ ∂u(t)
∂tj

2
dt+

∫
|t|2|u(t)|2dt ≥ 0.

If (Hpu, u) = 0, then it follows from here that u(t) ≡ 0. This means that Hp is
positive operator on D(Hp).

Let {hj(t)} be the sequence of the Hermitian functions, defined by (1.4.10).
These functions form a complete orthogonal system in L2(R). For arbitrary natural
number j, the function hj(t) is eigenfunction of the one-dimensional QHO H1

with the eigennumber 2j + 1. As p ≥ 2 dimensional analogue of these functions,
the functions Hn(t) =

∏p
j=1 hnj (tj) are considered, where hnj is the Hermite

function, n = (n1, . . . , np), t = (t1, . . . , tp), nj ∈ N0, tj ∈ R, j = 1, . . . , p.
{Hn(t)} form a complete orthonormal system in L2(Rp) and are eigenfunctions
for QHO corresponding to the eigenvalue 2|n|+ p, |n| =

∑p
j=1 nj .
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Really,

HpHn(t) =

p∑
j=1

(
∂2

∂t2j
+ t2j

)
hnj (tj)

p∏
i=1,i ̸=j

hni(ti)

=

p∑
j=1

(2nj + 1)Hn(t) = (2|n|+ p)Hn(t). (6.5.2)

The case p = 1 is considered in Section 6.4 (see also [170]).
The operator Hp creates finite orbits orbn(Hp, ψ) = (ψ,Hpψ, . . . ,Hn

pψ) at
the function ψ ∈ L2(Rp) and the pre-Hilbert space of finite orbits D(Hn

p ), the
topology of which is generated with the norm

∥u∥n = ∥ orbn(Hp, u)∥n
= (∥u∥2 + ∥Hpu∥2 + ∥H2

pu∥2 + · · ·+ ∥Hn
pu∥2)1/2

= (∥u∥2 + ∥(−∆pu(t) + |t|2u(t))∥2 + · · ·
+ ∥Hn−1

p (−∆pu(t) + |t|2u(t))∥2)1/2, n ∈ N0, (6.5.3)

where ∥f∥ = (
∫
Rp f

2(t)dt)1/2 is a norm in the space L2(R). The norm ∥ · ∥n is
Hilbertian and is generated by the inner product

⟨f, g⟩n = (f, g) + (Hpf,Hpg) + · · ·+ (Hn
pf,Hn

pg), (6.5.4)

where (f, g) =
∫
Rp f(t)g(t)dt.

For the domain of definition D(Hk
p) of the operator Hk

p , k ∈ N0, we will
consider the functions u that satisfy the conditions: a) the functions u and all their
partial derivatives up to the k-th order inclusive belong to Rp; b) the functions
|t|2ku(t) belong to Rp; c) the functions u and all their partial derivatives up to the
(k− 1)-th order inclusive vanish at infinity. If we recall the proof of symmetry and
positivity of the operator Hp in D(Hp), we will see that the operator Hk

p will have
the same properties in the space D(Hk

p).
The operator Hp also creates the orbits orb(Hp, ψ) = (ψ,Hpψ, . . . ,Hn

pψ, . . . )
at the function ψ ∈ L2(Rp) and the Fréchet–Hilbert space D(H∞p ) of all orbits the
topology of which is generated with the sequence of norms (6.5.3). The Fréchet–
Hilbert space in this case coincides with the Schwartz’s space S(Rp) of rapidly
decreasing functions and this isomorphism is obtained by the mapping

S(Rp) ∋ x→ orbn(Hp, x) := (x,Hpx, . . . ,Hn
px, . . . ) ∈ D(H∞p ).

The symbol D(H∞p ) means the domain of definition of the operator H∞p . It
will be also noted that according to the statement d) of Theorem 4.4.3, for the
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positive operator Hp, the orbital operator H∞p is topological isomorphism of the
Fréchet–Hilbert space D(H∞p ) onto itself. Also, orbital operator H∞p coincides
to the restriction of the operator HN

p from the Fréchet space (L2(Rp))N on the
subspace D(H∞p ) with considered topology.

Using the above reasoning, now we define the symmetric finite orbital opera-
tors Hpn : D(Hn

p ) → D(Hn
p ) corresponding to Hp by the equality

Hpn(orbn(Hp, u) = orbn(Hp,Hpu) (6.5.5)

and the equation
Hpn orbn(Hp, u) = orbn(Hp, f). (6.5.6)

Also, we define the self-adjoint orbital operator H∞p : D(H∞p ) → D(H∞p ) in the
Fréchet–Hilbert space of all orbits, corresponding to Hp by equality

H∞p orb(Hp, ψ) = orb(Hp,Hpψ)) (6.5.7)

and the equation
H∞p (orbHp, u) = orb(Hp, f). (6.5.8)

This means that the restriction of the equation Hpu = f on S(Rp) with con-
sidering topology coincides to the equation (6.5.8). This equation, according to the
statement d) of Theorem 4.4.3, has unique and stable solution. Stability is very
important for numerical calculations of practical problems.

Therefore, the QHO operator considered in Hilbert space L2(Rp) will be de-
noted by Hp and “apparently the same operator” considered in the Fréchet space
of all orbits D(H∞p ) with considering topology will be denoted by H∞p . The equa-
tions (6.5.6) and (6.5.8) we call orbital equations.

Our goal is to built up a linear spline algorithm for the approximate solution of
n-orbit equation (6.5.6) in the space D(Hn

p ) and for equation (6.5.8) in the space
D(H∞p ).

To construct an approximate solution U(f) for (6.5.5), we use an information
of the cardinality M where M is some subset of Qp. We consider the follow-
ing spaces: the linear space F1 consisting of elements of the space D(Hn

p ); G =
D(Hn

p ). Let T be an identical operator from F1 onto X := (D(Hn
p ), ∥ · ∥n).

The set of problem elements is {f ∈ F1; ∥T (f)∥n ≤ 1}. The spline interpolat-
ing the set {⟨f,Hk⟩n, k ∈ M} is defined as an element belonging to the space
D(Hn

p ) which is generated by an element σM, M ∈ Qp, satisfying the condi-
tion ⟨σM, Hk⟩n = ⟨f,Hk⟩n, k ∈ M, and ∥Torbn(Hp, σM)∥n = inf{∥T (z)∥n,
⟨z,Hk⟩n = ⟨f,HM⟩n, k ∈ M}. According to the results of Section 6.4.2,
orbn(Hp, σM) is the best approximation element for orbn(Hp, f) ∈ D(Hn

p ) in the
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orthogonal complemented subspace to the subspace {y ∈ D(Hn
p ) : ⟨y,Hk⟩n =

0,k ∈ M} with respect to the hilbertian norm ∥ · ∥n and has the form

orbn(Hp, σM) =
∑
k∈M

⟨f,Hk⟩n
⟨Hk, Hk⟩n

orbn(Hp, Hk). (6.5.9)

It is clear that the generating element of this orbit is

σM =
∑
k∈M

(f,Hk

(Hk, Hk)
Hk.

We have

⟨f,Hk⟩n = (f,Hk) + (Hpf,HpHk) + · · ·+ (Hn
pf,Hn

pHk)

= (f,Hk) + (f,H2
pHk) + · · ·+ (f,H2n

p Hk)

= (f,Hk) + (f, (2|k|+ p)2Hk) + · · ·+ (f, (2|k|+ p)2nHk)

= (1 + (2|k|+ p)2 + · · ·+ (2|k|+ p)2n)(f,Hk).

Since ⟨Hk, Hk⟩n = (1+(2k)+p)2+ · · ·+(2k)+p)2n), it follows from here that

⟨f,Hk⟩n
⟨Hk, Hk⟩n

= (f,Hk)

and we may rewrite (6.5.9) in the form

orbn(Hp, σM) =
∑
k∈M

(f,Hk)orbn(Hp, Hk).

The left inverse Sn : Hn+1
p → Hn+1

p to the operator Hpn, i.e. the solution operator
of the equation (6.5.6), is defined by Sn(orbn(Hp,Hpx) = orbn(Hp, x) and is the
positive operator on ImHpn. It is clear that Sn(orbn(Hp, HM)) =

∑
k∈M(2|k|+

1)−1orbn(Hp, Hk) and we obtain

orbn(Hp, uM) = Sn(orbn(Hp, σM)) = Sn
∑
k∈M

(f,Hk)orbn(Hp, Hk)

=
∑
k∈M

1

2|k|+ p
(f,Hk)orbn(Hp, Hk), (6.5.10)

and its generating element of is

uM =
∑
k∈M

1

2|k|+ p
(f,Hk)Hk. (6.5.11)
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This means that U(f) = orbn(Hp, uM) is a linear spline algorithm for the infor-
mation [⟨f,Hk⟩n, k ∈ M]. In a completely analogous way to the one-dimensional
case [1] (see Section 1.4), it is proved that the linear spline algorithm (6.5.10) is
also a central algorithm in the space D(Hn

p ).
Let us now consider the problem of the convergence of this algorithm. Consider

a series ∑
n∈Qp

cnHn (6.5.12)

with the complex coefficients cn. They say that a series (6.5.12) converges uncon-
ditionally in square mean to a function f ∈ L2(Rp) if and only if, given any number
ε > 0, there is a finite set M0 ⊂ Qp such that ∥f −

∑
n∈M

cnHn∥ < ε for every

finite set M such that M0 ⊂ M ⊂ Qp. In ( [10], Chapter 3), it is proved that the
series (6.5.12) converges unconditionally in square to a function f ∈ L2(Rp) if and
only if

∑
n∈Qp

|cn|2 <∞, moreover, cn = (f,Hn), and ∥f∥2L2(Rp) =
∑

n∈Qp

|cn|2.

Now, we consider the problem of the convergence of the sequence
orbn(Hp, uM), where M ⊂ Qp. If for the series (6.5.12) unconditionally con-
verging in the mean square to the function f ∈ L2(Rp), we construct its partial
sum fM =

∑
n∈M

cnHn, then according to the definition given above, this sum can

be called unconditionally converging in the mean square to f and we write this in
the form

∑
n∈M

cnHn converges to f . Thus, the unconditionally in the mean square

convergence of a series (6.5.12) to a function f is equivalent to the unconditionally
in the mean square convergence of its partial sums fM to the f .

Let us prove that the defined by (6.5.10) sequence orbn(Hp, uM) uncondition-
ally in the mean square converges to orbn(Hp, f), if Hj

puM ⇒ Hj−1
p f for each

1 ≤ j ≤ n+1 and uM converges in L2(Rp) to u∗. According to (6.5.11), we have

Hj
puM = Hj

p

(∑
k∈M

1

2|k|+ p
(f,Hk)Hk

)
=
∑
k∈M

1

2|k|+ p
(f,Hk)Hj

pHk

=
∑
k∈M

(f,Hk)Hj−1
p Hk =

∑
k∈M

(Hj−1
p f,Hk)Hk = Hj−1

p f.

Because of 2|k|+ p ≥ 1, for the coefficients c′n of the Fourier series∑
k∈Qp

1

2|k|+ p
(f,Hk)Hk
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we have that c′k ≤ ck(f) = (f,Hk). Therefore,
∑

k∈Qp

(c′k)
2 < ∞ and the series∑

k∈Qp

1
2|k|+p(f,Hk)Hk converges unconditionally in the mean square to some u∗ ∈

L2(Rp). In the case when the equation Hpu = f has a unique solution u0 ∈
L2(Rp), we have ∑

k∈Qp

(u0, Hk)Hk = u0

and∑
n∈Qp

(u0, Hn)Hn =
∑
n∈Qp

1

2|n|+ p
(u0,HpHn)Hn

=
∑
n∈Qp

1

2|n|+ p
(Hpu0, Hn)Hn =

∑
n∈Qp

1

2|n|+ p
(f,Hn)Hn = u∗.

That is, u0 = u∗. We may say that the following theorem is true.

Theorem 6.5.1. Let f ∈ D(Hn
p ) and a nonadaptive information I(f) = {⟨f,Hk⟩n,

k ∈ M} of cardinality M ⊂ Qp be given. Then the algorithm

orbn(Hp, uM) =
∑
k∈M

1

2|k|+ p
(f,Hk) orbn(Hp, Hk) (6.5.13)

is linear spline central algorithm for an approximate solution of n-orbital equa-
tion (6.5.6) in the space of n-orbits D(Hn

p ). The sequence {orbn(Hp,HpuM}
converges unconditionally in the mean square to orbn(Hp, f) in the space D(Hn

p )
and {uM} converges unconditionally in the mean square to some u∗ ∈ L2(Rp).

If f is such function from D(Hn
p ) that the functional (u, f) is bounded on the

energetic space HHpn , then (u, f) = [u, u0], where [·, ·]HHpn
is inner product on

HHp . Since the operator Hp is positive on H , according to ([?], Chapter 1, p. 28),
the following two cases are possible: if u0 ∈ H , then u0 ∈ HHp and Hpu0 = f ; if
u0 ∈ H , it can be called a generalized solution of the equation Hpu = f.

Theorem 6.5.2. In the Fréchet space of all orbits D(H∞p ) = S(Rp) the algorithm

orb(Hp, uM) =
∑
k∈M

1

2|k|+ p
(f,Hk) orb(Hp, Hk) (6.5.14)

is a linear central spline algorithm in the space D(H∞p ). The equation (6.5.8) has
a unique solution generated by some u0 ∈ L2(Rp), the sequence (6.5.14) converges
unconditionally to orb(Hp, u0) and the following estimates hold true:
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a) for every n,

∥ orb(Hp, u0)− orb(Hp, uM)∥n ≤ ∥ orb(Hp, f)− orb(Hp, σM)∥n;

b) for every n ∈ N0, there exists N0 = N0(n) such that for every M ⊃ N0,

∥ orb(Hp, u0)− orb(Hp, uM)∥n ≤ | orb(Hp, f)− orb(Hp, σM)|;

c) for every M ∈ Qp,

| orb(Hp, u0)− orb(Hp, uM)| ≤ | orb(Hp, f)− orb(Hp, σM)|.

Proof. The proof is similar to the proof of Theorem 6.4.1 and we present it only
for the case a). It is easy to verify that the series

∑
k∈Qp λ

−1
k (f,Hk) orb(Hp, Hk),

converges unconditionally to orbn(Hp, u0). Since the equation (6.5.7) has a unique
solution generated by some u0 ∈ L2(Rp), then

orb(Hp, u0) = Sp(orb(Hp, f) =
∑
k∈Qp

λ−1k (f,Hk) orb(Hp, Hk),

where Sp is the inverse for the operator Hp in the space D(H∞p ). Thus, the se-
quence {orb(Hp, uM)} converges to the exact solution in D(H∞p ).

We have that if f ∈ D(H∞p ), then

orb(Hp, f) =
∑
k∈Qp

(f,Hk) orb(Hp, Hk)

and

Hpn orb(Hp, f) = orbn(Hp,Hpf) =
∑
k∈Qp

(Hpf,Hk) orbn(Hp, Hk)

=
∑
k∈Qp

(f,HpHk) orbn(Hp, Hk) =
∑
k∈Qp

λk(f,Hk) orb(Hp, Hk),

where λk = 2|k|+ p. Then, for any n ∈ N0,

⟨H∞p orb(Hp, f), orb(Hp, f)⟩n
=
∑
k∈Qp

λk⟨(f,Hk) orb(Hp, Hk),
∑
k∈Qp

λk⟨(f,Hk) orb(Hp, Hk)⟩n

≥ λ0⟨
∑
k∈Qp

(f,Hk) orb(Hp, Hk),
∑
k∈Qp

(f,Hk) orb(Hp, Hk)⟩n

= λ0⟨orb(Hp, f), orb(Hp, f)⟩n. (6.5.15)



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 337

Since

⟨H∞p orb(Hp, f), orb(Hp, f)⟩n ≤ ∥H∞p orb(Hp, f)∥n∥ orb(Hp, f)∥n, n ∈ N0,

(6.5.15) implies that

∥ orb(Hp, u0)∥n ≤ ∥H∞p orb(Hp, f)∥n,

i.e.

∥ orb(Hp, u0)− orb(Hp, uM)∥n ≤ ∥H∞p orb(Hp, u0)−H∞p orb(Hp, uM)∥n
= ∥H∞p Sp orb(Hp, f)−H∞p orb(Hp, uM)

= ∥ orb(Hp, f)− orb(Hp, σM)∥n

and the case a) of Theorem 6.5.2 is proved.

6.6 Syllabus of the course: Approximate calculation in quantum mechanics
(QM)

Title of the Course: Course Identification Code: PHS61508E2-LSB
Academic Degree of Higher Education: Master’s degree
Teaching Language: English

Course Author/Authors:
Surname, Name: Zarnadze David
Workplace: Georgian Technical University,

Muskhelishvili Institute of Computational Mathematics,
0131, Tbilisi, Grigol Pheradze str. #4

Position: Professor, Chief Scientific Resercher,
Doctor of Sciences Physics and Mathematics

Telephone: +995 599 543 812
E-mail: d.zarnadze@gtu.ge

This course is teaching since 2022 to Master’s students at the Nuclear Engineering
specialty of the Faculty of Informatics and Control Systems Georgian Technical
University. The syllabus is based on a monograph “Central Spline Algorithms in
the Hilbert and Fréchet Spaces of Orbits”.

Course Description:
Explanation of the existence of stable interdependence of particle complexes (atoms,
molecules, nuclei, bosons) considered in QM and description of energy processes



338 D. Zarnadze, D. Ugulava

associated with these particle complexes. For the mathematical solution of these
tasks, the study of the methods of approximate solution of the differential and inte-
gral equations containing the discrete-spectrum operator of the system energy and
related operators and familiarization with the created software.

Course Prerequisites:
Computing and engineering geometry modeling in high energy experiments

Learning Outcomes:
• Knowledge and skills acquired as a result of studying the subject

1. realizes the need and necessity of using approximate methods in the tasks of
simulation and visualization of geometric models and in high-energy physi-
cal experiments;

2. Analyzes approximate methods and differential equation apparatus for solv-
ing equations containing hamiltonian of QHO and Schrödinger operator and
adapts their software packages to the needs of users’ tasks;

3. programs approximate methods and differential equations machine algo-
rithms and evaluates the adequacy of computer modeling of relevant pro-
cesses;

• Methods of Achieving Learning Outcomes (Teaching and Learning):
Lecture; Seminar (team working); Laboratory; Consultation; Independent work

• Activities of the teaching-learning methods:

The method of synthesis involves grouping separate issues to form a single whole.
This method helps to develop the ability to see the problem as a whole.
Laboratory work is more prominent and gives an opportunity to perceive the event
or process. In the laboratory, the student studies how to conduct the experiment.
During laboratory studies, the student must acquire to organize, regulate and work
on the device. The skills obtained in experimental training labs allow to understand
theoretical material delivered on the lectures. It implies the following types of
actions: setting up the tests, showing video material, as well as the material of
dynamic nature, and so forth.
Analysis helps us to divide the study material into constituent parts. This will
simplify the detailed coverage of individual issues within a difficult problem.
Verbal or orally transmitted. Narration, talking and so forth belong to this activity.
In this process the teacher orally transmittes and explaines study material and the
students actively perceive and learn it through listening, remembering and thinking.
Action-oriented training requires active involvement of the teacher and student in
the teaching process, where the practical interpretation of theoretical material is of
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special significance.
Explanation is based on the discussion on the issue. The teacher gives a concrete
example from the material, which is discussed in detail within the given topic.
Credits: 5
Course Schedule in Accordance to the Students’ Weekly Workload (hrs.)
Lecture: 15
Seminar (work in the group):
Practical classes: 15
Laboratory:
Course work/project: 15
Practice:
Mid-semester/final exam: 1/2
Independent work: 77

Lecture
Title of the theme and its content

1. Introduction. A brief history of the beginnings of quantum mechanics:
Planck’s constant, Bohr’s planetary model, Einstein’s photo effect, de
Broglie’s wave mechanics, Heisenberg’s uncertainty principle. Mathemat-
ical model: Schrödinger’s equation, Dirac’s equation, von Neumann’s math-
ematical apparatus of quantum mechanics.

2. Quantum Hilbert space of states of quantum-mechanical systems, observ-
able quantities in classical physics: energy, position and momentum. Their
quantization and observables in QM - self-adjoint unbounded operators of
energy, position and momentum in quantum Hilbert space.

3. Self-adjoint operators with discrete spectrum in quantum Hilbert space,
hamiltonian of harmonic oscillator, one-dimensional Schrödinger equation.
Hermite functions - basis in quantum Hilbert space. The principle of super-
position in quantum mechanics, Schrödinger’s cat.

4. Best approximation problems in Banach and Hilbert spaces, central and op-
timal algorithms for linear problems with absolutely convex set of problem
elements in Banach space.

5. Interpolation and spline algorithms for non-adaptive information, existence
of Chebyshev center.

6. Ritz method in energetic Hilbert space, least squares method and their cen-
trality, central spline algorithms for the approximate solution of equations
containing Schrödinger’s one- dimensional discrete spectrum differential op-
erator, Tricom, Laplace–Beltram.
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7. James and Bishop-Phelps theorems, existence and linearity conditions of
spline algorithm.

8. Linear, central spline algorithm in orbital Hilbert space D(An) for the equa-
tion Au = f . Linear, spline algorithm in orbital Hilbert space D(K−n) for
the equation Ku = f . Applications to first- order integral equations for the
approximate solution of the equation involving the inverse of a QHO.

9. A linear, spline algorithm for the equation Au = f with an operator A that
admits a SVD in the space D((A∗A)−n). Using for the equation Ru = f in
orbital Hilbert space D((R∗R)−n), where R is the Radon transform in CT.

10. Strictly distinguished Fréchet spaces and strict Fréchet–Hilbert Spaces.
Strict Fréchet–Hilbert space L2

loc(R) of locally integrable functions of quan-
tum-mechanical systems. Its geometric and topological properties. Best ap-
proximation theory issues in quantum Fréchet–Hilbert Spaces. Canonical
commutative relations for orbital operators, Heisenberg’s uncertainty princi-
ple.

11. Optimization problems of convex and quasi-convex functionals and their ap-
plications. A functional (metric) used to reduce an infinite-coordinate com-
puting process to a finite- coordinate computing process. Creating software
and performing calculations according to the constructed algorithm.

12. Continuity of self-adjoint operators of position, moment and energy of ob-
servable quantities in the space of generalized functions. Consideration of
these operators in the Schwartz space of rapidly decreasing functions and in
the infinite order Sobolev space. Solving the Schrödinger equation using the
finite difference method, high-order differential equations in Fréchet–Hilbert
spaces of all orbits.

13. Central and optimal algorithms for linear problems with sequences of ab-
solutely convex sets of problem elements. Existence of spline and spline
algorithm in Fréchet spaces of all orbits. The existence of a spline for
non-adaptive information of one cardinality. Generalizations of James and
Bishop–Phelps theorems.
Construction of linear spline and central algorithm for approximate solution
of Schrödinger equation in orbital spaces. Creating software and performing
calculations based on spline algorithms.

14. Generalization of the Ritz method for the approximate solution of the equa-
tion containing the QHO in the space of all orbits. Construction of a linear
central spline algorithm for the approximate solution of the equation con-
taining the QHO in the Fréchet–Hilbert space of all orbits. Construction of a
spline algorithm for an ill-posed problem. their stability, performing calcu-
lations according to built-spline algorithms.
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15. Continuation of self-adjoint position, momentum and energy operators of
observables in strict Fréchet–Hilbert space. Solving the equations contain-
ing discrete spectrum Sturm- Liouville, Beltrame, and other operators in the
space of all orbits. Application of the generalization of the least squares
method for the approximate solution of the equation containing the QHO in
the space of all orbits.

Practical classes
Title of the theme and its content

1. Mathematical model of quantum mechanics: Schrödinger’s equation, Dirac’s
equation, von Neumann’s mathematical apparatus of QM. Finite-dimensional
space and its use in the process of creating quantum computers.

2. Matrix calculations. Matrices and vectors. Linear space and algebra of ma-
trices.

3. Best approximations, Ritz’s method for approximate solution of an equation
containing a symmetric operator.

4. Solving a system of linear equations: simple iterations method, Monte-Carlo
method. The method of least squares for the approximate solution of the
equation containing the symmetric operator.

5. Linear interpolation. Existence of interpolation spline, polynomial interpo-
lation. Lagrange interpolation polynomial. Spline construction for Birkhoff
data.

6. Polynomial interpolation. Best approximations with Hermite polynomials in
Hilbert space of states of quantum mechanical systems. Interpolation spline
and spline algorithm.

7. Construction of second order parabolic spline. Creating software and per-
forming calculations based on spline algorithms. The principle of superpo-
sition in quantum mechanics, Schrödinger’s cat.

8. Linear, central spline algorithm in orbital Hilbert spaceD(An), linear, spline
algorithm in orbital Hilbert Space D(K−n), applications to first order inte-
gral equations, approximate solution of equations containing the inverse of
QHO.

9. Best approximation theory issues in quantum Fréchet–Hilbert spaces. A
central spline algorithm in the Fréchet–Hilbert space of all orbits D(A∞).
Creating software and performing calculations according to the constructed
algorithm.
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10. Linear spline and central algorithms, Chebyshev center concept in strict Fré-
chet–Hilbert spaces. Error estimation. Convex optimization problems

11. A functional (metric) used to reduce an infinite-coordinate computing pro-
cess to a finite-coordinate computing process. Getting to know the software
and performing calculations according to the constructed algorithm.

12. Solving the Schrödinger equation using the difference method. Higher order
differential equations in orbital spaces. Creating software and performing
calculations based on the constructed spline algorithm.

13. Central and optimal algorithms for linear second-order differential equations
with sequences of absolutely convex sets of problem elements. Existence
of generalized spline and spline algorithm in Fréchet–Hilbert spaces of all
orbits. Existence of a spline for nonadaptive information of one cardinality.
Generalizations of James and Bishop-Phelps theorems.

14. Construction of a spline algorithm for the integral equation for an ill-posed
problem of scanner of CT. Creating software, its stability, performing calcu-
lations according to the constructed spline algorithm.

15. Application of the generalization of the least squares method for the approx-
imate solution of the equation containing the QHO in the space of all orbits.

Laboratory
Title and content of topics

1. Finite-dimensional space and the coordinates of its vectors, the angle be-
tween them, the lengths of the vectors. Cartesian product and some proper-
ties.

2. An infinite-dimensional quantum Hilbert space and its finite-dimensional
subspaces. A quantum Hilbert space basis with Hermite functions,

3. Gaussian elimination method for solving systems of linear equations, sys-
tems of linear equations with diagonal and near-diagonal matrices. Error
calculation.

4. Solving a system of linear equations: simple iterations method, Monte-Carlo
method. The method of least squares for the approximate solution of the
equation containing the symmetric operator.

5. Linear interpolation. Existence of interpolation spline, polynomial interpola-
tion. Construction of Lagrange interpolation polynomial Spline for Birkhoff
data.
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6. Creating software in the computing program “Mathematics” and performing
calculations based on spline algorithms in quantum Hilbert space.

7. Constructing a parabolic spline. Interpolation spline, superposition principle
in quantum mechanics, Schrödinger’s cat.

8. Approximate solution of equations involving the inverse of a QHO and rela-
tion between solutions of direct and inverse equations.

9. Best approximation theory issues in quantum Fréchet–Hilbert spaces. A cen-
tral spline algorithm in the Fréchet–Hilbert space for all orbitsD(A∞). Cre-
ating software and performing calculations according to built algorithms.

10. Linear spline and central algorithms. The notion of Chebyshev center in
strict Fréchet- Hilbert spaces. Error estimation. Convex optimization prob-
lems.

11. A constructed by us functional (metric) used to reduce an infinite-coordinate
computing process to a finite- coordinate computing process. Creating soft-
ware and performing calculations according to the constructed algorithm.

12. Solving the Schrödinger equation using the difference method. Higher order
differential equations in orbital spaces. Modeling task, creating software and
performing calculations based on built-in spline algorithms.

13. Construction of linear spline and central algorithm for approximate solution
of Schrödinger equation in orbital spaces. Software and calculations based
on spline algorithm.

14. Construction of a spline algorithm for the CT scanner ill-posed problem. Its
stability, performing calculations based on built of spline algorithms.

15. Application of the generalization of the least squares method for the approx-
imate solution of the equation containing the QHO in the space of all orbits.

Student Knowledge Assessment System,
Grading system is based on a 100-point scale.

Positive grades:

• (A) - Excellent - grades between 91-100 points;

• (B) – Very good - grades between 81-90 points

• (C) - Good - grades between 71-80 points

• (D) - Satisfactory - grades between 61-70 points

• (E) - Pass - the rating of 51-60 points

Negative grades:
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• (FX) - Did not pass - grades between 41-50 points, which means that the stu-
dent is required to work more to pass and is given the right, after independent
work, to take one extra exam;

• (F) – Failed - 40 points and less, which means that the work carried out by
the student did not bring any results and he/she has to learn the subject from
the beginning.

Assessment Forms, Methods and Criteria
Ongoing activity:
Maximal total assessment of the current activity is 30 points. Assessment is based
on homework, quizzes, which should be prepared independently by a student and
presented in a written form.
Assessments of the current activity for the home works and quizzes are distributed
as follows:
Home works are estimated by 18 points. During a semester student has to present
the written home works 3 times. Home works include 3 topics with maximal as-
sessment of 2 points each, summing up in total to 6 points.
Quizzes are estimated by 12 points. During a semester student has to write 3
quizzes. The quiz includes 2 topics with maximal assessment of 2 points each,
summing up in total to 4 points. The quiz is conducted at the seminars.
2 p. - Task is executed completely, precisely and exhaustively. The special termi-
nology is proper. The student knows material and the corresponding literature very
well. There are no mistakes made. Argumentation is on a high level.
1 p. - Execution of the task is incomplete. Student knows the curriculum material
but there are some drawbacks. Argumentation is fragmentary.
0 p. - The execution is not adequate to the task, or is not given at all.

Mid-semester exam:
Maximal total number of points for a mid-semester exam is 30. Mid-semester exam
is conducted once in a semester and is a necessary component for the mid-term as-
sessment.
Mid-semester exam is conducted in a written form using open-ended questions.
Student should be able to present the knowledge of studied topics.
Exam list contains 6 topics with maximal assessment of 5 points each, summing
up in total to 30 points.
5 p. - The task is executed completely, precisely and exhaustively. The special ter-
minology is proper. The student knows material and the corresponding literature
very well. There are no mistakes made. Argumentation is on a high level.



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 345

4 p. - The execution of the task is almost complete, but some details are miss-
ing and some inessential errors are observed. Student knows material and is well
aware of the corresponding literature. There are no mistakes made. Argumentation
is good.
3 p. - The execution of the task is incomplete. Student knows the curriculum ma-
terial but some mistakes are observed.
2 p. - The execution of the task is incomplete or wrong. Student knows the cur-
riculum material but some essential drawbacks are observed. Argumentation is
fragmentary.
1 p. - Only some fragments of the topic are presented. Argumentation is not cor-
rect. The absence of the deep knowledge is observed.
0 p. - The execution is not adequate to the task, or is not given at all.

Final/additional exam:
Maximal total point for the final/additional exam is 40.
A student who could not receive at least 30 points in total in the ongoing activity
and the mid-semester exam will not be admitted to the final/additional exam. Min-
imum positive assessment of the final/additional exam is 21 points.
The final/additional exam is conducted in the written form. Student should be able
to present the knowledge of the studied topics. Examination list contains 8 topics,
with maximal assessment of 5 points each, summing up in total to 40 points.
5 p. - The task is executed completely, precisely and exhaustively. The special ter-
minology is proper. The student knows material and the corresponding literature
very well. There are no mistakes made. Argumentation is on a high level.
4 p. - The execution of the task is almost complete, but some details are miss-
ing and some inessential errors are observed. Student knows material and is well
aware of the corresponding literature. There are no mistakes made. Argumentation
is good.
3 p. – Initial argumentation is basically correct, but further steps are incorrect or
incomplete. The answer is incomplete. Student knows the curriculum material but
some mistakes are observed.
2 p. - The execution of the task is incomplete or wrong. Student knows the cur-
riculum material but some essential drawbacks are observed. Argumentation is
fragmentary.
1 p. - Only some fragments of the topic are presented. Argumentation is not cor-
rect. The absence of the deep knowledge is observed.
0 p. - The execution is not adequate to the task, or is not given at all.
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Main Sources

1. B. C. Hall. Quantum theory for mathematicians. Springer, Graduate texts in
mathematics, 267, 2013. CD 7044.1, Central Library of GTU

2. D. N. Zarnadze, D. Ugulava. On a central algorithm for calculation of the in-
verse of the harmonic oscillator in the spaces of orbits. Journal of Complex-
ity, V.68, February 2022, 101599. https://doi.org/10.1016/j.jco.2021.1015995

3. D. Ugulava, D. N. Zarnadze, On a linear generalized central spline algorithm
of computerized tomography, Proc. A. Razmadze Math. Inst. 168 (2015)
129-148. 2015. CD 7044.4, Central Library of GTU

Additional Sources
4. D. Ugulava, D. N. Zarnadze, Generalized spline algorithms and conditions

of their linearity and centrality, Proc. A. Razmadze Math. Inst. 160 (2012)
143–164. CD 7044.5, Central Library of GTU

5. A. Quarteroni, R. Sacco, F. Saleri. Numerical Mathematics. Springer 2007.
CD 2414, Central Library of GTU

6. C. Woodford, C. Phillips. Numerical Methods with Worked Examples: Mat-
lab Edition. Springer 2012. CD 2414, Central Library of GTU

7. D. N. Zarnadze, Fréchet spaces with some classes of proximal subspaces,
Izv. Ross. Akad. Nauk, Ser. Mat. 50, No. 4(1986) 711-725 (in Russian);
translation in Izv. Math.50, No.5(1986), 935–948. CD 7044.8, Central Li-
brary of GTU

8. D. N. Zarnadze, On some topological and geometrical properties of Fréchet–
Hilbert spaces. Russ. Acad. Sci., Izv., Math. 41, No. 2, 273-288 (1993);
transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 56, No.5, 1001–1020 (1992).
CD 7044.9, Central Library of GTU
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[42] J. Dieudonne, La dualité dans les espaces vectoriels topologiques. Ann. Sci.
Ecole Norm. Sup. (3) 59 (1942), 107–139.

[43] J. Dieudonne, L. Schwartz, La dualité dans les espaces (F ) et (LF ), Ann.
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on the theorem of Marčenko, Bull. Polish Acad. Sci. Math. 33 (1985), no.
9-10, 511–515.

[90] P.-J. Laurent, Approximation et Optimisation, Collection Enseignement des
Sciences [Collection: The Teaching of Science], No. 13. Hermann, Paris,
1972; Russian translation: Mir, Moscow, 1975.

[91] C. Li, Strong uniqueness of the restricted Chebyshev center with respect to
an RS-set in a Banach space, J. Approx. Theory 135 (2005), no. 1, 35–53.

[92] J. Lindenstrauss, L. Tzafriri, On the complemented subspaces problem, Is-
rael J. Math. 9 (1971), 263–269.

[93] S. Liu, Generalized functions associated with self-adjoint operators, J. Aus-
tral. Math. Soc. Ser. A 68 (2000), no. 3, 301–311.

[94] A. K. Louis, Analytishe Methoden in der Computer Tomographie, Habilita-
tionsschrift, Fachbereich Mathematik der Universität Münster, 1981.

[95] A. K. Louis, Orthogonal function series expansions and the null space of the
Radon transform, SIAM J. Math. Anal. 15 (1984), no. 3, 621–633.

[96] A. K. Louis, Approximate inverse for linear and some nonlinear problems,
Inverse Problems 12 (1996), no. 2, 175–190.

[97] L. A. Lusternik, V. J. Sobolev, Elements of Functional Analysis, Interna-
tional Monographs on Advanced Mathematics and Physics. Hindustan Pub-
lishing Corp., Delhi; Halsted Press [John Wiley & Sons, Inc.], New York,
1974; Russian original: “Nauka”, Moscow, 1965.

[98] A. V. Marchenko, Selfadjoint differential operators with an infinite number
of independent variables (in Russian), Mat. Sb. (N.S.) 96(138) (1975), 276–
293, 343–344.

[99] G. I. Marchuk, V. I. Agoshkov, Introduction to Projection-Grid Methods (in
Russian), “Nauka”, Moscow, 1981.

[100] S. Mazur, W. Orlicz, Sur les espaces metriques lineaires. I, II, Studia Math.
10 (1948), 184–208, ibid. 13 (1953), 137–179.



Central Spline Algorithms in the Hilbert and Frechet Spaces of Orbits 355

[101] R. Meise, D. Vogt, A characterization of the quasinormable Frechet spaces,
Math. Nachr. 122 (1985), 141–150.

[102] G. Metafune, V. B. Moscatelli, Quojection and prequojections, in: Advances
in the theory of Frechet spaces (Istanbul, 1988), 235–254, NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci., 287, Kluwer Acad. Publ., Dordrecht, 1989.

[103] G. Metafune, V. B. Moscatelli, Complemented subspaces of sums and prod-
ucts of Banach spaces, Ann. Mat. Pura Appl. (4) 153 (1988), 175–190
(1989).

[104] G. Metafune, V. B. Moscatelli, Generalized prequojections and bounded
maps, Results Math. 15 (1989), no. 1-2, 172–178.

[105] S. G. Mikhlin, Variational Methods in Mathematical Physics (in Russian),
Second edition, revised and augmented, Izdat. “Nauka”, Moscow, 1970.
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[154] T. Terzioğlu, M. Yurdakul, Restrictions of unbounded continuous linear op-
erators on Frechet spaces, Arch. Math. (Basel) 46 (1986), no. 6, 547–550.

[155] V. M. Tikhomirov, Approximation theory, in: Current problems in math-
ematics. Fundamental directions, Vol. 14 (Russian), 103–260, 272, Itogi
Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. In-
form., Moscow, 1987.

[156] A. N. Tikhonov, On the stability of inverse problems, C. R. (Doklady) Acad.
Sci. URSS (N.S.) 39 (1943), 176–179.

[157] J. F. Traub, G. W. Wasilkowski, H. Wojniakowski, Information, uncer-
tainty, complexity, Department of computer Science columbia University,
New York, 1980.

[158] J. F. Traub, G. W. Wasilkowski, H. Wozniakowski, Information-Based Com-
plexity, Computer Science and Scientific Computing. Academic Press, Inc.,
Boston, MA, 1988.

[159] H. Triebel, Erzeugung nuklearer lokalkonvexer Räume durch singulare Dif-
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