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წინასიტყვაობა 

თანამედროვე საინჟინრო პრაქტიკაში კომპოზიტური მასალები სულ 
უფრო ფართოდ იკავებენ წამყვან ადგილს, ავიაციის, კოსმოსური ტექნიკის, 
ტრანსპორტის, ენერგეტიკისა და მანქანათმშენებლობის სხვადასხვა 
მიმართულებაში. მათი გამოყენება განპირობებულია თვისებების უნიკალური 
კომბინაციით: მაღალი ხვედრითი სიმტკიცითა და სიხისტით, მასის 
მნიშვნელოვანი შემცირების შესაძლებლობით, კონსტრუქციული ფორმების 
თავისუფალი მოდელირებითა და საექსპლუატაციო მახასიათებლების 
წინასწარ განსაზღვრული მართვის შესაძლებლობით. ეს უპირატესობები 
განსაკუთრებით მნიშვნელოვანია საფრენი აპარატების კონსტრუქციებისთვის, 
სადაც მასისა და სიმტკიცის ოპტიმალური თანაფარდობა პირდაპირ 
განსაზღვრავს მათ საფრენოსნო და ეკონომიკურ ეფექტიანობას. 

კომპოზიტური მასალების ფართო დანერგვასთან ერთად მკვეთრად 
გამოიკვეთა მათი მექანიკური ქცევის კვლევის სირთულე, რაც არსებითად 
განსხვავდება ტრადიციული მეტალური მასალებისთვის დამახასიათებელი 
კანონზომიერებებისგან. პოლიმერულ მატრიცაზე დაფუძნებული ბოჭკოვანი 
კომპოზიტები, როგორც წესი, ხასიათდება ანიზოტროპიით, სტრუქტურული 
არაერთგვაროვნებით და დროზე დამოკიდებული დეფორმაციული 
პროცესებით. ამგვარ მასალებში ძაბვებსა და დეფორმაციებს შორის კავშირი 
მხოლოდ მყისიერი დატვირთვით არ შემოიფარგლება და მნიშვნელოვან როლს 
ასრულებს დროის ფაქტორი, რაც ცოცვადობისა და რელაქსაციის მოვლენებში 
ვლინდება. 

აღნიშნული თავისებურებების გამო, კომპოზიტური მასალების ანალიზი 
კლასიკური „მასალათა გამძლეობის“ ჩარჩოებში ხშირად არ იძლევა 
დამაკმაყოფილებელ შედეგებს. პრაქტიკა ცხადყოფს, რომ მცირე ძაბვების 
არეშიც კი მრავალი კომპოზიტური მასალისთვის წრფივი დეფორმირების 
დიაპაზონი შეზღუდულია, ხოლო არაწრფივი ეფექტების უგულებელყოფამ 
შეიძლება გამოიწვიოს კონსტრუქციის არასრულყოფილი დაპროექტება და 
ექსპლუატაციისას არასასურველი შედეგები. შესაბამისად, განსაკუთრებულ 
მნიშვნელობას იძენს ისეთი თეორიული მიდგომების განვითარება, რომლებიც 
ადეკვატურად აღწერს დრეკად-ბლანტი მასალების რეალურ ქცევას. 

წარმოდგენილი მონოგრაფია ეძღვნება კომპოზიტური მასალების 
რეოლოგიური თვისებების კვლევას მოდელების თეორიის საფუძველზე. 
ნაშრომში განხილულია დრეკადი და ბლანტი ელემენტების სხვადასხვა 
კომბინაციით აგებული მექანიკური მოდელები, რომელთა საშუალებით 
შესაძლებელია კომპოზიტების დეფორმაციის პროცესების, ცოცვადობისა და 
რელაქსაციის, როგორც თვისობრივი, ისე რაოდენობრივი აღწერა. 



7 
 

განსაკუთრებული ყურადღება ეთმობა მაქსველის, კელვინ–ფოიხტისა და მათი 
განზოგადებული სამ, ოთხ და ხუთელემენტიანი მოდელების ანალიზს, მათი 
კლასიფიკაციისა და გამოყენების შესაძლებლობების შეფასებას. 

მონოგრაფიაში წარმოდგენილი თეორიული კვლევა ემყარება 
რეოლოგიური დიფერენციალური განტოლებების გამოყვანასა და მათ ამოხსნას 
სპეციფიკურ სასაზღვრო პირობებში. ნაჩვენებია, რომ ელემენტების 
რაოდენობის ზრდა მოდელში, ერთი მხრივ, ზრდის მათემატიკური აპარატის 
სირთულეს, თუმცა, მეორე მხრივ, იძლევა ექსპერიმენტულ მონაცემებთან 
გაცილებით უკეთესი შეთავსების შესაძლებლობას. ამ თვალსაზრისით, ოთხ და 
ხუთელემენტიანი განზოგადებული მოდელები წარმოადგენს მნიშვნელოვან 
ინსტრუმენტს კომპოზიტური მასალების დროზე დამოკიდებული მექანიკური 
ქცევის ადეკვატური აღწერისთვის. 

ნაშრომის შინაარსი აგებულია ლოგიკური თანმიმდევრობით, 
კომპოზიტური მასალების ზოგადი დახასიათებიდან და მათი გამოყენების 
პრაქტიკული მაგალითებიდან, რეოლოგიური მოდელების დეტალურ 
თეორიულ ანალიზამდე და საინჟინრო გაანგარიშებებში მათი გამოყენების 
შესაძლებლობების განხილვამდე. განსაკუთრებული აქცენტი კეთდება 
საავიაციო კონსტრუქციებზე, სადაც კომპოზიტური თხელკედლიანი 
სივრცითი ელემენტები მუშაობენ რთულ, დროზე დამოკიდებულ 
დატვირთვებზე და მათი სანდოობის უზრუნველყოფა პირდაპირ კავშირშია 
გამოყენებული მოდელების სიზუსტესთან. 

მონოგრაფია განკუთვნილია ინჟინრების, მკვლევრებისა და უმაღლესი 
საფეხურის სტუდენტებისთვის, რომლებიც მუშაობენ კომპოზიტური 
მასალების მექანიკის, საავიაციო კონსტრუქციების პროექტირებისა და 
რეოლოგიური მოდელირების სფეროში. ნაშრომი შეიძლება გამოყენებულ 
იქნეს როგორც სასწავლო-მეთოდური მასალა ბაკალავრიატის, 
მაგისტრატურისა და დოქტორანტურის საფეხურებზე, ასევე პრაქტიკული 
სახელმძღვანელო სპეციალისტებისთვის, რომლებიც დაკავებულნი არიან 
კომპოზიტური კონსტრუქციების ანალიზითა და დაპროექტებით. 

წინამდებარე კვლევა განხორციელდა შოთა რუსთაველის საქართველოს 
ეროვნული სამეცნიერო ფონდის მხარდაჭერით და ასახავს ავტორის 
მრავალწლიანი თეორიული და პრაქტიკული საქმიანობის შედეგებს. არის 
მოლოდინი, რომ მონოგრაფიაში წარმოდგენილი მიდგომები და დასკვნები 
ხელს შეუწყობს კომპოზიტური მასალების მექანიკის შემდგომ განვითარებას 
და მათი გამოყენების ეფექტიანობის ზრდას თანამედროვე საინჟინრო 
პრაქტიკაში. 
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Preface 

In contemporary engineering practice, composite materials are increasingly 
assuming a leading role across a wide range of fields, including aviation, aerospace 
engineering, transportation, energy systems, and mechanical engineering. Their 
widespread adoption is driven by a unique combination of properties, such as high 
specific strength and stiffness, significant potential for weight reduction, freedom in 
structural form design, and the ability to purposefully tailor operational characteristics. 
These advantages are particularly critical for aircraft structures, where an optimal 
balance between mass and strength directly determines flight performance and 
economic efficiency. 

Along with the extensive implementation of composite materials, the 
complexity of studying their mechanical behavior has become increasingly evident, as 
it differs fundamentally from the laws governing traditional metallic materials. Fiber-
reinforced composites with polymer matrices are typically characterized by anisotropy, 
structural heterogeneity, and time-dependent deformation processes. In such 
materials, the relationship between stresses and strains is not limited to instantaneous 
loading conditions; instead, the time factor plays a significant role, manifesting itself in 
creep and relaxation phenomena. 

Due to these characteristics, the analysis of composite materials within the 
framework of classical “strength of materials” often fails to yield satisfactory results. 
Practical experience demonstrates that even in the low-stress regime, the range of 
linear deformation for many composites is limited, and neglecting nonlinear effects 
may lead to uneconomical structural designs or undesirable outcomes during 
operation. Consequently, the development of theoretical approaches that adequately 
describe the actual behavior of viscoelastic materials becomes particularly important. 

The present monograph is devoted to the investigation of the rheological 
properties of composite materials based on the theory of mechanical models. The work 
examines mechanical models constructed from various combinations of elastic and 
viscous elements, which enable both qualitative and quantitative descriptions of 
deformation processes, creep, and relaxation in composites. Special attention is given 
to the analysis of the Maxwell and Kelvin–Voigt models, as well as their generalized 
three-, four-, and five-element extensions, including their classification and assessment 
of applicability. 

The theoretical research presented in this monograph is grounded in the 
derivation and solution of rheological differential equations under specific boundary 
conditions. It is shown that increasing the number of elements in a model, on the one 
hand, leads to greater mathematical complexity, while on the other hand, provides 
significantly improved agreement with experimental data. From this perspective, 
generalized four- and five-element models represent an important tool for the adequate 
description of the time-dependent mechanical behavior of composite materials. 

The content of the monograph is structured in a logical sequence, progressing 
from a general characterization of composite materials and practical examples of their 
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application to a detailed theoretical analysis of rheological models and a discussion of 
their use in engineering calculations. Particular emphasis is placed on aerospace 
structures, where composite thin-walled spatial elements are subjected to complex, 
time-dependent loads, and where ensuring reliability is directly linked to the accuracy 
of the models employed. 

This monograph is intended for engineers, researchers, and advanced-level 
students engaged in the mechanics of composite materials, the design of aerospace 
structures, and rheological modeling. It may be used as an educational and 
methodological resource at the undergraduate, master’s, and doctoral levels, as well as 
a practical reference for specialists involved in the analysis and design of composite 
structures. 

The present research was carried out with the support of the Shota Rustaveli 
National Science Foundation of Georgia and reflects the results of the author’s many 
years of theoretical and practical work. It is expected that the approaches and 
conclusions presented in this monograph will contribute to the further development 
of composite materials mechanics and to the increased efficiency of their application 
in modern engineering practice. 
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შესავალი 

მრავალფენიანი თხელკედლიანი კონსტრუქციები ფართოდ 
გამოიყენება საავიაციო და აეროკოსმოსურ დარგებში, რაკეტების 
მშენებლობაში, სატრანსპორტო, ქიმიურ, ენერგეტიკულ, 
მანქანათმშენებლობასა და ტექნიკის სხვა დარგებში. საფრენ აპარატებში მათი 
გამოყენება კონსტრუქციების სიმტკიცის გაზრდითა და წონის საგრძნობი 
შემცირების აუცილებლობითაა გამოწვეული. რიგ შემთხვევებში ეს ბგერითი, 
თბო- და ვიბროსაიზოლაციო მოთხოვნების უზრუნველყოფითაა 
განპირობებული. ამ აუცილებელი თავისებურებების ერთობლიობა 
უზრუნველყოფილია მრავალფენიანი კონსტრუქციების ცალკეული 
ფენებისთვის სხვადასხვა სახის მასალების გამოყენებით. მზიდი ფენებისთვის 
გამოიყენება კომპოზიციური მასალები. 

მასის პრობლემა მუდმივად ასტიმულირებს საავიაციო ტექნოლოგიების 
განვითარებას გაუმჯობესებული მასალების მიღების, ახალი კონსტრუქციული 
კონცეფციის, კონსტრუქციების მუშაობის უფრო მეტად სრულყოფილად 
აღქმის და ანალიზის   მიმართულებით. მასალის შერჩევა და კონსტრუქციის 
პროექტირება უნდა წარიმართოს არამარტო მექანიკური თვისებების ანალიზის 
ან კონსტრუქციული ფუნქციის მიხედვით, ასევე საექსპლუატაციო 
მახასიათებლების და ღირებულების აუცილებელი გათვალისწინებით. 

საფრენი აპარატების პროექტირება წარმოებს ისე, რომ მოცემული 
მოთხოვნების დაკმაყოფილების გარდა გარანტირებული იყოს აუცილებელი 
საფრენოსნო ხარისხი, მოცემული სასარგებლო დატვირთვის, ფრენის სიშორის, 
კრეისერული სიჩქარის, ფრენის სიმაღლის გათვალისწინებით. თანაბარ 
პირობებში საუკეთესოა ყველაზე მცირე მასის მქონე კონსტრუქცია. აქედან 
გამომდინარეობს მარტივი დასკვნა, რომ თვითმფრინავი, რომელიც 
დამზადებულია მსუბუქი მასალისგან, იქნება ყველაზე ეფექტური. ეს დასკვნა 
უპირველეს ყოვლისა ეხება კომპოზიციურ მასალებს [20]. 

მასალის სიმტკიცე და დრეკადობის მოდული განსაზღვრავს გარსული 
კონსტრუქციის ქცევას. ეს სწორედ ის მახასიათებლებია რომლის სიდიდეც 
მნიშვნელოვნად შეიძლება გაიზარდოს კომპოზიციური მასალების 
გამოყენების შემთხვევაში. 

ტექნიკის სხვა დარგებში პოლიმერული მასალების გამოყენების 
პრაქტიკა, ცხადყოფს რომ მეტალებისაგან განსხვავებით,  მათთან მუშაობა 
ქმნის ნაკლებ სირთულეს გარემო პირობების გავლენებთან მიმართებაში. ასევე, 
კომპოზიციური მასალების და კონსტრუქციების ლაბორატორიულმა კვლევამ 
დაადასტურა, რომ შესაძლებელია მნიშვნელოვნად გაიზარდოს დაღლილობის 
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სიმტკიცე და რღვევისადმი წინააღმდეგობა ასეთი კომბინირებული მასალების 
სისტემების გამოყენებით. 

 საავიაციო ტექნიკის მიმართულებით ფართო გამოყენება აქვს  
„ბოჭკოვანი მატრიცა + ებონიტური შემავსებელი“ ტიპის კომპოზიციურ 
მასალებს, რაც უპირატესად გამოწვეულია იმით, რომ უშუალოდ ხდება 
კონკრეტული გეომეტრიული პარამეტრების მქონე (რთული ფორმის 
ზედაპირები) კონსტრუქციის დამზადება. ლითონებისგან განსხვავებით, აღარ 
არის საჭირო რაიმე შუალედური, ნახევარფაბრიკატის ფორმის ნამზადების 
არსებობა, რომელთა შემდგომი რთული ტექნოლოგიური დამუშავების გზით 
მიიღწეოდა სასურველი ფორმის კონსტრუქციის მიღება. გარდა ამისა, საკმაოდ 
დაბალია მათი ხვედრითი წონა. ასევე შესაძლებელია დამზადდეს 
კონკრეტული სიმტკიცის მახასიათებლების მქონე კონსტრუქცია უშუალოდ 
შემადგენელი ბოჭკოების მასალის, მათი ორიენტაციის, დამზადების 
ტექნოლოგიის და სხვა შერჩევის გზით. 

კომპოზიციური მასალების გამოყენება კონსტრუქტორისგან მოითხოვს 
ორი გარემოების გათვალისწინებას: პირველი არის ის, რომ თვითონ 
კონსტრუირება ხდება გაცილებით რთული, რადგან აუცილებელია 
მთლიანობაში გათვალისწინებული იქნას მასალის  ფენებში ბოჭკოების 
მიმართულება და მასთან დაკავშირებული თვისებების ცვლილება. მეორეს 
მხრივ, შესაძლოა გამოყენებული იქნას აეროდინამიკული მახასიათებლების 
(აეროდინამიკული პროფილი, ზედაპირის სისუფთავე, გაბარიტული 
პარამეტრების თანაფარდობა) გაუმჯობესების მრავალი კონსტრუქციული 
გადაწყვეტა. ეს მოითხოვს კონსტრუქტორისგან მრავალმხრივ ტექნიკურ 
ცოდნას და ინოვაციურ აზროვნებას, რაც მნიშვნელოვანია პერსპექტიული 
საფრენი აპარატების დაპროექტებისთვის. გარდა ამისა, კომპოზიციური 
მასალები საშუალებას იძლევა შემცირდეს თვითმფრინავის, როგორც 
წარმოების, ასევე ექსპლუატაციის ღირებულება და გაიზარდოს მისი 
საიმედოობა. ახალი კონსტრუქციული იდეები, კომპოზიციური მასალების 
გამოყენებით, საშუალებას იძლევა მნიშვნელოვნად გაუმჯობესდეს 
თვითმფრინავის საფრენოსნო მახასიათებლები [20]. 

კომპოზიციური სხეული თავისთავად გულისხმობს იმას, რომ ის 
სხვადასხვა თვისებების მქონე სხეულთა ნაერთს - კომპოზიციას წარმოადგენს, 
რომელსაც მთლიანობაში გააჩნია ისეთი ახალი თვისება, რაც მასში შემავალი 
ცალკე აღებული სხეულების თვისებებისგან განსხვავდება [8]. იმისათვის, რომ 
შეიქმნას ისეთი კომპოზიციური სხეული, რომელსაც მუშაობის პირობების 
მიხედვით წინასწარ მოცემული თვისებების მქონე მექანიკური 
მახასიათებლები ექნება, ტექნიკურად რთული ამოცანაა და მისი გადაწყვეტა 
მრავალ ფაქტორთან არის დაკავშირებული. კერძოდ, ნაკლებად არის 
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შესწავლილი დეფორმაციული და სიმტკიცის თვისებები დროის ფაქტორის 
გათვალისწინებით, პროექტირებისა და გაანგარიშების სრულყოფილი 
მეთოდების არარსებობა და სხვა ფაქტორები, რომლებიც ამუხრუჭებენ 
პრაქტიკაში კომპოზიციური სხეულების ფართო დანერგვას. ამის მიუხედავად, 
დღეის მდგომარეობით, მაინც მიღწეულია უაღრესად მნიშვნელოვანი 
შედეგები. 

„ბოჭკოვანი მატრიცა + ებონიტური შემავსებელი“ ტიპის 
კომპოზიციური მასალების ძაბვებსა და დეფორმაციებს შორის კავშირი შეიცავს 
დროის ფაქტორსაც, ანუ მათი დეფორმაცია, გარდა ძაბვებისა, დამოკიდებლია 
დროზეც. ასეთ სხეულებს ზოგადად დრეკად-ბლანტ სხეულებს უწოდებენ. 
მცირე ძაბვების შემთხვევაში, ბლანტი დრეკადობის თეორიის პრინციპების 
გამოყენებით, დამაკმაყოფილებელ შედეგებს იძლევა დეფორმაციის წრფივი 
მიახლოება, მაგრამ ზოგიერთი კომპოზიციური სხეულისთვის წრფივი 
დეფორმირების არე ძალიან ვიწროა და ასეთი მასალის გამოყენება 
კონსტრუქციაში არაეკონომიურია. ეს კი ბიძგის მიმცემია იმისა, რომ 
აუცილებელია შემუშავდეს კომპოზიციური მასალებისთვის დეფორმირების 
არაწრფივი თეორია.  

დაზუსტებისთვის, საჭიროა განიმარტოს, რომ პოლიმერულ 
კომპოზიციურ მასალებს არ გააჩნია „მასალათა გამძლეობა“, ამიტომ ყოველი 
კონკრეტული ნიმუში ინდივიდუალურად უნდა იქნას შესწავლილი [8]. 
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თავი 1. კომპოზიტური მასალების დახასიათება 

1.1 თანამედროვე კომპოზიტების სპეციფიკურობა და მათი 
არაერთგვაროვნება 

კომპოზიტების კვლევის პროცესში მათი ანიზოტროპია და 
არადრეკადობა მოითხოვს ისეთი თეორიების ჩამოყალიბებას, რომელიც უფრო 
დამახასიათებელია მასალისთვის, ვიდრე დრეკადობის თეორია და 
ანიზოტროპული ტანის რეოლოგია, რომელიც ითვალისწინებს მასალის 
სტრუქტურას. სიძნელეები, რომელიც ამ გზაზე დგას, აშკარაა. ამიტომ 
აუცილებელია ამ საკითხისადმი ინჟინრული მიდგომა. მოდელის სიღრმე უნდა 
შეესაბამებოდეს კომპოზიტის ზუსტ თვისებებს მასალებთან 
ურთიერთქმედებისას [15]. ამასთან დაკავშირებით უნდა აღინიშნოს ა.გ. 
სკუდროს და ფ. ბულავსის  შრომები არმირებული ფირფიტის სტრუქტურის 
თეორიაზე [87]. 

როცა არმირებული ბოჭკოს ტრაექტორია და მთავარი ძაბვები არ 
ემთხვევა ერთმანეთს, არსებითია მასალის სიბლანტის მახასიათებელი. 
აღსანიშნავია, რომ პოლიმერული მატრიცები კომპოზიტებს ძლიერ 
მგრძნობიარეს ხდის ძალების, ტემპერატურის, დამზადების ტექნოლოგიის და 
ექსპლუატაციის რეჟიმის მიმართ. რიგ შემთხვევებში, კომპოზიტების 
ტექნოლოგიური უპირატესობა, განსაკუთრებით ოპტიმიზაციის ანალიზური 
მეთოდით გადაწყვეტისას, იყო ზედმეტად გაზრდილი. 

კომპოზიტური კონსტრუქციების პროექტირებისას საგრძნბლად დიდ 
როლს ასრულებს ტექნოლოგიური შეზღუდვები, ვიდრე მეტალისაგან 
დამზადებული კონსტრუქციებისთვის. განსაკუთრებით მგრძნობიარეა ისეთი 
პარამეტრები, როგორიცაა ფენებშორისი ძვრის წინაღობა და განივი მოწყვეტა. 

ბოლო დროს დიდი ყურადღება ექცევა რღვევის პრობლემას, მათ შორის, 
კომპოზიტების ნგრევის სპეციფიკურ სახეებს, ისეთი როგორიცაა განშრევება 
და აშრევება, ბოჭკოების რღვევა მატრიცაში და სხვა. შემოთავაზებულია მყიფე 
მასალის რღვევის მოდელი, როცა მასზე ხანგრძლივად მოქმედი 
დატვირთვების გამო ჩნდება ბზარები, რომელიც იზრდება დროში და ხდება 
გახლეჩა. ბზარების განვითარების პროცესის აღწერისთვის შემოიტანება 
დაზიანების პარამეტრები. გამოყენებული იდეა გახდა ნაყოფიერი ცოცვადობის 
სტრუქტურული თეორიისა და არმირებული ფირფიტის ხანგრძლივი 
სიმტკიცის განვითარების საქმეში.  

კომპოზიტების მექანიკური თვისებები მეტალებისგან განსხვავებით, 
მრავალი ექსპერიმენტული მუდმივით ხასიათდება. მათი გამოთვლა 
დაკავშირებულია არსებულ მეთოდურ სიძნელეებთან. პრაქტიკაში ცნობილია 
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მრავალი სხვადასხვა ფორმა, ზომა და ნიმუშის დამზადების ტექნოლოგიები, 
ექსპერიმენტის მეთოდიკა. ყოველივე ამას მივყავართ შედეგების 
შეუჯერებლობასთან და კომპოზიტებზე, როგორც კონსტრუქციულ მასალებზე, 
იქმნება ურთიერთსაწინააღმდეგო აზრები. მექანიკური გამოცდებისადმი 
რეალური მიდგომა მოითხოვს გარკვეული მახასიათებლების რიცხვის მკაფიო 
რეგლამირებას, კომპოზიტების სიმტკიცისა და სიხისტის მეთოდების 
დადგენას. ყოველივე ეს აძლიერებს არსებული მეთოდების შეფასებისა და 
განზოგადების კრიტიკულ მიდგომას. მსოფლიო მიღწევების 
გათვალისწინებით, ყველაზე პერსპექტიული გამოცდის მეთოდები 
თანამედროვე ბოჭკოვანი კომპოზიტებისა გაჭიმვაზე, კუმშვაზე, ძვრასა და 
ღუნვაზე ბრტყელ და წრიულ ნიმუშებზე ამოკრებილი და განხილულია [94] 
ლიტერატურაში. კვლევის მეთოდები და სხვადასხვა კლასის კომპოზიტების 
საფუძვლიანი გამოყენების სფერო ემყარება მდიდრულ რეალურ მასალას. 

 

1.2 საფრენი აპარატების დაპროექტება კომპოზიტური მასალების 
გამოყენებით  

კონსტრუქტორების ყურადღების ცენტრში დგას საფრენი აპარატების 
საფრენოსნო მახასიათებლების: სიჩქარე, მასა, სიმძლავრე და ა.შ. სრულყოფა. 
მაგრამ ამის გამო არ შეიძლება სხვა პარამეტრების უგულებელყოფა, რომელიც 
განსაზღვრავს თვითმფრინავის სამომხმარებლო ხარისხს, როგორიცაა 
ხარჯების შემცირება დამზადებასა და ექსპლუატაციისას, უსაფრთხოების 
გაზრდაზე, საფრენი მახასიათებლების გაუმჯობესებაზე. რამდენიმე მათგანი 
შეიძლება განსაზღვროს ქვესისტემების, მასალების და ა.შ. ოპტიმალურმა 
შერჩევამ. ამასთან დაკავშირებით კონსტრუქტორმა სიღრმისეულად უნდა 
იცოდეს საექსპლუატაციო მოთხოვნები და ასევე მასალების სამომსახურებლო 
თვისებები, რომელსაც ის აირჩევს და კონსტრუქციის გეომეტრია. 

თვითმფრინავის დაპროექტებისას კომპოზიტური მასალების 
გამოყენების დროს აუცილებელია ახლებური მიდგომა. ამის გამო იშლება 
კონსტრუქტორსა და მასალათმცოდნეს შორის გავლებული საზღვარი. 
კონსტრუქტორს შეუძლია გამოიყენოს კომპოზიტური მასალების 
ანიზოტროპია. კონკრეტული კვანძის ან აგრეგატის დამზადებისას ის მიაღწევს 
ოპტიმალურ რეზულტატებს ბოჭკოების მიმართულების ვარირებით და ამ 
გზით, დააპროექტებს მასალას ისევე როგორც კონსტრუქციას. როგორც 
აღინიშნა, ამ საქმეში კონსტრუქტორმა უნდა განსაზღვროს კვანძის ან 
აგრეგატის არამარტო გარე, არამედ შიდა კონსტრუქციაც. ეს პროცესი კი 
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განსხვავდება ტრადიციული მეთოდებისგან, რომელიც გამოიყენება 
მეტალებთან მიმართებაში. 

კომპოზიტური მასალების გამოყენება კონსტრუქტორისგან მოითხოვს 
ორი გარემოების გათვალისწინებას: პირველი არის ის, რომ თვითონ საფრენი 
აპარატის კონსტრუირება ხდება გაცილებით რთული, რადგან აუცილებელია 
მთლიანობაში გათვალისწინებული იქნას მასალის  ფენებში ბოჭკოების 
მიმართულება და მასთან დაკავშირებული თვისებების ცვლილება. მეორეს 
მხრივ, შესაძლოა გამოყენებული იქნას აეროდინამიკული მახასიათებლების 
(აეროდინამიკული პროფილი, ზედაპირის სისუფთავე, გაბარიტული 
პარამეტრების თანაფარდობა) გაუმჯობესების მრავალი კონსტრუქციული 
გადაწყვეტა. ეს მოითხოვს კონსტრუქტორისგან მრავალმხრივ ტექნიკურ 
ცოდნას და ინოვაციურ აზროვნებას, რაც მნიშვნელოვანია პერსპექტიული 
საფრენი აპარატების დაპროექტებისთვის. გარდა ამისა, კომპოზიტური 
მასალები საშუალებას იძლევა შემცირდეს თვითმფრინავის როგორც წარმოების 
ასევე ექსპლუატაციის ღირებულება და გაიზარდოს მისი საიმედოობა. ახალი 
კონსტრუქციული იდეები, კომპოზიტური მასალების გამოყენებით, 
მნიშვნელოვნად გააუმჯობესებს თვითმფრინავის საფრენოსნო 
მახასიათებლებს. 

 

1.3 საფრენ აპარატებში კომპოზიტური მასალების გამოყენების 
მაგალითები 

მინაპლასტები წარმოადგენს ყველაზე ადრეულ და ავიაციაში ხშირად 
გამოყენებად კომპოზიტურ მასალას. პირველად მათი გამოყენება მოხდა 40-იან 
წლებში, საავიაციო სარადარო მოწყობილობების დამზადებისას სამხედრო 
თვითმფრინავებზე, როცა საჭირო გახდა ისეთი მასალების არსებობა, რომელიც 
უზრუნველყოფდა აეროდინამიკური წინაღობის შემცირებას და ამავე დროს 
ექნებოდა დაბალი რადიოსიხშირული გაბნევა. ამ ტიპის ადრეულ 
კონსტრუქციებში იყენებდნენ მინის ქსოვილებს პოლიეთერული 
მაკავშირებლებით. თანამედროვე ამრეკლებში იყენებენ  არაქსოვილურ 
შემავსებელზე და ეპოქსიდურ ფისებზე დაფუძნებულ მინაპლასტებს. 

თავის მხრივ ამრეკლი წარმოადგენს მეორეხარისხოვან კონსტრუქციას, 
რადგანაც ის არ იღებს თვითმფრინავზე მოქმედ დატვირთვებს. მინაპლასტების 
გამოყენების სხვა მაგალითად გამოდგება თვითმფრინავის უკანა ნაწილები, 
ფრთის დაბოლოებები და სხვა ელემენტები [18]. თანამედროვეობაში 
მნიშვნელოვნად დაიხვეწა, უშუალოდ ადგილზე, კომპოზიტური მასალებისგან 
მსხვილმაშტანიანი დეტალების წარმოების ტექნოლოგია, რაც საშუალებას 
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იძლევა დამზადდეს არა მარტო მცირე ზომის მეორეხარისხოვანი, არამედ 
დიდი ზომის მნიშვნელოვანი დეტალები, მათ შორის ძალური კონსტრუქციები. 

სურ. 1.3.1-ზე მოცემულია მინაპლასტისგად დამზადებული 
თვითმფრინავის დეტალების რამდენიმე მაგალითი. 

 

სურ. 1.3.1 მინაპლასტისგან დამზადებული თვითმფრინავის 
დეტალები 

რაც შეეხება ბორო და ნახშირპლასტებს ისინი თავდაპირველად 
გამოყენებული იყო  სამხედრო აპარატების აგრეგატების დასამზადებლად. 
ტექნოლოგიების განვითარებასთან ერთად, დღესდღეობით სულ უფრო დიდი 
რაოდენობით ხდება მათი გამოყენება საავიაციო მრეწველობაში (როგორც 
სამხედრო, ასევე სამოქალაქო). ასეთი მასალების გამოყენება იძლევა 25%-იან 
ეკონომიას მასაში, ანალოგიური, სრულად მეტალური, ალუმინის 
კონსტრუქციის გამოყენებასთან შედარებით [32]. 

სურ. 1.3.2-ზე გამოსახულია „ბოინგ 737“ თვითმფრინავის 
ექსპერიმენტული ინტერცეპტორი, რომელიც დამზადებულია ეპოქსიდური 
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ნახშირპლასტისგან. ეს არის კონსტრუქციაში მასალის სტრუქტურის 
ოპტიმიზაციის მეთოდის გამოყენების კარგი მაგალითი. 

 

 

სურ. 1.3.2 „ბოინგ 737“ თვითმფრინავის ექსპერიმენტული 
ინტერცეპტორი. 1-მინაპლასტის ნერვიურა; 2-ალუმინის ფიტინგი და 

ლონჟერონი; 3-ალუმინის ფიჭური შემავსებელი;  4-ზედა და ქვედა 
შემონაკერი - ჯვარედინარმირებული ეპოქსიდური ნახშირპლასტი 

მოცემულ შემთხვევაში, ეპოქსიდური ნახშირპლასტი გამოყენებულია 
ინტერცეპტორის ზედა და ქვედა შემონაკერისთვის, ლონჟერონი და სამაგრი 
ფიტინგები დამზადებულია ალუმინისგან, დამაბოლოებელი ნერვიურა კი 
ეპოქსიდური მინაპლასტისგან. შემავსებლად გამოყენებულია ალუმინის ფიჭა, 
აქვე უნდა აღინიშნოს, რომ დღესდღეობით ფართო გამოყენება აქვს წებო-
მუყაოს ფიჭის და ქაფის ტიპის შემავსებლებს [18]. 

სტატიკურ გამოცდაზე ინტერცეპტორმა გაუძლო მაქსიმალური 
საანგარიშო დატვირთვის 169%-ს, რის გამოც გაღუნვა შემცირდა 20%-ით. 
მიღწეული მასის ეკონომია გამოვიდა 24% [33]. მასური და სიმტკიცის 
მახასიათებლების მნიშვნელოვანი გაუმჯობესების მიუხედავად, საჭიროა 
უფრო ზუსტი დათვლის მეთოდიკის გამოყენება (როგორიცაა სასრულ 
ელემენტთა მეთოდი) რათა მიღწეული იქნას ოპტიმიზაციის მეტი ხარისხი. 
გამოცდის შემდეგ ორი ასეთი ინტერცეპტორი დაყენებული იქნა „ბოინგ 737“-
ზე შემდგომი ხანგრძლივი ექსპლუატაციის მიზნით. 
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1.4 საფრენი აპარატის კონსტრუქციაზე მოქმედი დატვირთვები 

თვითმფრინავის პლანერის პროექტირება იწყება მოცემული საფრენი 
მახასიათებლების ანალიზით. ისინი ჩვეულებრივ აღიწერება თვითმფრინავის 
ჰაერში მდებარეობის მიხედვით და მოიცავს ისეთ პარამეტრებს, როგორიცაა 
შეტევის კუთხის დადებითი და უარყოფითი მნიშვნელობა, გადატვირთვა 
პიკირებიდან გამოსვლისას და სხვა. ისინი მოცემულია სამხედრო და 
სამოქალაქო საავიაციო ტექნიკის მოთხოვნებსა და ინსტრუქციებში [18]. 

ახალი თვითმფრინავების დაპროექტებისას აეროდინამუკულ მილში 
მოდელების გამოცდის შედეგების ანალიზით განისაზღვრება ამწევი ძალა და 
შუბლა წინააღმდეგობა, რომლებიც წარმოიქმნება ფრენის სხვადასხვა 
სტადიაზე. ისინი თავის მხრივ გამოიყენება ფრთებზე, ფიუზელაჟზე და 
ფრთასხმულობაზე მღუნავი მომენტების, მგრეხი დატვირთვების და ძვრის 
ძალების  განსაზღვისთვის და განაწილებისთვის, ამის გამო, ბუნებრივია, 
გათვალისწინებული უნდა იქნას სხვა მრავალი ფაქტორი, მათ შორის მკაცრად 
სპეციფიკური. მაგალითად დაკიდებული მოტოგონდოლები  შეიძლება 
გამოიცადოს უფრო მაღალ აჩქარებაზე, ვიდრე მთლიანი თვითმფრინავი. რის 
გამოც მისი  განთავსება უნდა წარიმართოს ფრთაზე მოქმედი მღუნავი და 
მგრეხი მომენტების საფუძვლიანი ბალანსირებით. მარტივად რომ ვთქვათ, 
თვითმფრინავის პროექტი მთლიანობაში წარმოადგენს აეროდინამიკული 
მოთხოვნების და კონსტრუქტორის შესაძლებლობების კომპრომისულ 
ვარიანტს. პროექტირების საწყის ეტაპზე წყდება ასევე მასალების არჩევის 
საკითხი. კომპოზიტური მასალების მომატებული სიმტკიცე და სიხისტე 
კონსტრუქტორებს შესაძლებლობას აძლევს უზრუნველყონ მზიდი 
ზედაპირების სექციის გათხელება და ფრთის ფარდობითი გაქანის გაზრდა 
ალუმინის კონსტრუქციასთან შედარებით. 
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1.5 საფრენი აპარატის კონსტრუქციული ელემენტების 
პროექტირება და დაშვებები 

მასალების არჩევისას კონსტრუქტორს ხელთ უნდა ჰქონდეს ე.წ. 
საანგარიშო დაშვებები. ის წარმოადგენს მონოფენის ან ფენოვანი მასალის 
თვისებების მაჩვენებელს გაჭიმვაზე, კუმშვაზე და ძვრაზე, რომლითაც 
დამზადებულია კონსტრუქციის ელემენტი. მონოფენები ანიზოტროპულია და 
ამის გამო კონსტრუქტორი ცნობარში ვერ აღმოაჩენს სიმტკიცის 
მახასიათებლების გამომსახველ ერთ კონკრეტულ მნიშვნელობას: დრეკადობის 
მოდულს, პუასონის კოეფიციენტს და ა.შ. როგორიც მეტალის შემთხვევაში 
იქნებოდა. ამის ნაცვლად გამოიყენება გრაფიკების სერიები, რომელზეც 
ილუსტრირებულია სიმტკიცის მოდულის ცვლილება ბოჭკოების 
მიმართულების დამოკიდებულებაზე. ამ მაჩვენებლების თეორიული 
მნიშვნელობები შესაძლოა მიღებული იქნას მიკრომექანიკის კანონების 
საფუძველზე, თუმცა პრაქტიკულად რეალიზებისთვის საჭიროა 
განისაზღვროს ექსპერმენტულად. გასათვალისწინებელია ასევე, რომ 
აღნიშნული პარამეტრები მნიშვნელოვნად არის დამოკიდებული მასალის 
ექსპუატაციის ტემპერატურაზე. 

შემდეგ სტადიას წარმოადგენს  კონსტრუქციის შიდა კვანძის 
გეომეტრიის შესახებ გადაწყვეტილების მიღება. ამისათვის შეიძლება 
გამოყენებული იქნას ინოვაციური მიდგომა, რომელიც უზრუნველყოფს 
ეფექტური კონსტრუქციული გადაწყვეტის პროდუქტიული საწარმოო 
ტექნოლოგიის გამოყენებას. მცირე თვითმფრინავების შემთხვევაში ეს 
შეიძლება უზრუნველყოფილი იქნას ინტეგრალური კონსტრუქციის 
დამზადებით, როგორიცაა შემონაკერი - ნერვიურა - ლონჟერონი, რომელიც 
საშუალებას იძლევა შემცირდეს დეტალების და აწყობის ოპერაციების 
რაოდენობა. 

ზოგჯერ კვანძის გეომეტრიის განსაზღვრისთვის წარმოებს მთელი 
კონსტრუქციის დატვირთვების ანალიზი. რთული კონსტრუქცია შეიძლება 
წარმოდგენილი იქნას როგორც სასრული ელემენტების ერთობლიობა. ისინი 
წარმოადგენს სამ და ოთხკუთხა (ზოგჯერ უფრო რთულ) მემბრანებს, ძვრაზე 
მომუშავე პანელებს,  ერთღერძიან ღეროებს. შემონაკერის იმიტაციისთვის 
გამოიყენება ბრტყელი ელემენტები. აღნიშნული ელემენტების ზომები აირჩევა 
დატვირთვის სურათის სირთულიდან და კონსტრუქციის გეომეტრიიდან. 
კომპიუტერის გამოყენებით შესაძლებელია მოცემულ პირობებში და 
დატვირთვებში კონსტრუქციის დეფორმაციის გამოთვლა, რის შედეგაც, 
წინასწარ დათვლებში შედის აუცილებელი კორექტირებები. გამარტივებულ 
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ელემენტებზე (მოდელებზე) მოქმედი დატვირთვები და ძალები გამოთვლება 
იგივე მეთოდით და შეესაბამება რეალურ კონსტრუქციას. 

ასეთი მიდგომა შესაძლებელია გამოყენებული იქნას კონსტრუქციის 
ცალკეული ნაწილის ანალიზისთვის, ხშირად ამოკვეთენ შეერთების ადგილებს 
და კვანძებს. დღესდღეობით არსებობს საკმაო რაოდენობის კვალიფიციური 
კომპიუტერული პროგრამა, რომლის საშუალებით მარტივად გადაწყდება 
აღნიშნული საკითხი. 

პროექტირების პროცესი დაკავშირებულია ასევე მრავალი 
კონსტრუქციული ელემენტის (ნიმუშის) დამზადებასთან, ისეთი როგორიცაა 
მცირე ზომის სამაგრი პანელები, შეერთების ადგილები, ნიმუშები 
ამონაჭრებით, მილისმაგვარი ნიმუშები და ა.შ. ისინი შემდგომ გამოიცდება 
დატვირთვის სიჩქარის, ტემპერატურების და საკმარისად სრულად 
წარმოებული დატვირთვის ინტენსიობის იმიტირებით. დატვირთვებით, 
რომელსაც უნდა გაუძლოს მითითებულმა ელემენტებმა, როგორც უფრო 
რთული კონსტრუქციის კვანძის შემადგენელმა ნაწილებმა. სხვადასხვა 
ელემენტების ხანგამძლეობის მახასიათებლები უნდა განისაზღვროს ადრეულ 
სტადიაზე, რათა შეტანილი იქნას აუცილებელი კორექტივები მისი 
კონსტრუქციის სრულყოფისთვის. 

განსახილველი პროცესის უკანასკნელ სტადია ანალოგიურია 
მეტალების შემთხვევისა და მდგომარეობს სრულმაშტაბიანი აგრეგატის 
გამოცდაში საანგარიშო დატვირთვების პირობებში. 

 

1.6. კომპოზიტური მასალების სიმტკიცე და სიხისტე 

თანამედროვე თვითმფრინავებს აქვთ პოლიმონოკოკური 
კონსტრუქცია, რომელიც შედგება ერთმანეთთან კოჭებით (ფერმებით) და 
სტრინგერებით დაკავშირებული თხელკედლიანი ფურცლებისგან, რათა 
აღმოფხვრილი იქნას მდგრადობის დაკარგვა. გარე შემონაკერი ან კედელი 
წარმოქმნის აგრეგატის (ფიუზელაჟი, ფრთა, სტაბილიზატორი) 
აეროდინამიკურ კონტურს. სიხისტის ელემენტები მაგრდება შემონაკერის 
შიდა ზედაპირზე და თავზე იღებს კონცენტრირებულ დატვირთვებს. ეს 
კონსტრუქცია დიდი ხნის მანძილზე ითვლებოდა აერონავტიკის გამოკვლევის 
ობიექტად და მნიშვნელოვნად განსხვავდება ჩვეულებრივი კონსტრუქციის 
აპარატებისაგან.  

სიხისტის ელემენტების გამოყენება კონტურის  საწყისი გადახრის 
თავიდან აცილების საშუალებას იძლევა, რომელიც გამოიწვევდა გარსის 
რღვევას, ხოლო შიდა წნევის გამოყენება უზრუნველყოფს თეორიული 



21 
 

მნიშვნელობის მიღებას. ზემოთ მოცემული გამოსახულებიდან ცხადია, რომ 
მასალის სიმტკიცე და დრეკადობის მოდული განსაზღვრავს გარსული 
კონსტრუქციის ქცევას. ეს სწორედ ის მახასიათებლებია რომლის სიდიდეც 
მნიშვნელოვნად შეიძლება გაიზარდოს კომპოზიციური მასალების 
გამოყენების შემთხვევაში. 

ტექნიკის სხვა დარგებში პოლიმერული მასალების გამოყენების 
პრაქტიკა, ცხადყოფს რომ მეტალებისაგან განსხვავებით,  მათთან მუშაობა 
ქმნის ნაკლებ სირთულეს გარემო პირობების გავლენებთან მიმართებაში. 

კომპოზიციური მასალების და კონსტრუქციების ლაბორატორიულმა 
კვლევამ დაადასტურა შესაძლებლობა მნიშვნელოვნად გაიზარდოს 
დაღლილობის სიმტკიცე და რღვევისადმი წინააღმდეგობა ასეთი 
კომბინირებული მასალების სისტემების გამოყენებით. 

არაერთგვაროვანი სტრუქტურის ბუნების მქონე მასალა თავისი 
ფიზიკურ მექანიკური ქცევით საკმაოდ მდიდარია, ვიდრე ერთგვაროვანი. 
კომპოზიტების დეფორმაცია და რღვევა სხვადასხვა სიტუაციაში იპყრობს 
მრავალი დარგის სპეციალისტების ყურადღებას. ბოჭკოებით არმირებული 
კომპოზიტის ელემეტს ყოველთვის აქვს ბზარები, რაც გამოწვეულია 
ტექნოლოგიის არასრულყოფილებით, ასევე მასალის იდეალური მოდელის არ 
ქონის გამო.  გ. ბარენბლანტის მიერ შემოთავაზებული „კანონური“ ნახაზის 
ფარგლებში მოცემული მოდელი, გვეუბნება, რომ კომპოზიტებში ბზარები 
შეადგენს ტანის საერთო საზღვრის ნაწილს. დატვირთვების გაზრდით, 
რათქმაუნდა, ბზარებიც განვითარდება. კომპოზიტები, დეფექტებისა და 
დამატებითი საზღვრების გამო, რომლებიც ეწინააღმდეგება მათში ბზარების 
განვითარებას, წარმოადგენს რღვევის მექანიკის კვლევის ობიექტს. ამ 
მიმართულებით სამუშაოთა რიცხვი განუწყვეტლივ იზრდება [18]. 

პერსპექტივები, რაც დაკავშირებულია კომპოზიტური მასალების 
დამუშავებასა და დანერგვასთან გვავალებს ანგარიშის მეთოდების და ამ 
მასალებისაგან დამზადებული კონსტრუქციების აუცილებელ შემდგომ 
განვითარებას. ამ კომპლექსურ საკითხზე მუშაობს კომპოზიტების საინჟინრო 
მექანიკა.  
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1.7 კომპოზიტური მასალების თვისებების აღწერა 

კომპოზიტი დროის მიხედვით იცვლის თვისებებს, ჩვეულებრივ 
ტემპერატურაზე ემორჩილება ცოცვადობისა და რელაქსაციის მოვლენებს, რაც 
მათი ერთ-ერთი ძირითადი უარყოფითი თვისებაა, რომლის 
გაუთვალისწინებლობა დაუშვებელია, რათა აცილებული იქნას საფრენი 
აპარატის ექსპლუატაციისას, შესაძლო კატასტროფული შედეგები. 

ასეთი ტიპის კომპოზიტების მექანიკური თვისებების აღსაწერად 
ძირითადად იყენებენ ორ მიდგომას: 

1) მოდელების თეორია, რომელიც დაფუძნებულია დრეკადი და 
ბლანტი ელემენტებისგან გარკვეული კომბინაციით შემდგარი სისტემების 
დეფორმაციის ხასიათის გამოკვლევით და კონკრეტულ მასალასთან მისი 
დაკავშირება ხდება შესაბამისი პარამეტრების შერჩევით [8].  

2) მემკვიდრეობის ანუ ბოლცმანის თეორია, რომლის მიხედვით: 
დრეკადი ძალები დამოკიდებულია არა მარტო მყისიერად მიღებულ 
გადაადგილებაზე, არამედ მის შემდგომ განვითერებულ დეფორმაციებზეც, 
რომლებიც დატვირთვის დროის ზრდასთან ერთად, თანდათანობით 
მცირდება. ასევე, დროის სხვადასხვა მომენტისთვის მიღებული 
დეფორმაციების გავლენა შეჯამდება, ანუ გაერთიანდება უშუალო შეკრების 
გზით. აქაც კონკრეტულ მასალასთან დაკავშირება ხდება შესაბამისი 
პარამეტრების შერჩევით [8]. 

უკანასკნელი იძლევა ექსპერიმენტთან შეთავსების ფართო 
შესაძლებლობას და დიდი სიზუსტის შედეგების მიღებას, თუმცა პრაქტიკული 
გამოყენების თვალსაზრისით დიდ სირთულეებთანაა დაკავშირებული, 
შესაძლებელია მხოლოდ რიცხვითი ან გაფიკული გამოსახულებების 
გამოყენება. თუმცა შემუშავდა ნახევრად ემპირიული მიდგომა, რომელიც 
თანამედროვე კომპიუტერული პროგრამების დახმარებით შესაძლებელს ხდის 
მარტივად და ზუსტად მოხდეს აღნიშნული საკითხის გადაწყვეტა, რაც ამ 
მეთოდის ფართოდ დანერგვის საშუალებას იძლევა [18]. 

რაც შეეხება მოდელების თეორიას, მიღებული შედეგების სიზუსტე, 
ექსპერმენტთან შეთავსების თვალსაზრისით, მცირედით ნაკლებია, თუმცა 
გამოყენების მხრივ საკმარისი. მოდელის დეფორმირების აღმწერი 
განტოლებები უმეტეს შემთხვევაში ამოხსნადია და აქვს ანალიზური ფორმა. ეს 
კი მნიშვნელოვნად ამარტივებს მისი გამოყენების შესაძლებლობას. დღემდე 
არსებული მონაცემებით გამოკვლეულია მხოლოდ მოდელების რამდენიმე 
მარტივი ვარიანტი (მაქსველის, კელვინ-ფოიხტის და მათი განზოგადებული 
შემთხვევის რამდენიმე ვარიანტი).  
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წარმოდგენილი მონოგრაფია შედგება თეორიული და ექსპერიმენტული 
ნაწილსაგან. თეორიული ნაწილი გულისხმობს მოდელების საფუძველზე 
„ბოჭკოვანი მატრიცა + ებონიტური შემავსებელი“ ტიპის კომპოზიციური 
მასალების დეფორმაციის ხასიათის შესწავლას, რაც გულისხმობს: მოდელების 
არსებული თეორიის (ბოლცმანის, კელვინ-ფოიხტის და ხოგიერთი 
სამელემენტიანი განზოგადებული მოდელი) განვითარებას. ეს გამოიხატება 
დრეკადი და ბლანტი ელემენტების შეერთების მიხედვით მათ კლასიფიკაციასა 
და დახარისხებაში და თავისუფლად შეერთებული ბლანტი ელემენტის მქონე 
3-, 4- და 5-ელემენტიანი მოდელების დეფორმაციის ხასიათის შესწავლას 
ძირითადად ცოცვადობის (მუდმივი დატვირთვის შემთხვევა) და რელაქსაციის 
(მუდმივი დეფორმაციის შემთხვევა) პროცესებისთვის. შედგენილია დროზე 
დამოკიდებული დეფორმაციისა და ძაბვების მაკავშირებელი 
დიფერენციალური დამოკიდებულება და კონკრეტული პროცესისთვის 
დადგენილია მისი ამონახსნები, როგორც ანალიზური, ასევე თვისობრივი 
გარაფიკული ფორმით. შესწავლილია ზოგიერთი სხვა ტიპის სტატიკური თუ 
დინამიკური პროცესი. 
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თავი 2. მოდელების თეორია. კომპოზიტური მასალების 
რეოლოგიური თვისებების აღწერა 

2.1 მოდელების თეორია. მოდელის შემადგენელი ელემენტები 

კომპოზიტური სხეული თავისთავად გულისხმობს იმას, რომ ის 
სხვადასხვა თვისებების მქონე სხეულთა ნაერთს - კომპოზიციას წარმოადგენს, 
რომელსაც მთლიანობაში გააჩნია ისეთი ახალი თვისება, რაც მასში შემავალი 
ცალ-ცალკე აღებული სხეულების თვისებებისგან განსხვავდება. 
კომპოზიტური სხეულის შექმნა, რომელსაც მუშაობის პირობების მიხედვით 
წინასწარ მოცემული თვისებების მქონე მექანიკური მახასიათებლები ექნება, 
ტექნიკურად რთული ამოცანაა და მისი გადაწყვეტა მრავალ ფაქტორთან არის 
დაკავშირებული. კერძოდ: ა) ნაკლებად არის შესწავლილი დეფორმაციული და 
სიმტკიცის თვისებები დროის ფაქტორის გათვალისწინებით პროექტირებისა 
და ბ) გაანგარიშების სრულყოფილი მეთოდების არ არსებობა და სხვა 
ფაქტორები, რომელიც ამუხრუჭებს პრაქტიკაში კომპოზიტური სხეულების 
ფართო დანერგვას. ამის მიუხედავად, დღეის მდგომარეობით, მაინც 
მიღწეულია უაღრესად მნიშვნელოვანი შედეგები [18]. 

„ბოჭკოვანი მატრიცა + ებონიტური შემავსებელი“ ტიპის 
კომპოზიციური მასალების ძაბვებსა და დერორმაციებს შორის კავშირი შეიცავს 
დროის ფაქტორსაც, ანუ მათი დეფორმაცია, გარდა ძაბვებისა, დამოკიდებლია 
დროზეც.  

კომპოზიტი დროის მიხედვით იცვლის თვისებებს, ჩვეულებრივ 
ტემპერატურაზე ემორჩილება ცოცვადობისა და რელაქსაციის მოვლენებს, რაც 
მათი ერთ-ერთი ძირითადი უარყოფითი თვისებაა, რომლის 
გაუთვალისწინებლობა დაუშვებელია, რათა აცილებული იქნას საფრენი 
აპარატის ექსპლუატაციისას შესაძლო კატასტროფული შედეგები. 

სხეულის დეფორმაციის იდეალურ შემთხვევებად შეიძლება 
დავასახელოთ ორი მათგანი:  

1) მყარი სხეულის დრეკადი დეფორმაცია, რომელიც ჰუკის კანონს 
ემორჩილება 

 𝜎 = 𝐸𝜀     (2.1.1) 

სადაც 𝜎 ძაბვაა, 𝜀 ფარდობითი დეფორმაცია, 𝐸 მასალის დრეკადობის (იუნგის) 
მოდული. 

2) სითხის დენადობა, რომელიც ემორჩილება ნიუტონის კანონს 
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𝜎 = 𝜂
ௗఌ

ௗ௧
     (2.1.2) 

სადაც 𝜂 არის სიბლანტის კოეფიციენტი, ხოლო ௗఌ

ௗ௧
 დეფორმაციის ცვლილების 

სიჩქარე. 
არსებობს რეალურ სხეულებში დეფორმაციის იდეალური 

განვითარებისაგან გადახრის ორი შემთხვევა: 
1. პირდაპირ პროპორციული დამოკიდებულების არ არსებობა, 

დეფორმაციასა (მყარ სხეულებში), დეფორმაციის სიჩქარესა 
(სითხეებში) და ძაბვას შორის, ე.ი. არ სრულდება ჰუკის და 
ნიუტონის კანონები. 

2. ძაბვის ერთდროული დამოკიდებულება დეფორმაციაზე, 
დეფორმაციის სიჩქარეზე, ასევე დეფორმაციის დროით მაღალი 
რიგის წარმოებულებზე. ასეთი ანომალიები დამახასიათებელია 
ისეთი სხეულებისთვის, რომელიც ერთდროულად ატარებს 
როგორც მყარი სხეულის, ასევე სითხის თვისებებს. ასეთი ტიპის 
მასალებს უწოდებენ ბლანტ-დრეკად, ან დრეკად-ბლანტ სხეულებს. 

ლიტერატურაში, დრეკად-ბლანტი სხეულების ქვეშ განიხილება 
დენადი სხეულები, რომლებსაც გააჩნია დრეკადობა (მაგალითად, 
მაღალელასტიური თხევადი პოლიმერები და მათი ხსნარები) [8]. 

ბლანტ-დრეკად სხეულებს მიეკუთვნება დრეკადი სხეულები, 
რომლებსაც დენადობა არ გააჩნიათ, მაგრამ ახასიათებთ შინაგანი ხახუნი 
(მაგალითად, სივრცული-სტრუქტურირებული პოლიმერები და სხვა). 

სურ. 2.1.1-ზე წარმოდგენილია მარტივი დეფორმაციის ამსახველი 
ელემენტები, რომლებიც შემდგომში გამოყენებული იქნება კომპოზიტური 
მასალის თვისებების აღსაწერი სახვადასხვა მოდელის კონსტრუქციის 
ასაგებად. 

 

    ა)      ბ)        გ) 
სურ. 2.1.1 მარტივი დეფორმაციის ამსახველი ელემენტები: ა) დრეკადი 

ელემენტი, ბ) ბლანტი ელემენტი, გ) ხახუნის ელემენტი 
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ამ ელემენტების დეფორმაცია აღიწერება: ა) შემთხვევაში ჰუკის კანონით 
(2.1.1), ბ) შემთხვევაში ნიუტონის კანონით (2.1.2) და გ) შემთხვევაში, როცა 
დატვირთვა მცირეა, მაშინ ეს ელემენტი იქნება უძრავ მდგომარეობაში, ხოლო 
თუ დატვირთვა აღემატება უძრაობის ხახუნის მაქსიმალურ მნიშვნელობას 
მაშინ ის გახდება მუდმივი მნიშვნელობის. დეტალურად ხახუნის ელემენტის 
გამოყენება განხილულია ხუთელემენტიანი მოდელების შემთხვევაში [9]. 

 

2.2 მარტივი მოდელები 

პირველად, დრეკად-ბლანტი სხეულების მოდელირება მოახდინა 
მაქსველმა, რომელიც წარმოადგენს მიმდევრობით შეერთებულ დრეკად და 
ბლანტი ელემენტების ერთობლიობას, ხოლო კელვინმა და მოგვიანებით 
ფოიხტმა დრეკადი და ბლანტი ელემენტების უკვე პარალელური შეერთებით, 
შექმნეს ბლანტ-დრეკადი სხეულის მოდელი. სურ. 2.2.1-ზე გამოსახულია ეს 
მოდელები. 

ცდა აჩვენებს, რომ ძაბვებისა და დეფორმაციების მცირე 
მნიშვნელობებისთვის, სხეულების უმრავლესობის დეფორმირების კანონი 
შეიძლება აღიწეროს წრფივი განტოლებებით. მათში, ჰუკის კანონისგან 
განსხვავებით უნდა შედიოდეს 𝑡 დრო, ამავე დროს კავშირი ძაბვას, 
დეფორმაციასა და დროს შორის არ არის ცხადი სახის, ის მოცემულია 
დიფერენციალური ან ინტეგრალური ფორმით. 

ფუნქციონალური 𝜀 = 𝜀(𝜎, 𝑡) დამოკიდებულების შემთხვევაში 
დეფორმაციის მნიშვნელობა დროის 𝑡 მომენტში არ იქნებოდა დამოკიდებული 
დატვირთვის პროცესისგან, ე.ი. ძაბვის იმ მნიშვნელობისგან 𝜏 მომენტში, 
რომელიც წინ უსწრებდა 𝑡 დროს (𝜏 < 𝑡). სინამდვილეში კი 𝜏 მომენტიდან 
დაძაბული მდგომარეობის განვითარების მთელი შემდგომი პროცესი ძლიერ 
კავშირში იმყოფება სხეულში დაძაბულობის სურათთან დროის ნებისმიერი (𝑡) 
მომენტისთვის. ამიტომ ნებისმიერი ფუნქციონალური 𝜀(𝜎, 𝑡) 
დამოკიდებულება ვერ დაახასიათებს დეფორმირების სურათს დროის 
მიხედვით. 
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        მაქსველის მოდელი        კელვინ–ფოიხტის მოდელი 

სურ. 2.2.1 მაქსველისა და კელვინ-ფოიხტის მოდელები 

კომპოზიტური მასალების მექანიკური თვისებების მოდელებით 
აღწერის იდეა გამოიხატება იმაში, რომ მასში შემავალი ელემენტების მარტივი 
დეფორმაციის გამომსახველი (2.1.1) და (2.1.2) დამოკიდებულებების 
საშუალებით აღიწეროს მთლიანი სხეულის დეფორმაციის სურათი.  

მოდელის ამოხსნა გულისხმობს, რომ დადგინეს მათემატიკური 
დამოკიდებულება სისტემის ჯამურ დეფორმაციას, ჯამურ ძაბვასა და დროს 
შორის (ე.წ. რეოლოგიური დამოკიდებულება) მოდელში შემავალი 
ელემენტების მახასიათებლების (დრეკადობის მოდული და სიბლანტის 
კოეფიციენტი) გამოყენებით. ამისათვის საჭიროა მოდელში შემავალი 
თითოეული ელემენტისთვის დაიწეროს მარტივი დამოკიდებულება ჰუკის 
კანონის და ნიუტონის კანონის სახით; ასევე ჯამური ძაბვისა და დეფორმაციის 
გამომსახველი განტოლებები და მოხდეს ინდექსიანი კოეფიციენტების 
გამორიცხვა. შედეგად მიიღება მოდელის, როგორც მთლიანი სხეულის ჯამური 
ძაბვისა და დეფორმაციის მაკავშირებელ რეოლოგიურ განტოლება [18]. 

ა) მაქსველის მოდელი: 

გასათვალისწინებელია, რომ ამ მოდელში ელემენტების მიმდევრობით 
შეერთებისას თითოეულ ელემენტში აღძრული ძაბვა ყველგან ერთნაირია და 
ჯამური ძაბვის ტოლია, ხოლო ჯამური დეფორმაცია თითოეული ელემენტების 
დეფორმაციების ჯამის 

ቐ

𝜎 = 𝐸𝜀ଵ     

𝜎 = 𝜂
ௗఌమ

ௗ௧
   

𝜀 = 𝜀ଵ + 𝜀ଶ

     (2.2.1) 

𝜎 

𝜎 

𝐸, 𝜀ଵ, 𝜎 

𝜂, 𝜀ଶ, 𝜎 

𝐸, 𝜀, 𝜎ଵ 𝜂, 𝜀, 𝜎ଶ 

𝜎 

𝜎 
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საჭიროა ინდექსიანი პარამეტრების გამორიცხვა: (2.2.1) სისტემის 
პირველი განტოლებიდან 𝜀ଵ =

ఙ

ா
, მისი დროის მიხედვით გაწარმოების შემდეგ 

მიიღება ௗఌభ

ௗ௧
=

ଵ

ா

ௗఙ

ௗ௧
, ხოლო მეორე განტოლებიდან ௗఌమ

ௗ௧
=

ఙ

ఎ
. მიღებული 

გამოსახულებების (2.2.1)-ის მესამე განტოლების დროით გაწარმოებით 

მიღებულ ௗఌ

ௗ௧
=

ௗఌభ

ௗ௧
+

ௗఌమ

ௗ௧
  გამოსახულებაში შეტანის შემდეგ მიიღება: 

ௗఌ

ௗ௧
=

ଵ

ா

ௗఙ

ௗ௧
+

ఙ

ఎ
     (2.2.2) 

(2.2.2) რეოლოგიური განტოლება ასახავს დიფერენციალურ კავშირს 
მაქსველის მოდელის შესაბამის ჯამურ ძაბვასა და დეფორმაციას შორის.  

ბ) კელვინ-ფოიხტის მოდელი: 

ანალოგიური მიდგომაა საჭირო კელვინ-ფოიხტის მოდელის 
შემთხვევაშიც. გასათვალისწინებელია, რომ პარალელურად შეერთებული 
ელემენტებისთვის დეფორმაცია ყველგან ერთნაირია, ხოლო ჯამური ძაბვა 
ტოლია თითოეულ ელემენტში აღძრული ძაბვების ჯამის 

ቐ

𝜎ଵ = 𝐸𝜀       

𝜎ଶ = 𝜂
ௗఌ

ௗ௧
    

𝜎 = 𝜎ଵ + 𝜎ଶ

     (2.2.3) 

ამ შემთხვევაშიც უნდა მოხდეს ინდექსიანი პარამეტრების გამორიცხვა. 
ეს უშუალოდ მოხერხდება (2.2.3)-ის პირველი და მეორე განტოლების შეტანით 
მესამეში, მიიღება: 

𝜎 = 𝐸𝜀 + 𝜂
ௗఌ

ௗ௧
      (2.2.4) 

სანამ უშუალოდ მოხდება (2.2.2) და (2.2.4) განტოლებების გაანალიზება, 
საჭიროა შემოტანილ იქნას რამდენიმე ცნება, კერძოდ, „ხანგძლივი“ და „მყისი“ 
დრეკადობის მოდულები.  

როცა გვაქვს დროის მიხედვით ნელი დეფორმაცია, მაშინ რეოლოგიურ 

განტოლებებში ძაბვის და დეფორმაციის სიჩქარეების (ௗఙ

ௗ௧
= 𝜎̇ და ௗఌ

ௗ௧
= 𝜀̇) 

მნიშვნელობები გაცილებით მცირეა შესაბამისად ძაბვისა და დეფორმაციის 
მნიშვნელობებზე, ამიტომ მათი უკუგდება შეიძლება, შედეგად დარჩება ჰუკის 
კანონის მაგვარი დამოკიდებულება ძაბვასა და დეფორმაციას შორის: 

𝜎 = 𝐸ხან𝜀    (2.2.5)  

სადაც 𝐸ხან  არის ეფექტური დრეკადობის „ხანგრძლივი“ მოდული. იმ 
შემთხვევაში თუ გვაქვს სწრაფი დეფორმაცია, მაშინ ძაბვისა და დეფორმაციის 
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სიჩქარეების მნიშვნელობები გაცილებით მეტი იქნება შესაბამისად ძაბვისა და 
სიჩქარის მნიშვნელობებზე და აქ უკვე ამ უკანასკნელთა უგულებელყოფაა 
შესაძლებელი. შესაბამისად დარჩება დამოკიდებულება ძაბვისა და 
დეფორაციის სიჩქარეებს შორის  

𝜎̇ = 𝐻მყ𝜀 ̇    (2.2.6) 

სადაც 𝐻მყ არის ეფექტური დრეკადობის „მყისი“ მოდული. 
(2.2.2) და (2.2.4) განტოლებების უშუალო ინტეგრება ვერ ხერხდება. 

საჭიროა რაიმე კონკრეტული პროცესის განხილვა, როცა რომელიმე პარამეტრი 
ძაბვა ან დეფორმაცია წინასწარი განსაზღვრული ფორმით იქნება მოცემული 
(დროის მიხედვით ცვლილების მოცემული ფორმით). 

საფრენი აპარატის დეტალებსა და კვანძებზე, მისი ექსპლუატაციის 
პროცესში, მოდის დატვირთვები, რომელიც, საზოგადოდ, დროზე 
დამოკიდებული რთული ფუნქციებია. უმეტეს შემთხვევაში, მათი ცხადი სახე 
უცნობია. შესაბამისად, ამ დეტალებსა და კვანძებში შემავალ კომპოზიტებშიც 
აღძრული ძაბვები რთული ფორმით იქნება დამოკიდებული კოორდინატებსა 
და დროზე 𝜎 = 𝜎(𝑥, 𝑦, 𝑧, 𝑡). წრფივი დეფორმაციის განხილვის დროსაც კი, როცა 
დარჩება მხოლოდ დროზე დამოკიდებულება 𝜎 = 𝜎(𝑡), დეფორმაციის 
ამსახველი სიდიდის ცხადი სახეც რთული ან საერთოდ უცნობი იქნება. 
მიღებული ფორმაა, რომ საფრენ აპარატზე მოსული დატვირთვები გამოსახონ 
ემპირიული ხარისხობრივი მწკრივის სახით, ან უსასრულო 
ტრიგონომეტრიული ფუნქციების მწკრივის სახით. ზუსტ მათემატიკურ 
ტერმინებში აღნიშნულის გამოხატულებაა ფუნქციის გაშლა ან  ტეილორისა და 
უფრო კონკრეტულად მაკლორანის ხარისხობრივ მწკრივად ან მისი 
წარმოდგენა ტრიგონომეტრიული ფუნქციებისგან შემდგარ ფურიეს მწკრივად. 

ტეილორისა და მაკლორანის მწკრივები: 

𝑓(𝑡) = 𝑓(𝑝) +
௙ᇱ(௣)

ଵ!
(𝑡 − 𝑝) +

௙"(௣)

ଶ!
(𝑡 − 𝑝)ଶ + ⋯ = 𝑎଴ + 𝑎ଵ(𝑡 − 𝑝) + 𝑎ଶ(𝑡 − 𝑝)ଶ + ⋯ 

  (I) 

𝑓(𝑡) = 𝑓(0) +
௙ᇱ(଴)

ଵ!
𝑡 +

௙"(଴)

ଶ!
𝑡ଶ + ⋯ = 𝑎଴ + 𝑎ଵ𝑡 + 𝑎ଶ𝑡ଶ + ⋯    (II) 

ფურიეს მწკრივი: 

𝑓(𝑡) =
𝑎଴

2
+ ෍(𝑎௡ cos 𝑛𝑡 + 𝑏௡ sin 𝑛𝑡)

ஶ

௡ୀଵ

                                                    (III) 

𝑓(𝑡)-ს როლში შეიძლება იყოს არა მხოლოდ 𝜎(𝑡) ძაბვა, ასევე 𝜀(𝑡) 
დეფორმაციაც, მაგალითად იმ შემთხვევაში, თუ რაიმე აგრეგატი იწვევს 
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მოცემული კვანძის ან დეტალის დროში წინასწარ განსაზღვრულ 
დეფორმაციას.  

რაც შეეხება (2.2.2) და (2.2.4) განტოლებების ამოხსნის შესაძლებლობას, 
მათი უშუალო ინტეგრება ვერ ხერხდება, მაგრამ თუ რომელიმე მექანიკური 
მახასიათებელი ძაბვა ან დეფორმაცია წინასწარ არის განსაზღვრული და მას 
აქვს (I), (II) ან (III) ფორმა, მაშინ ამ განტოლებების ამოხსნა ცხადი სახით 
სრულად იქნება შესაძლებელი.  

სიმარტივითვის, თავდაპირველად განხილულია შემთხვევები, როცა 
წინასწარ განსაზღვრული ძაბვა ან დეფორმაცია არის მუდმივი სიდიდეები, ანუ 
დროზე არ არის დამოკიდებული. ეს შემთხვევები გადაიქცევა სტანდარტულ 
ცოცვადობის და რელაქსაციის ამოცანებად. რაც შეეხება დინამიურ 
შემთხვევებს (როცა ძაბვა ან დეფორმაცია დროის ფუნქციებია) განხილული 
იქნება მოგვიანებით. 

ყველაზე მარტივი ფორმის ორი ასეთი პროცესია ცოცვადობა (მუდმივი 
დატვირთვის შემთხვევა) და ძაბვების რელაქსაცია (მუდმივი დეფორმაციის 
შემთხვევა). ასევე განიხილება განტვირთვის მოვლენა, რაც გულისხმობს 
კომპოზიტურ სხეულში განვითარებულ დროში დეფორმირების პროცესებს 
მასზე დატვირთვის მყისიერად მოხსნის შემდეგ. 

1. მაქსველის მოდელის შემთხვევა. 

 ნელი დეფორმაციისას (2.2.2) გამოსახულებაში წარმოებულების 
უგულებელყოფის შემდეგ დარჩება 𝜎 → 0, რაც ნიშნავს, რომ მაქსველის 
მოდელს არ გააჩნია „ხანგრძლივი“ დრეკადობის მოდული. ხოლო სწრაფი 
დეფორმაციის შემთხვევაში, (2.2.2)-ში უნდა მოხდეს ბოლო ఙ

ఎ
 შესაკრების 

უგულებელყოფა და მიიღება: 

ௗఌ

ௗ௧
=

ଵ

ா

ௗఙ

ௗ௧
     (2.2.7) 

მარტივი მისახვედრია, რომ დრეკადობის მყისი მოდული 𝐻მყ = 𝐸. 
ა) ცოცვადობის მოვლენა 𝜎 = 𝜎௖ = 𝑐𝑜𝑛𝑠𝑡. (2.2.2) გამოსახულება 

გადაიწერება შემდეგი სახით: ௗఌ

ௗ௧
=

ఙ೎

ఎ
, საიდანაც 𝑑𝜀 =

ఙ೎

ఎ
𝑑𝑡, რომლის უშუალო 

ინტეგრებით მიიღება: 

𝜀(𝑡) = 𝜀଴ +
ఙ೎

ఎ
𝑡 =

ఙ೎

ா
+

ఙ೎

ఎ
𝑡   (2.2.8) 

(2.2.8) გამოსახულებაში საწყისი დეფორმაცია 𝜀଴ =
ఙ೎

ா
, რომელიც 

მიღებულია ზოგადი დამოკიდებულებიდან, რომელიც ასახავს ჰუკის კანონს 
დატვირთვის მოდების მომენტში. ამ დროს ძალიან მცირე დროში ხდება 
საწყისი დეფორმაციის განხორციელება, სწრაფი დეფორმაციის დროს კი 
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მასალის დამახასიათებლად უნდა განვიხილოთ მისი დრეკადობის მყისი 𝐻მყ 
მოდული და ჰუკის კანონსაც ექნება სახე: 

𝜎 = 𝐻მყ𝜀଴     (2.2.9) 

ამ შემთხვევაში კი 𝐻მყ = 𝐸 და 𝜎 = 𝜎௖, რომელთა ერთობლიობითაც 

მიიღება საწყისი დეფორმაციის მოცემული გამოსახულება (𝜀଴ =
ఙ೎

ா
). 

აღსანიშნავია, რომ (2.2.8) დამოკიდებულება არის დროის მიხედვით წრფივი 
ფუნქცია. 

თუ განვიხილავთ განტვირთვის შემთხვევას, როცა დროის რაღაც 
მომენტისთვის მოიხსნება დატვირთვა 𝜎௖ = 0, მაშინ სისტემა მყისიერად 
ახლებურად ფორმირდება და მიიღება რაღაც ახალი საწყისი დეფორმაცია 𝜀଴

ᇱ , 
ხოლო დეფორმაციის სიჩქარე შეიცვლის ნიშანს, გახდება საპირისპირო. ასეთ 
შემთხვევაში (2.2.8) მიიღებს სახეს 𝜀(𝑡) = 𝜀଴

ᇱ , ის დროის მიხედვით მუდმივი 
ფუნქციაა. 

ბ) ძაბვების რელაქსაციის მოვლენა 𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡. ამ დროს (2.2.2) 
რეოლოგიური განტოლებიდან მიიღება:  

ଵ

ா

ௗఙ

ௗ௧
+

ఙ

ఎ
= 0     (2.2.10) 

რომელიც განცალებად ცვლადიანი დიფერენციალური განტოლებაა, საიდანაც  
ௗఙ

ఙ
= −

ா

ఎ
𝑑𝑡 → ln|𝜎| = −

ா

ఎ
𝑡 + 𝐶, საბოლოოდ  

𝜎(𝑡) = 𝜎଴𝑒
ି

ಶ

ആ
௧    (2.2.11) 

(2.2.8) და (2.2.11) გამოსახულებები, ასევე განტვირთვის შესაბამისი 
მრუდები გამოსახულია სურ. 2.2.2-ზე. 

 

სურ. 2.2.2 მაქსველის მოდელის შესაბამისი ცოცვადობის, განტვირთვის 
და ძაბვების რელაქსაციის მრუდები 

 

 

(განტვირთვა) 

 
 0  0 𝑡 

𝜎௖

𝐸
 

𝜀଴
ᇱ  

𝜀 

𝜎଴ 

𝜎 

𝑡 
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2. კელვინ-ფოიხტის მოდელის შემთხვევა.  

ნელი დეფორმაციის შემთხვევაში (2.2.4) რეოლოგიურ განტოლებაში 
წარმოებულების უგულებელყოფის შემდეგ დარჩება 𝜎 = 𝐸𝜀, ანუ „ხანგრძლივი“ 
დრეკადობის მოდული 𝐸ხან = 𝐸. ხოლო სწრაფი დეფორმაციის შემთხვევაში, 

ძაბვის და დეფორმაციის უგულებელყოფის შემდეგ, დარჩება ௗఌ

ௗ௧
→ 0, ანუ 

„მყისი“ დრეკადობის მოდული არ განისაზღვრება. 
ა) ცოცვადობის მოვლენა 𝜎 = 𝜎௖ = 𝑐𝑜𝑛𝑠𝑡. (2.2.4) გამოსახულება 

გადაიწერება შემდეგი სახით: 

𝜎௖ = 𝐸𝜀 + 𝜂
ௗఌ

ௗ௧
     (2.2.12) 

საიდანაც  

ௗఌ

ௗ௧
+

ா

ఎ
𝜀 =

ఙ೎

ఎ
                 (2.2.13) 

რომელიც წარმოადგენს პირველი რიგის წრფივ დიფერენციალურ 
განტოლებას, რომლის ამონახსნი მიიღებს სახეს: 

𝜀(𝑡) = ቀ𝜀଴ −
ఙ೎

ா
ቁ 𝑒

ି
ಶ

ആ
௧

+
ఙ೎

ா
    (2.2.14) 

სისტემის განტვირთვის შემთხვევაში 𝜎௖ = 0, სისტემა მყისიერად 
ახლებურად ფორმირდება და მიიღება რაღაც ახალი საწყისი დეფორმაცია 𝜀଴

ᇱ , 
ხოლო დეფორმაციის სიჩქარე შეიცვლის ნიშანს, გახდება საპირისპირო. ასეთ 
შემთხვევაში (2.2.14) მიიღებს სახეს: 

𝜀(𝑡) = 𝜀଴
ᇱ 𝑒

ି
ಶ

ആ
௧          (2.2.15) 

ის დროის მიხედვით კლებადი ფუნქციაა. 
ბ) ძაბვების რელაქსაციის მოვლენა 𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡. ამ დროს (2.2.4) 

რეოლოგიური განტოლებიდან მიიღება: 

 𝜎(𝑡) = 𝐸𝜀௖         (2.2.16) 

რაც დროის მიხედვით მუდმივი ფუნქციაა. (2.2.14) და (2.2.16) გამოსახულებები, 
ასევე განტვირთვის შესაბამისი მრუდები გამოსახულია სურ. 2.2.3-ზე. 
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სურ. 2.2.3 კელვინ-ფოიხტის მოდელის შესაბამისი ცოცვადობის, 
განტვირთვის და ძაბვების რელაქსაციის მრუდები 

როგორც წარმოდგენილი ანალიზიდან ჩანს, მაქსველის მოდელი 
თვისობრივად აღწერს კომპოზიტებში ძაბვების რელაქსაციის ხასიათს, ხოლო 
ცოცვადობის პროცესს ვერ აღწერს, ხოლო კელვინ ფოიხტის მოდელი პირიქით, 
კარგად აღწერს ცოცვადობის მოვლენას, თუმცა რელაქსაციის პროცესს ვერა. 
ამიტომ მოცემული მოდელები ვერ გამოდგება კომპოზიტების დეფორმირების 
ხასიათის აღწერის თვალსაზრისით, თუნდაც თვისობრივი თვალსაზრისით. 

 

2.3 სამელემენტიანი განზოგადებული მოდელები 

დრეკად-ბლანტი სხეულების დეფორმაციის ხასიათის უკეთ აღწერისას 
შესაძლებელია მოდელებში მარტივი ელემენტების (დრეკადი და ბლანტი 
ელემენტები) რაოდენობის გაზრდა და მათი შეერთება მიმდევრობით ან 
პარალელურად. ასეთი განზოგადებული მოდელების კლასიფიკაციის მიზნით 
შეიძლება გამოიყოს ორი ძირითადი ხაზი [18]: 

1) ელემენტების ჯაჭვში არის შემკვრელი დრეკადი ელემენტი ან 
უწყვეტად მიმდევრობით შეერთებული დრეკადი ელემენტების ერთობლიობა. 

2) ელემენტების საერთო ჯაჭვში არსებობს სხვებისგან 
დამოუკიდებლად მიმდევრობით ჩართული ერთი მაინც ბლანტი ელემენტი. 

სურ. 2.3.1-ზე გამოსახულია კლასიფიკაციის პირველი ხაზის 
განზოგადებული სამ ელემენტიანი (ორი დრეკადი და ერთი ბლანტი 
ელემენტით) მოდელების ორი ვარიანტი. მათგან ა) შემთხვევა იწოდება ა. 
იშლინსკის „ტიპურ სხეულად“ [8]. ბ) ვარიანტი ზუსტად ანალოგიური 
თვისებების მატარებელია როგორიც ა) და აღიწერება ძაბვის, დეფორმაციის და 
დროის მაკავშირებელი იდენტური პირველი რიგის დიფერენციალური 
განტოლებით. განვიხილოთ დაწვრილებით: 

(განტვირთვა) 

 0 𝑡 

𝜀 
𝜎௖

𝐸
 

𝜀଴ 

𝜀଴
ᇱ  

𝑡 

𝐸𝜀௖ 

 0 

𝜎 
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                 ა)                 ბ) 

სურ. 2.3.1 სამელემენტიანი მოდელები ორი დრეკადი და ერთი ბლანტი 
ელემენტით 

ვიხილავთ მხოლოდ ა) ვარიანტს. თითოეული ელემენტისთვის უნდა 
დაიწეროს დეფორმაციის და ძაბვის მაკავშირებელი განტოლება (ჰუკის კანონი 
და ნიუტონის კანონი) და ასევე ჯამური ძაბვისა და დეფორმაციის 
გამომსახველი განტოლებები, მიიღება: 

⎩
⎪
⎨

⎪
⎧

𝜎ଵ = 𝐸ଵ𝜀ଵ    

𝜎ଶ = 𝜂
ௗఌభ

ௗ௧
  

𝜎 = 𝐸ଶ𝜀ଶ      
𝜎 = 𝜎ଵ + 𝜎ଶ 
𝜀 = 𝜀ଵ + 𝜀ଶ  

    (2.3.1) 

უნდა მოხდეს ინდექსიანი პარამეტრების გამორიცხვა. სისტემის 

პირველი და მეორე განტოლების მეოთხეში შეტანით მიიღება 𝜎 = 𝐸ଵ𝜀ଵ + 𝜂
ௗఌభ

ௗ௧
 

(*). მესამე განტოლებიდან 𝜀ଶ =
ఙ

ாమ
, ხოლო მეხუთე განტოლებიდან 𝜀ଵ = 𝜀 − 𝜀ଶ =

𝜀 −
ఙ

ாమ
, რომლის (*)-ში შეტანით მიიღება 𝜎 = 𝐸ଵ ቀ𝜀 −

ఙ

ாమ
ቁ + 𝜂

ௗቀఌି
഑

ಶమ
ቁ

ௗ௧
= 𝐸ଵ𝜀 −

ாభ

ாమ
𝜎 +

𝜂
ௗఌ

ௗ௧
−

ఎ

ாమ

ௗఙ

ௗ௧
⇒

ாభାாమ

ாమ
𝜎 +

ఎ

ாమ

ௗఙ

ௗ௧
= 𝐸ଵ𝜀 + 𝜂

ௗఌ

ௗ௧
, საბოლოოდ: 

𝜎 +
ఎ

ாభାாమ

ௗఙ

ௗ௧
=

ாభாమ

ாభାாమ
𝜀 +

ఎாమ

ாభାாమ

ௗఌ

ௗ௧
   (2.3.2) 

სისტემის ნელი დეფორმაციისას, ზემოთ განხილულის ანალოგიურად, 

(2.3.2)-დან  მიიღება 𝜎 =
ாభாమ

ாభାாమ
𝜀, რომელიც უნდა შედარდეს გამოსახულებას 𝜎 =

𝐸ხან𝜀, შედეგად განისაზღვრება „ხანგრძლივი“ დრეკადობის მოდული 𝐸ხან ≡

𝐸 =
ாభாమ

ாభାாమ
, ხოლო სწრაფი დეფორმაციისას (2.3.2)-დან საბოლოოდ დარჩება 𝜎̇ =

𝐸ଶ𝜀̇, რაც უნდა შედარდეს გამოსახულებას 𝜎̇ = 𝐻მყ𝜀̇, შედეგად მიიღება 

𝐸ଵ, 𝜀ଵ, 𝜎ଵ 𝜂, 𝜀ଵ, 𝜎ଶ 

𝐸ଶ, 𝜀ଶ, 𝜎 

𝜎 

𝜎 
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დრეკადობის „მყისი“ მოდული 𝐻მყ ≡ 𝐻 = 𝐸ଶ. შემოვიტანოთ კიდევ ერთი 

აღნიშვნა 𝑛 =
ఎ

ாభାாమ
, საბოლოოდ (2.3.2) გამოსახულება მიიღებს სახეს: 

𝑛𝐻𝜀̇ + 𝐸𝜀 = 𝜎 + 𝑛𝜎̇    (2.3.3) 

ამ შემთხვევაშიც უნდა მოხდეს კონკრეტული, ცოცვადობის და 
რელაქსაციის მოვლენების განხილვა: 

1) ცოცვადობა 𝜎 = 𝜎௖ = 𝑐𝑜𝑛𝑠𝑡. ამ დროს (2.3.3) განტოლებიდან დარჩება 
𝑛𝐻𝜀̇ + 𝐸𝜀 = 𝜎௖, საიდანაც მიიღება: 

𝜀̇ +
ா

௡ு
𝜀 =

ఙ೎

௡ு
            (2.3.4) 

ის წარმოადგენს პირველი რიგის წრივ დიფერენციალურ განტოლებას 

და მისი ამონახსნი მოიცემა სახით 𝜀(𝑡) = 𝑒ି ∫
ಶ

೙ಹ
ௗ௧ ൬𝐶 + ∫

ఙ೎

௡ு
𝑒∫

ಶ

೙ಹ
ௗ௧𝑑𝑡൰ =

𝑒ି
ಶ

೙ಹ
௧ ൬𝐶 +

ఙ೎

௡ு

௡ு

ா
𝑒

ಶ

೙ಹ
௧൰, საბოლოოდ 

𝜀(𝑡) = 𝐶𝑒ି
ಶ

೙ಹ
௧ +

ఙ೎

ா
   (2.3.5) 

განუსაზღვრელი მუდმივას დასადგენად განიხილება კოშის ამოცანა, 

როცა 𝑡 = 0, 𝜀(0) = 𝜀଴ =
ఙ೎

ு
, შესაბამისად მიიღება ఙ೎

ு
= 𝐶𝑒ି

ಶ

೙ಹ
∙଴ +

ఙ೎

ா
→ 𝐶 =

−𝜎௖ ቀ
ଵ

ா
−

ଵ

ு
ቁ, საიდანაც: 

𝜀(𝑡) = −𝜎௖ ቀ
ଵ

ா
−

ଵ

ு
ቁ 𝑒ି

ಶ

೙ಹ
௧ +

ఙ೎

ா
    (2.3.6) 

განტვირთვის პროცესის განხილვისას, როცა 𝜎௖ = 0, დროის ათვლის 
მომენტიდან ახალი საწყისი პირობით 𝜀(0) = 𝜀଴

ᇱ  დარჩება 

 𝜀(𝑡) = 𝜀଴
ᇱ 𝑒ି

ಶ

೙ಹ
௧    (2.3.7) 

2) რელაქსაცია 𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡. ამ დროს (2.3.3) განტოლებიდან დარჩება 
𝜎 + 𝑛𝜎̇ = 𝐸𝜀௖, საიდანაც: 

𝜎̇ +
ଵ

௡
𝜎 =

ாఌ೎

௡
    (2.3.8) 

(2.3.8) განტოლების ამონახსნი (2.3.4)-ის ანალოგიურად 𝜎(𝑡) =

𝑒ି ∫
భ

೙
ௗ௧ ቀ𝐶 + ∫

ாఌ೎

௡
𝑒∫

భ

೙
ௗ௧𝑑𝑡ቁ = 𝑒ି

೟

೙ ቀ𝐶 +
ாఌ೎

௡
𝑛𝑒

೟

೙ቁ, საბოლოოდ 

𝜎(𝑡) = 𝐶𝑒ି
೟

೙ + 𝐸𝜀௖      (2.3.9) 

საწყისი პირობების შესაბამისად, როცა 𝑡 = 0, 𝜎(0) = 𝜎଴, მიიღება 𝜎଴ =

𝐶𝑒ି
బ

೙ + 𝐸𝜀௖ → 𝐶 = 𝜎଴ − 𝐸𝜀௖, საიდანაც: 
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𝜎(𝑡) = (𝜎଴ − 𝐸𝜀௖)𝑒ି
೟

೙ + 𝐸𝜀௖   (2.3.10) 

ცოცვადობის, განტვირთვის და რელაქსაციის მრუდები ამ 
შემთხვევითვის წარმოდგენილია სურ. 2.3.2-ზე. 

 

ცოცვადობა      რელაქსაცია  

სურ. 2.3.2 სამელემენტიანი განზოგადებული მოდელის (ორი დრეკადი 
ელემენტით) შესაბამისი ცოცვადობის და ძაბვების რელაქსაციის მრუდები 

 

2.4 ორი ბლანტი ელემენტის შემცველი განზოგადებული 
მოდელები 

მრავალ ელემენტიან განზოგადებულ მოდელებში, ბლანტი 
ელემენტების რაოდენობის გაზრდა იწვევს შესაბამისი რეოლოგიური 
დიფერენციალური განტოლების რიგის გაზრდას, რაც, რა თქმა უნდა, 
ართულებს მის ამოხსნადობას, თუმცა იძლევა უფრო მეტად დახვეწილ 
შედეგებს [18]. 

ამდაგვარ მოდელებს შორის ყველაზე მარტივი შემთხვევაა 
სამელემენტიანი განზოგადებული მოდელი ერთი დრეკადი და ორი ბლანტი 
ელემენტით. შესაძლებელია ორი განსხვავებული ვარიანტის შედგენა, 
განვიხილოთ დეტალურად:  

ა) სურ. 2.4.1-ზე წარმოდგენილია ასეთი განზოგადებული მოდელის I 
ვარიანტი 

𝜎 

𝑡 

განტვირთვა 

0 0 

𝜀 

𝜎଴ 

𝐸𝜀௖ 𝜎௖

𝐻
 

𝜀଴
ᇱ  

𝜎௖

𝐸
 

𝑡 
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სურ. 2.4.1 სამ ელემენტიანი მოდელის I ვარიანტი 

მასში შემავალ თითოეულ ელემენტს შეესაბამება მექანიკური 
მახასიათებლები: დრეკად ელემენტს დრეკადობის 𝐸 მოდული, ხოლო ბლანტ 
ელემენტებს -  სიბლანტის კოეფიციენტები 𝜂ଵ და 𝜂ଶ. 

მოცემული ვარიანტისთვის დაიწერება თითოეული ელემენტის ძაბვასა 
და დეფორმაციას შორის დამოკიდებოლება, ასევე საერთო სისტემის ჯამური 
ძაბვა და დეფორმაცია: 

⎩
⎪
⎨

⎪
⎧𝜎ଵ = 𝜂ଵ

ௗఌభ

ௗ௧
  

𝜎ଶ = 𝐸𝜀ଵ        

𝜎 = 𝜂ଶ
ௗఌమ

ௗ௧
    

𝜎 = 𝜎ଵ + 𝜎ଶ

𝜀 = 𝜀ଵ + 𝜀ଶ  

      (2.4.1) 

(2.4.1) განტოლებებიდან უნდა მოხდეს ინდექსიანი პარამეტრების 
გამორიცხვა, შედეგად მიიღება შემდეგი დიფერენციალური დამოკიდებულება 
(რეოლოგიური განტოლება): 

ௗమఌ

ௗ௧మ =
ఎభାఎమ

ఎభఎమ

ௗఙ

ௗ௧
−

ா

ఎభ

ௗఌ

ௗ௧
+

ா

ఎభఎమ
𝜎      (2.4.2) 

ნელი დეფორმაციის შემთხვევაში (2.4.2)-დან მიიღება 𝜎 → 0. ეს ნიშნავს, 
რომ ამ ხერხით „ხანგრძლივი“ დრეკადობის მოდული ვერ დგინდება. 

სწრაფი დეფორმაციისას შემოვიფარგლოთ მხოლოდ პირველი რიგის 
წარმოებულებით, რადგანაც ამ დროს ძაბვისა და დეფორმაციის ცვლილების 
სიჩქარის სიდიდეები გაცილებით მაღალია ვიდრე განტოლებაში შემავალი სხვა 
დანარჩენი წევრების მნიშვნელობები, შედეგად (2.4.2)-დან დარჩება:  

𝐸, 𝜀ଵ, 𝜎ଶ 𝜂ଵ, 𝜀ଵ, 𝜎ଵ 

𝜂ଶ, 𝜀ଶ, 𝜎 

𝜎 

𝜎 
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𝜎̇ =
ாఎమ

ఎభାఎమ
𝜀̇      (2.4.3) 

შედეგად, დრეკადობის „მყისი“ მოდულისთვის მიიღება გამოსახულება: 

𝐻 =
ாఎమ

ఎభାఎమ
       (2.4.4) 

დამატებით აღნიშვნებს აქვს სახე: 

𝑛 =
ఎభ

ா
;  𝜂ଶ = 𝜂          (2.4.5) 

რის შემდეგაც (2.4.2) ჩაიწერება ფორმით: 

ௗమఌ

ௗ௧మ =
ଵ

௡ு

ௗఙ

ௗ௧
−

ଵ

௡

ௗఌ

ௗ௧
+

ଵ

௡ఎ
𝜎                 (2.4.6) 

1) განვიხილოთ მუდმივი ძაბვის შემთხვევა 𝜎 = 𝜎௖ = 𝑐𝑜𝑛𝑠𝑡 
(ცოცვადობა): 

(2.4.6)-დან მიიღება: 

ௗమఌ

ௗ௧మ +
ଵ

௡

ௗఌ

ௗ௧
=

ఙ೎

௡ఎ
         (2.4.7) 

(2.4.7) წარმოადგენს მეორე რიგის მუდმივ კოეფიციენტებიან 
არაერთგვაროვან დიფერენციალურ განტოლებას, რომლის ამონახსნი მოიცემა 
ერთგვაროვანი განტოლების ამონახსნისა და არაერთგვაროვანი განტოლების 
რაიმე კერძო ამონახსნის ჯამის სახით, გასათვალისწინებელია აგრეთვე 
შესაბამისი მახასიათებელი განტოლების 0-ის ტოლი ფესვების რაოდენობაც. 
დეტალური გამოყვანის გარეშე, (2.4.7)-ს ამონახსნი მოიცემა სახით: 

𝜀(𝑡) = 𝐶ଵ + 𝐶ଶ𝑒ି
೟

೙ +
ఙ೎

ఎ
𝑡         (2.4.8) 

მიღებული დიფერენციალური განტოლებები უნდა ამოიხსნას საწყისი 
პირობების გათვალისწინებით, ე.წ. კოშის ამოცანა. მოცემულ შემთხვევაში, 
საწყის პირობებს ექნება სახე: 

როცა 𝑡 = 0, 𝜀(0) = 𝜀଴ =
ఙ೎

ு
 და 𝜀̇(0) = 𝜈଴   (2.4.9)  

სადაც 𝜈଴ არის დეფორმაციის საწყისი სიჩქარე. ამის გათვალისწინებით მიიღება: 

𝐶ଵ = 𝜎௖ ቀ
ଵ

ு
−

௡

ఎ
ቁ + 𝑛𝜈଴ და 𝐶ଶ =

௡ఙ೎

ఎ
− 𝑛𝜈଴                    (2.4.10) 
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საბოლოოდ (2.4.8) მიიღებს სახეს: 

𝜀(𝑡) = ቂ𝜎௖ ቀ
ଵ

ு
−

௡

ఎ
ቁ + 𝑛𝜈଴ቃ + ቂ

௡ఙ೎

ఎ
− 𝑛𝜈଴ቃ 𝑒ି

೟

೙ +
ఙ೎

ఎ
𝑡     (2.4.11) 

თუ რაღაც დროის შემდეგ მოხდება სისტემის განტვირთვა ანუ 𝜎௖ = 0, 
მაშინ თითქმის მყისიერად მოხდება სისტემის ახლებურად ფორმირება 
(მოცემულ მოდელში დრეკადი ელემენტის არსებობის გამო) და შეიცვლება 
საწყისი პირობებით მოცემული სიდიდეებიც. დეფორმაცია გახდება 
რამდენადმე მცირე ვიდრე დროის მოცემული მომენტისთვის იყო, ხოლო 
დეფორმაციის სიჩქარე შეიცვლის ნიშანს. ისინი გახდება რაღაც 𝜀଴

ᇱ  და 
𝜈଴

ᇱ  (𝑠𝑖𝑔𝑛(𝜈଴
ᇱ ) = −𝑠𝑖𝑔𝑛(𝜈଴)), რის შედეგადაც (2.4.11) მიიღებს სახეს: 

𝜀 = 𝜀଴
ᇱ + 𝑛𝜈଴

ᇱ ቀ1 − 𝑒ି
೟

೙ቁ      (2.4.12) 

სურ. 2.4.2-ზე გამოსახულია (2.4.11) და (2.4.12) დამოკიდებულებების 
შესაბამისი გრაფიკები:  

 

სურ. 2.4.2 I მოდელის შესაბამისი ცოცვადობის და განტვირთვის 
მრუდები 

2) მუდმივი დეფორმაციის შემთხვევა 𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡 (რელაქსაცია): 
(2.4.7) რეოლოგიური განტოლებიდან მივიღებთ: 

 ௗఙ

ௗ௧
+

ு

ఎ
𝜎 = 0     (2.4.13) 

ცვლადების განცალების შემდეგ დარჩება ௗఙ

ఙ
= −

ு

ఎ
𝑑𝑡, რომელიც 

მარტივად ინტეგრირდება და მიიღებს სახეს: 

𝜀 

𝑡 

𝜀଴
ᇱ  

𝜎௖

𝐻
 

𝜀଴
ᇱ + 𝑛𝜈଴

ᇱ  

𝜎௖ ൬
1

𝐻
−

𝑛

𝜂
൰ + 𝑛𝜈଴ 

0 

განტვირთვა 
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ln|𝜎(𝑡)| = 𝐶 −
ு

ఎ
𝑡 ⇒  𝜎(𝑡) = 𝜎଴𝑒

ି
ಹ

ആ
௧              (2.4.14) 

ამ შემთხვევაშიც საწყისი პირობებიდან, 

 როცა 𝑡 = 0, 𝜎 = 𝜎଴ = 𝐻𝜀௖      (2.4.15) 

საბოლოოდ 

𝜎(𝑡) = 𝐻𝜀௖𝑒
ି

ಹ

ആ
௧     (2.4.16) 

(2.4.16) დამოკიდებულების გრაფიკული გამოსახულება მოცემულია 
სურ. 2.4.3-ზე: 

 

 

სურ. 2.4.3 I მოდელის შესაბამისი ძაბვების რელაქსაციის მრუდი 

წარმოდგენილი მოდელი ცოცვადობის აღწერის თვალსაზრისით 
იძლევა მეორე რიგის დიფერენციალურ განტოლებას, მისი ამონახსნი კარგად 
ეთავსება ექსპერიმენტის თვისობრივ შედეგებს და ორი განუსაზღვრელი 
კოეფიციენტის არსებობა იძლევა შესაძლებლობას რაოდენობრივადაც კარგად 
შეეთავსოს ექსპერიმენტულ შედეგებს. თუმცა რელაქსაციის პროცესის 
აღწერისას მიიღება მარტივი გამოსახულება, განუსაზღვრელი ერთი 
კოეფიციენტით და შესაბამისად ექსპერიმენტთან შეთავსების შესაძლებობა 
უფრო შემცირებულია. 

ბ) სურ. 2.4.4-ზე წარმოდგენილია სამელემენტიანი განზოგადებული 
მოდელის II ვარიანტი. 

𝐻𝜀௖ 

𝜎 

𝑡 0 
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სურ. 2.4.4 სამელემენტიანი მოდელის II ვარიანტი 

აქაც უნდა დაიწეროს თითოეული ელემენტისთვის ძაბვასა და 
დეფორმაციას შორის დამოკიდებოლება, ასევე საერთო სისტემის ჯამური ძაბვა 
და დეფორმაცია: 

⎩
⎪
⎨

⎪
⎧

𝜎ଵ = 𝐸 𝜀ଵ       

𝜎ଵ = 𝜂ଵ
ௗఌమ

ௗ௧
   

𝜎ଶ = 𝜂ଶ
ௗఌ

ௗ௧
    

𝜎 = 𝜎ଵ + 𝜎ଶ

𝜀 = 𝜀ଵ + 𝜀ଶ  

      (2.4.17) 

ინდექსიანი პარამეტრების გამორიცხვის შემდეგ მიიღება შემდეგი 
დიფერენციალურ დამოკიდებულება (რეოლოგიური განტოლება): 

ௗమఌ

ௗ௧మ =
ଵ

ఎమ

ௗఙ

ௗ௧
−

(ఎభାఎమ)ா

ఎభఎమ

ௗఌ

ௗ௧
+

ா

ఎభఎమ
𝜎     (2.4.18) 

ნელი დეფორმაციისას, ზემოთ განხილულის ანალოგიურად მიიღება 
𝜎 → 0. ამ ხერხით „ხანგრძლივი“ დრეკადობის მოდული აქაც ვერ დგინდება. 

სწრაფი დეფორმაციისას შემოვიფარგლოთ მხოლოდ პირველი რიგის 
წარმოებულებით, (2.4.18)-დან გვექნება: 

 𝜎̇ =
(ఎభାఎమ)ா

ఎభ
𝜀̇     (2.4.19) 

და  დრეკადობის „მყისი“ მოდული მიიღებს სახეს: 

𝜎 

𝜎 

 𝐸, 𝜀ଵ, 𝜎ଵ 
Type equation here.

 𝜂ଵ, 𝜀ଶ, 𝜎ଵ 
Type equation here.

 𝜂ଶ, 𝜀, 𝜎ଶ 
Type equation here.
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𝐻 =
(ఎభାఎమ)ா

ఎభ
       (2.4.20) 

შემოვიღოთ დამატებითი აღნიშვნები: 

 𝑛 =
ఎమ

ு
;  𝜂ଵ = 𝜂    (2.4.21)  

რის შემდეგაც (2.4.18) მიიღებს სახეს: 

ௗమఌ

ௗ௧మ =
ଵ

௡ு

ௗఙ

ௗ௧
−

ଵ

௡

ௗఌ

ௗ௧
+

ா

௡ுఎ
𝜎                (2.4.22) 

როგორც ჩანს (2.4.22) და (2.4.7) არის ერთი და იგივე ტიპის 
დიფერენციალური განტოლება ბოლო 𝜎–ს წინა კოეფიციენტის განსხვავებით, 
რომელიც შედეგებზე არანაირ ზეგავლენას მოახდენს, რადგანაც მასალის 
თვისებების აღწერისას ეს კოეფიციენტი მხოლოდ ექსპერიმენტთან შედარების 
შემდეგ დადგინდება.  

მცირედი ცვლილება იქნება ცოცვადობის პროცესის აღმწერ ამონახსნში, 
ამ შემთხვევაში მიიღება: 

𝜀(𝑡) = ቂ
ఙ೎

ு
ቀ1 −

௡ா

ఎ
ቁ + 𝑛𝜈଴ቃ + ቂ

ா௡ఙ೎

ுఎ
− 𝑛𝜈଴ቃ 𝑒ି

೟

೙ +
ாఙ೎

ுఎ
𝑡   (2.4.23) 

განტვირთვის პროცესი წინა შემთხვევის ანალოგიურად აღიწერება 

𝜀 = 𝜀଴
ᇱ + 𝑛𝜈଴

ᇱ ቀ1 − 𝑒ି
೟

೙ቁ   (2.4.12) განტოლებით. ცხადია, აქაც იგივე ითქმის საწყის 

დეფორმაციასა და მის სიჩქარეზე, ხოლო გრაფიკულ გამოსახულებას 
ცოცვადობისა თუ განტვირთვისთვის ექნება სახე (სურ. 2.4.5): 

 

სურ. 2.4.5 II მოდელის შესაბამისი ცოცვადობის და განტვირთვის 
მრუდები 

𝜀 

𝑡 

𝜀଴
ᇱ  

𝜎௖

𝐻
 

𝜀଴
ᇱ + 𝑛𝜈଴

ᇱ  

𝜎௖

𝐻
൬1 −

𝑛𝐸

𝜂
൰ + 𝑛𝜈଴ 

0 

განტვირთვა 
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მუდმივი დეფორმაციის შემთხვევა 𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡 (რელაქსაცია): 
იგივე შეიძლება ითქვას რელაქსაციის პროცესზე  (2.4.16)-ის მსგავსად 

ამ შემთხვევაში პროცესის აღმწერ თანაფარდობას ექნება სახე: 

𝜎 = 𝐻𝜀௖𝑒
ି

ಶ

ആ
௧       (2.4.24) 

ხოლო მისი გრაფიკული გამოსახულება სურ. 2.4.3-ის იდენტურია. 
ამ შემთხვევაშიც იგივე დასკვნები გაკეთდება, რაც I მოდელის 

განხილვისას იყო. 
 

 

 

2.5. ოთხელემენტიანი განზოგადებული მოდელები ორი დრეკადი 
და ორი ბლანტი ელემენტით 

იმისათვის, რომ ამოიწუროს მოდელების ზემოთ აღწერილი 
კლასიფიკაციით ორი ბლანტი ელემენტის შემცველი 2) ტიპის ვარიანტები, 
საჭიროა განხილულ იქნას ოთხელემენტიანი მოდელები, რომლებიც შეიცავს 
ორ დრეკად და ორ ბლანტ ელემენტს. 

ასეთი მოდელების შედგენის რამდენიმე კომბინაციიდან გამოიყოფა 
სამი ერთმანეთისგან დამოუკიდებელი ვარიანტი. განვიხილოთ მათი 
დეფორმაციის მახასიათებლები მუდმივი დატვირთვის და მუდმივი 
დეფორმაციის შემთხვევებში. 

სიმბოლურად ერთ-ერთ ასეთ ვარიანტს წარმოადგენს მიმდევრობით 
შეერთებულ მაქსველისა და კელვინ-ფოიხტის მოდელების კომბინაცია (სურ. 
2.5.1 ა), ხოლო იდენტური თვისებების მქონე სხვა ორი მოდელი 
წარმოდგენილია სურ. 2.5.1 ბ), გ)-ზე. 
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სურ. 2.5.1 ოთხელემენტიანი მოდელების ვარიანტები 

თითოეული მოდელისთვის უნდა დაიწეროს შემადგენელი 
ელემენტების ძაბვასა და დეფორმაციას შორის დამოკიდებულება, ასევე 
საერთო სისტემის ჯამური ძაბვა და დეფორმაცია: 

ა) 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜎 = 𝜂ଵ

ௗఌభ

ௗ௧
               

𝜎ଵ = 𝐸ଵ𝜀ଶ                

𝜎ଶ = 𝜂ଶ
ௗఌమ

ௗ௧
             

𝜎 = 𝐸ଶ𝜀ଷ                 
𝜎 = 𝜎ଵ + 𝜎ଶ           
𝜀 = 𝜀ଵ + 𝜀ଶ  + 𝜀ଷ  

ბ) 

⎩
⎪⎪
⎨

⎪⎪
⎧𝜎 = 𝜂ଵ

ௗఌభ

ௗ௧
                 

𝜎ଵ = 𝐸ଵ𝜀ଶ                  

𝜎ଵ = 𝜂ଶ
ௗఌయ

ௗ௧
               

𝜎ଶ = 𝐸ଶ(𝜀ଶ  + 𝜀ଷ  ) 
𝜎 = 𝜎ଵ + 𝜎ଶ             
𝜀 = 𝜀ଵ + 𝜀ଶ  + 𝜀ଷ    

 გ) 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜎 = 𝐸ଵ𝜀ଵ                   
𝜎ଵ = 𝐸ଶ𝜀ଶ                  

𝜎ଵ = 𝜂ଵ
ௗఌయ

ௗ௧
               

𝜎ଶ = 𝜂ଶ
ௗ(ఌమ  ାఌయ  )

ௗ௧
     

𝜎 = 𝜎ଵ + 𝜎ଶ             
𝜀 = 𝜀ଵ + 𝜀ଶ  + 𝜀ଷ    

 (2.5.1) 

ინდექსიანი პარამეტრების გამორიცხვის შემდეგ, თითოეული 
მოდელისთვის მიიღება შემდეგი დიფერენციალური დამოკიდებულებები 
(რეოლოგიური განტოლებები): 

ა)   ௗ
మఌ

ௗ௧మ −
ଵ

ாమ

ௗమఙ

ௗ௧మ =
(ఎభାఎమ)ாమାఎభாభ

ఎభఎమாమ

ௗఙ

ௗ௧
−

ாభ

ఎమ

ௗఌ

ௗ௧
+

ாభ

ఎభఎమ
𝜎                  (2.5.2) 

ნელი დეფორმაციის დროს მიიღება 𝜎 → 0, შესაბამისად „ხანგრძლივი“ 
დრეკადობის მოდული აქაც ვერ განისაზღვრება. სწრაფი დეფორმაციისას თუ 
შემოვიფარგლებით პირველი რიგის წარმოებულებით დარჩება 

 𝜎̇ =
ఎభாభாమ

(ఎభାఎమ)ாమାఎభாభ
𝜀̇     (2.5.3) 

 „მყისი“ დრეკადობის მოდულისთვის მიიღება გამოსახულება: 

 𝜂ଵ, 𝜀ଵ, 𝜎 
Type equation here.

 𝐸ଵ, 𝜀ଶ, 𝜎ଵ 
Type equation here.

 𝜂ଶ, 𝜀ଶ, 𝜎ଶ 
Type equation here.

 𝐸ଶ, 𝜀ଷ, 𝜎 
Type equation here.

 𝜎 
Type equation here.

 𝜎  

ა)
Type equation here.

ბ)
Type equation here.

გ)
Type equation here.

 𝜂ଵ, 𝜀ଵ, 𝜎 
Type equation here.

 𝐸ଵ, 𝜀ଶ, 𝜎ଵ 
Type equation here.

 𝐸ଶ, (𝜀ଶ + 𝜀ଷ), 𝜎ଶ 
Type equation here.

 𝜂ଶ, 𝜀ଷ, 𝜎ଵ 
Type equation here.

 𝜂ଶ, (𝜀ଶ + 𝜀ଷ), 𝜎ଶ 
Type equation here.

 𝐸ଵ, 𝜀ଵ, 𝜎 
Type equation here.

 𝐸ଶ, 𝜀ଶ, 𝜎ଵ 
Type equation here.
 𝜂ଵ, 𝜀ଷ, 𝜎ଵ 
Type equation here.

 𝜎 
Type equation here.

 𝜎  

 𝜎 
Type equation here.

 𝜎 
Type equation here.
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𝐻 =
ఎభாభாమ

(ఎభାఎమ)ாమାఎభாభ
        (2.5.4) 

შემოვიღოთ დამატებითი აღნიშვნები:  

𝑛 =
ఎమ

ாభ
;  𝜂ଵ = 𝜂; 𝐸ଶ = 𝐸       (2.5.5) 

 რის შემდეგაც (2.5.2) მიიღებს სახეს: 

ௗమఌ

ௗ௧మ −
ଵ

ா

ௗమఙ

ௗ௧మ =
ଵ

௡ு

ௗఙ

ௗ௧
−

ଵ

௡

ௗఌ

ௗ௧
+

ଵ

௡ఎ
𝜎        (2.5.6) 

ანალოგიურად, დანარჩენი ორი შემთხვევისთვის: 

ბ)     ௗ
మఌ

ௗ௧మ −
ଵ

ாభାாమ

ௗమఙ

ௗ௧మ =
(ாభାாమ)ఎమାఎభாభ

ఎభఎమ(ாభାாమ)

ௗఙ

ௗ௧
−

ாభாమ

ఎమ(ாభାாమ)

ௗఌ

ௗ௧
+

ாభாమ

ఎభఎమ(ாభାாమ)
𝜎      (2.5.7) 

„მყისი“ დრეკადობის მოდული: 

𝐻 =
ఎభாభாమ

(ாభାாమ)ఎమାఎభாభ
        (2.5.8) 

ხოლო დამატებითი აღნიშვნები: 

 𝑛 =
(ாభାாమ)ఎమ

ாభாమ
;  𝜂ଵ = 𝜂; 𝐸ଵ + 𝐸ଶ = 𝐸    (2.5.8) 

 ამის შემდეგ (2.5.7) მიიღებს ზუსტად (2.5.6) სახეს. 

გ)  ௗమఌ

ௗ௧మ −
ଵ

ாభ

ௗమఙ

ௗ௧మ =
(ఎభାఎమ)ாమାఎభாభ

ఎభఎమாభ

ௗఙ

ௗ௧
−

ாమ(ఎభାఎమ)

ఎభఎమ

ௗఌ

ௗ௧
+

ாమ

ఎభఎమ
𝜎             (2.5.9) 

„მყისი“ დრეკადობის მოდული: 

𝐻 =
(ఎభାఎమ)ாభாమ

(ఎభାఎమ)ாమାఎభாభ
        (2.5.10) 

ხოლო დამატებითი აღნიშვნები: 

 𝑛 =
ఎభఎమ

(ఎభାఎమ)ாమ
;  𝜂ଵ + 𝜂ଶ = 𝜂; 𝐸ଵ = 𝐸    (2.5.11) 

ამის შემდეგ (2.5.9) გამოსახულებაც მიიღებს ზუსტად (2.5.6) სახეს. 

გამოდის, რომ სამივე ეს მოდელი ერთნაირად აღწერს მათთან 
დაკავშირებულ დეფორმაციის პროცესებს, განვიხილოთ დაწვრილებით: 

1) ცოცვადობა და განტვირთვის პროცესი (𝜎 = 𝜎௖ = 𝑐𝑜𝑛𝑠𝑡) 
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(2.5.6) გამოსახულებიდან მიიღება: 

ௗమఌ

ௗ௧మ +
ଵ

௡

ௗఌ

ௗ௧
=

ఙ೎

௡ఎ
           (2.5.12) 

რაც ზუსტად (2.4.7) განტოლებაა. ამ განტოლების ამონახსნი და მისი 
გრაფიკული წარმოდგენა როგორც ცოცვადობისთვის ასევე განტვირთვისთვის 
მოცემულია ზემოთ.  

2) რელაქსაცია (𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡) 

(2.5.6) ფორმულიდან მიიღება:  

ௗమఙ

ௗ௧మ +
ா

௡ு

ௗఙ

ௗ௧
+

ா

௡ఎ
𝜎 = 0       (2.5.13) 

(2.5.13) წარმოადგენს მეორე რიგის მუდმივკოეფიციენტებიან 
ერთგვაროვან დიფერენციალურ განტოლებას, რომლის ზოგადი ამონახსნი 
ჩაიწერება ასე: 

𝜎 = 𝐶ଵ𝑒௞భ௧ + 𝐶ଶ𝑒௞మ௧         (2.5.14) 

სადაც 𝑘ଵ და 𝑘ଶ არის  

𝑘ଶ +
ா

௡ு
𝑘 +

ா

௡ఎ
= 0     (2.5.15) 

მახასიათებელი განტოლების ამონახსნები: 

𝑘ଵ =
ିாାටாమି

ర೙ಶಹమ

ആ

ଶ௡
< 0 და 𝑘ଶ =

ିாିටாమି
ర೙ಶಹమ

ആ

ଶ௡ு
< 0       (2.5.16) 

საწყისი პირობებით 

 როცა 𝑡 = 0, 𝜎(0) = 𝜎଴ = 𝐻𝜀௖ და 𝜎̇(0) = 𝜇଴      (2.5.17) 

სადაც 𝜇଴ არის ძაბვის ცვლილების საწყისი სიჩქარე. შედეგად 
განუსაზღვრელი კოეფიციენტებისთვის მივიღებთ: 

𝐶ଵ =
ఓబିுఌ೎௞మ

௞భି௞మ
 და 𝐶ଶ = −

ఓబିுఌ೎௞భ

௞భି௞మ
         (2.5.18) 

საბოლოოდ (2.5.14) მიიღებს სახეს: 

𝜎(𝑡) =
ఓబିுఌ೎௞మ

௞భି௞మ
𝑒௞భ௧ −

ఓబିுఌ೎௞భ

௞భି௞మ
𝑒௞మ௧      (2.5.19) 
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მისი გრაფიკული გამოსახულება მოცემულია სურ. 2.5.2-ზე: 

 

სურ. 2.5.2 ძაბვების რელაქსაციის მრუდი ოთხელემენტიანი 
განზოგადებული მოდელებისთვის 

სამელემენტიანი მოდელებისგან განსხვავებით, ამ შემთხვევაში მიიღება 
რეოლოგიურ განტოლებას (2.5.6), რომელშიც ძაბვა და დეფორმაცია 
სიმეტრიულად შედის (შეიცავს ორივე სიდიდის პირველი და მეორე რიგის 
წარმოებულებს). ცოცვადობის შემთხვევის ამონახსნი  ემთხვევა სამ 
ელემენტიანი მოდელების შესაბამის ამონახსნს და დასკვნებიც იგივეა, ხოლო 
რელაქსაციის განხილვისას ოთხელემენტიანი მოდელები იძლევა უფრო 
ფართო შესაძლებლობებს ექსპერიმენტთან შედარების თვალსაზრისით, 
კერძოდ რელაქსაციის მრუდი არ წარმოადგენს მარტო ერთ მარტივ 
ექსპონენტას (ორი ექსპონენტის კომბინაციაა) და ასევე გვაქვს ერთის ნაცვლად 
ორი დამოუკიდებელი მუდმივა, რაც ექსპერიმენტთან კარგად შეთავსების 
საშუალებას იძლევა. 

თუ 𝜂 კოეფიციენტს ( გ) მოდელისთვის 𝜂ଵ-ს) მივასწრაფებთ 
უსასრულობისკენ, მაშინ ეს ოთხელემენტიანი მოდელები გადაიქცევა კელვინ-
ფოიხტის განზოგადებულ სამ ელემენტიან მოდელებად, რომლებიც 
თვისობრივად კარგად აღწერენ კომპოზიციური მასალების თვისებებს, თუმცა 
რაოდენობრივად ექსპერიმენტთან შედარებით დიდ ცდომილებას იძლევიან. 

მოდელში ელემენტების რაოდენობის გაზრდა ართულებს მის ამოხსნას, 
მაგრამ იძლევა კარგ შესაძლებლობას გაცილებით ნაკლები ცდომილებით 
მოხდეს ექსპერიმენტულ მონაცემებთან შეთავსება. განხილული 
ოთხელემენტიანი მოდელები კარგი შესაძლებლობაა კომპოზიტური 
მასალების თვისებების აღსაწერად. 

 

𝐻𝜀௖ 

𝜎 

𝑡 0 
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2.6. დრეკად–ბლანტი სხეულების თვისებების აღმწერი 
ოთხელემენტიანი განზოგადებული მოდელების შედარებითი ანალიზი 

ოთხელემენტიანი მოდელების მრავალი კომბინაციიდან შეირჩა ზემოთ 
აღწერილი კლასიფიკაციის 1) და 2) ხაზის მოდელების თითო კომბინაცია და 
მოხდა მათი თვისებების შედარებითი ანალიზი [18]. ასეთ შემთხვევებად 
სიმბოლურად აირჩა პარალელურად და მიმდევრობით შეერთებული 
მაქსველისა და კელვინ-ფოიხტის ორ ელემენტიანი მოდელები. 

1. ოთხელემენტიანი მოდელი კლასიფიკაციის 1) ხაზის მიხედვით (სურ. 
2.6.1): 

 

სურ. 2.6.1 ოთხელემენტიანი მოდელი შემკვრელი დრეკადი 
ელემენტით 

ამ შემთხვევაშიც თითოეული ელემენტისათვის უნდა დაიწეროს 
ძაბვისა და დეფორმაციის მაკავშირებელი დამოკიდებულება (ჰუკის კანონი ან 
ნიუტონის კანონი), ასევე საერთო ძაბვისა და დეფორმაციის გამომსახველი 
განტოლებები. ინდექსიანი პარამეტრების გამორიცხვის შემდეგ მიიღება 
ძაბვისა და დეფორმაციის მაკავშირებელი დიფერენციალური 
დამოკიდებულება (რეოლოგიური განტოლება), რომელსაც მოცემულ 
შემთხვევაში აქვს სახე: 

ௗమఌ

ௗ௧మ =
ଵ

ఎభ

ௗఙ

ௗ௧
−

(ாభାாమ)ఎమାாమఎభ

ఎభఎమ

ௗఌ

ௗ௧
+

ாమ

ఎభఎమ
𝜎 −

ாభாమ

ఎభఎమ
𝜀   (2.6.1) 

ნელი და სწრაფი დეფორმაციის განხილვისას შესაძლებელია 
შესაბამისად წარმოებულების და თავისუფალი წევრების უკუგდება. ასეთ 
შემთხვევაში მიიღება მარტივი დამოკიდებულებები: 𝜎 = 𝐸𝜀 ნელი 
დეფორმაციისას და 𝜎̇ = 𝐻𝜀̇ სწრაფი დეფორმაციისას. დრეკადობის 

𝐸ଵ, 𝜀, 𝜎ଶ 

𝜎 

𝜎 

𝜂ଵ, 𝜀, 𝜎ଵ 𝐸ଶ, 𝜀ଵ, 𝜎ଷ 

𝜂ଶ, 𝜀ଶ, 𝜎ଷ 
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„ხანგრძლივი“ და „მყისი“ მოდულების გამოსახულებებს და დამატებით 
აღნიშვნებს აქვს სახე: 

𝐸 = 𝐸ଵ და 𝐻 =
(ாభାாమ)ఎమାாమఎభ

ఎమ
; 𝑛 =

ఎమ

ாభ
 და 𝜂 = 𝜂ଵ    (2.6.2) 

(2.6.2)-ის გათვალისწინებით (2.6.1) მიიღებს ფორმას: 

ௗమఌ

ௗ௧మ =
ଵ

ఎ

ௗఙ

ௗ௧
−

ு

ఎ

ௗఌ

ௗ௧
+

ଵ

ఎ௡
𝜎 −

ா

ఎ௡
𝜀     (2.6.3) 

(2.6.3) განტოლების ზოგადი ამოხსნა ვერ ხერხდება. კერძო 
შემთხვევებში: 

ა) 𝜎 = 𝜎௖ = 𝑐𝑜𝑛𝑠𝑡 (ცოცვადობა). ამ შემთხვევაში (2.6.3) მიიღებს სახეს: 

ௗమఌ

ௗ௧మ +
ு

ఎ

ௗఌ

ௗ௧
+

ா

ఎ௡
𝜀 =

ఙ೎

ఎ௡
     (2.6.4) 

რომლის ამონახსნი, როცა 𝑡 = 0, 𝜀 = 𝜀଴ =
ఙ೎

ு
 და 𝜀̇(0) = 𝜈଴ (დეფორმაციის საწყისი 

სიჩქარე), საწყისი პირობების გათვალისწინებით მოიცემა ფორმით: 

𝜀(𝑡) =
ఔబି௞మఙ೎ቀ

భ

ಹ
ି

భ

ಶ
ቁ

௞భି௞మ
𝑒௞భ௧ −

ఔబି௞భఙ೎ቀ
భ

ಹ
ି

భ

ಶ
ቁ

௞భି௞మ
𝑒௞మ௧ +

ఙ೎

ா
  (2.6.5) 

სადაც 𝑘ଵ =
ିுାඥுమିସாఎ/௡

ଶఎ
< 0 და 𝑘ଶ =

ିுିඥுమିସாఎ/௡

ଶఎ
< 0 არის (2.6.4) 

გამოსახულების შესაბამისი მახასიათებელი განტოლების ამონახსნები. 
თუ გარკვეული დროის შემდეგ მოიხსნება დატვირთვა, სისტემა 

მყისიერად ახლებურად ფორმირდება, დეფორმაციის დროში განვითარება 
გაგრძელდება სხვაგვარად ახალი საწყისი პირობებით: როცა 𝑡 = 0,  𝜀 = 𝜀଴

ᇱ  და 
𝜀̇(0) = 𝜈଴

ᇱ  (უნდა აღინიშნოს, რომ საწყისი დეფორმაციის სიჩქარე იცვლის თავის 
მიმართულებას). ასეთ შემთხვევაში (2.6.4) განტოლების ამონახსნი 
განტვირთვის დროს (𝜎௖ = 0) მიიღებს სახეს: 

𝜀(𝑡) =
ఔబ

ᇲ ି௞మఌబ
ᇲ

௞భି௞మ
𝑒௞భ௧ −

ఔబ
ᇲ ି௞భఌబ

ᇲ

௞భି௞మ
𝑒௞మ௧    (2.6.6) 

(2.6.5) და (2.6.6) გამოსახულებებით მოცემული ცოცვადობის და 
განტვირთვის შესაბამისი სქემატური გრაფიკული გამოსახულებები 
მოცემულია სურ. 2.6.2-ზე. 
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სურ. 2.6.2 ცოცვადობის და განტვირთვის მრუდები 

ბ) 𝜀 = 𝜀௖ = 𝑐𝑜𝑛𝑠𝑡 (რელაქსაცია). (2.6.3) მიიღებს სახეს: 

ௗఙ

ௗ௧
+

ଵ

௡
𝜎 =

ாఌ೎

௡
     (2.6.7) 

რომლის ამონახსნი საწყისი პირობებით, როცა 𝑡 = 0, 𝜎 = 𝜎଴ = 𝐻𝜀௖ , მოიცემა 
ფორმით: 

𝜎(𝑡) = 𝜀௖(𝐻 − 𝐸)𝑒ି
೟

೙ + 𝐸𝜀௖   (2.6.8) 

(2.6.8) განტოლების სქემატური გრაფიკული გამოსახულება 
მოცემულია სურ. 2.6.3-ზე: 

 

სურ. 2.6.3 ძაბვების რელაქსაციის მრუდი 

 

 

𝜀 

𝑡 

𝜀଴
ᇱ  

𝜎௖

𝐻
 

0 

𝐻𝜀𝑐 

𝜎 

𝑡 0 

𝜎௖

𝐸
 

განტვირთვა 

𝐸𝜀𝑐 
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2. ოთხელემენტიანი მოდელი კლასიფიკაციის 2) ხაზის მიხედვით              
(იხ. სურ. 2.5.1 ა)) 

 ეს მოდელი განხილულია 2.5. ქვეთავში. ამ სქემის შესაბამისი 
რეოლოგიური განტოლება აღიწერება (2.5.6) განტოლებით. ცოცვადობის და 
რელაქსაციის აღმწერი ამონახსნები მოიცემა შესაბამისად (2.4.11) და (2.5.19) 
გამოსახულებებით, ხოლო მათი სქემატური გრაფიკული გამოსახულებები 
მოცემულია შესაბამისად სურ. 2.4.2 და სურ. 2.5.2-ზე. ამავე ქევეთავში არის 
აღწერილი ამ მოდელის მახასიათებლები, მისი უპირატესობები და 
ნაკლოვანებები. 

აქ განხილული ორივე ტიპის მოდელისთვის მიიღება დროის მიხედვით 
მეორე რიგის დიფერენციალური დამოკიდებულება (რეოლოგიური 
განტოლება), მაგრამ მათში ძაბვები და დეფორმაციები, წარმოებულების რიგის 
მიხედვით, არასიმეტრიულია. მეორე შემთხვევაში განსხვავება მხოლოდ (2.5.6) 
რეოლოგიურ განტოლებაში დეფორმაციის შემცველი თავისუფალი წევრის 
არარსებობითაა გამოწვეული.  

ცოცვადობის და რელაქსაციის პროცესების აღწერისას ორივე ტიპის 
მოდელი იძლევა განსხვავებულ შედეგებს, კერძოდ, პირველი მოდელით 
ცოცვადობის პროცესი აღიწერება ისე, რომ ხანგრძლივი დროის შემდეგ 
დეფორმაცია აღწევს რაღაც მაქსიმალურ მნიშვნელობას. პრაქტიკა აჩვენებს, 
რომ ასეთი შემთხვევა იშვიათია, რეალურად, დროის მიხედვით დეფორმაციის 
პროცესი არ ჩერდება. თუმცა გარკვეული სიზუსტით შედეგები შეიძლება 
დამაკმაყოფილებლად ჩაითვალოს. კლასიფიკაციის ამ ხაზის მოდელების 
სამელემენტიანი ვარიანტისგან განსხვავებით ცოცვადობის მრუდი 
წარმოადგენს ორი ექსპონენციალური შესაკრების კომბინაციას, 
დამოუკიდებელი პარამეტრების რიცხვი უფრო მეტია და ექსპერიმენტთან 
ეფექტურად შეთავსების მეტი შესაძლებლობაა. განტვირთვის დროს სისტემა 
სრულად აღიდგენს საწყის მდგომარეობას, ნარჩენი დეფორმაცია არ იქნება. რაც 
შეეხება რელაქსაციის პროცესს, ამონახსნი წარმოადგენს მარტივ ექსპონენტას 
რაც ექსპერიმენტთან მიმართებით მეტ უზუსტობას იძლევა. ამ შემთხვევაში, 
ხანგრძლივი დროის შემდეგ ძაბვა ჩერდება რაღაც არანულოვან 
მნიშვნელობაზე. 

კლასიფიკაციის მეორე მოდელის შემთხვევაში ცოცვადობისა და 
რელაქსაციის მრუდები არ წარმოადგენს მარტივ ექსპონენტებს, 
დამოუკიდებელი პარამეტრების რიცხვიც მეტია მათ სამ ელემენტიან 
ვარიანტებთან შედარებით და ექსპერიმენტთან შედარების მეტი ეფექტური 
შესაძლებლობაა. ცოცვადობის პროცესის აღწერისას დეფორმაცია ხანგრძლივი 
დროის მანძილზე ყოველთვის მიმდინარეობს, რისი გამოვლინებაც 
პრაქტიკაშიც ხშირად გვხდება. 𝜂ଵ სიბლანტის კოეფიციენტის ვარირებით ეს 
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პროცესი შესაძლოა იმართოს ექსპერიმენტულ მონაცემებთან შეთავსების 
თვალსაზრისით, ხოლო თუ მას მივასწრაფებთ უსასრულობისკენ მაშინ სურ. 
2.5.1 ა)-ზე გამოსახული მოდელი გადაიქცევა კლასიფიკაციის 1) ხაზის 
განზოგადებული მოდელის სამელემენტიან ვარიანტად. განტვირთვის შემდეგ 
სისტემაში რჩება ნარჩენი დეფორმაციები, რაც პრაქტიკული თვალსაზრისით 
რეალობასთან უფრო ახლოს დგას.  რელაქსაციის პროცესი ამ შემთხვევაში 
იძლევა შედეგს, რომ ხანგრძლივი დროის შემდეგ ძაბვა 0-მდე ეცემა, რაც 
პრაქტიკულად ზოგ შემთხვევაში არ ვლინდება. ეს ფაქტი ამ მოდელის 
უარყოფით მხარედ შეიძლება შეფასდეს, თუმცა პრაქტიკული სიზუსტის 
თვალსაზრისით დასაშვებია. 

 

2.7 ხუთელემენტიანი მოდელი სამი დრეკადი და ორი ბლანტი 
ელემენტით 

ორი ბლანტი ელემენტის შემცველი მოდელებიდან ყველაზე რთულ 
შემთხვევას წარმოადგენს სურ. 2.7.1-ზე წარმოდგენილი სქემა 
(ხუთელემენტიანი მოდელი): 

 
სურ. 2.7.1 ხუთელემენტიანი მოდელი სამი დრეკადი და ორი ბლანტი 

ელემენტით 

ამ შემთხვევაშიც თითოეული ელემენტისათვის უნდა დაიწეროს 
ძაბვისა და დეფორმაციის მაკავშირებელი დამოკიდებულება (ჰუკის კანონი ან 
ნიუტონის კანონი), ასევე საერთო ძაბვისა და დეფორმაციის გამომსახველი 
განტოლებები. ინდექსიანი პარამეტრების გამორიცხვის შემდეგ მიიღება 
ძაბვისა და დეფორმაციის მაკავშირებელი დიფერენციალური 

𝐸ଵ, 𝜀ଵ, 𝜎ଵ 

𝜎 

𝐸ଶ, 𝜀ଶ, 𝜎ଷ 

𝜂ଶ, 𝜀ଷ, 𝜎ଷ 

𝜂ଵ, 𝜀ଵ, 𝜎ଶ 

𝐸ଶ, 𝜀ସ, 𝜎 

𝜎 



53 
 

დამოკიდებულება (რეოლოგიური განტოლება), რომელსაც მოცემულ 
შემთხვევაში აქვს სახე: 

ቀ
ఎభఎమ

ாమ
ቁ

ௗమఙ

ௗ௧మ + ቀ
ఎమ(ாభାாయ)

ாమ
+ 𝜂ଵ + 𝜂ଶቁ

ௗఙ

ௗ௧
+ (𝐸ଵ + 𝐸ଷ)𝜎 =    

= 𝐸ଷ ቂቀ
ఎభఎమ

ாమ
ቁ

ௗమఌ

ௗ௧మ + ቀ
ாభఎమ

ாమ
+ 𝜂ଵ + 𝜂ଶቁ

ௗఌ

ௗ௧
+ 𝐸ଵ𝜀ቃ   (2.7.1) 

ნელი და სწრაფი დეფორმაციების განხილვისას დადგინდება 
დრეკადობის „ხანგრძლივი“ და „მყისი“ მოდულების მნიშვნელობები ზემოთ 
აღწერილი მეთოდიკით. 

აღსანიშნავია, რომ ასეთ შემთხვევაში, როგორც ცოცვადობის, ასევე 
რელაქსაციის პროცესის აღწერისას (2.7.1) გამოსახულებიდან მიიღება დროის 
მიხედვით მეორე რიგის დიფერენციალური განტოლებები, რომლებიც ცხადი 
სახით შეიცავენ საძიებელ ფუნქციას, მის პირველი და მეორე რიგის 
წარმოებულებს. შესაბამის მახასიათებელ განტოლებებსაც ექნება 
არატრივიალური ამონახსნები, რაც თავის მხრივ ზრდის განუსაზღვრელი 
კოეფიციენტების რაოდენობას ორივე პროცესისთვის. ეს კი მოდელის 
ექსპერიმენტულ მონაცემებთან შეთავსების უკეთეს შესაძლებლობას იძლევა. 
ამდაგვარი განტოლებების ამოხსნის მაგალითები მოყვანილია 2.5 და 2.6 
პარაგრაფებში. 
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2.8 ხუთელემენტიანი მოდელები ხახუნის ელემენტით 

კომპოზიტური მასალების ექსპლუატაციის პრაქტიკიდან გამომდინარე, 
დეფორმირების ხასიათის მიხედვით განასხვავებენ მათ ორ ჯგუფს: 
პლასტიკურ კომპოზიტურ პლასტიკებს და დრეკად კომპოზიტურ პლასტიკებს. 
ორივე მათგანისთვის სახასიათოა ისეთი მაქსიმალური დატვირთვა, 
ხანგრძლივი სიმტკიცის ქვედა ზღვრის სახით 𝜎ხ.ს.ზღ, რომელზე მცირე 
დატვირთვის შემთხვევაში მასალა არ ირღვევა უსასრულო დიდი დროის 
განმავლობაში, ხოლო როცა  𝜎 > 𝜎ხ.ს.ზღ მაშინ აცულილებლად მოხდება რღვევა.  

პლასტიკური ჯგუფის კომპოზიტური პლასტიკების ცოცვადობის 
დეფორმაციის აღწერისას, როცა დატვირთვა აჭარბებს ხანგრძლივი სიმტკიცის 
ქვედა ზღვარს  (𝜎 > 𝜎ხ.ს.ზღ), დეფორმაციის დაწყებიდან გარკვეული დროის 
შემდეგ 𝑡 > 𝑡ა.ჩ. (𝑡ა.ჩ. არაჩამდგარი ცოცვადობის დროის საზღვარი) გრაფიკზე 
(იხ. სურ. 2.8.1) გამოიყოფა უბანი, რომელიც ახლოსაა მასალის დროში 
დეფორმაციის წრფივ ხასიათთან, რომელსაც ჩამდგარი ცოცვადობის არე 
ეწოდება. ხოლო დრეკადი ჯგუფის კომპოზიტური პლასტიკებისთვის ასეთი 
გამოკვეთილი უბანი არ დაიმზირება. მიიჩნევა, რომ პლასტიკური ჯგუფის 
მასალებისთვის ხანგრძლივი სიმტკიცის ქვედა ზღვარი არმირების გასწვრივ 
გაჭიმვისას 20℃ ტემპერატურის პირობებში ნაკლებია მოკლევადიან პერიოდში 
მოქმედი მრღვევი ძაბვის ნახევარზე (𝜎ხ.ს.ზღ < 0.5𝜎რღ), ხოლო დრეკადი ჯგუფის 
პლასტიკებისთვის 𝜎ხ.ს.ზღ = (0.5 ÷ 0.75)𝜎რღ [9]. 

 

პლასტიკური ჯგუფი   დრეკადი ჯგუფი 

სურ. 2.8.1 პლასტიკური და დრეკადი ჯგუფის კომპოზიტური 
პლასტიკების ცოცვადობის მრუდები 

𝑡ა.ჩ. 𝑡 

𝜀(𝑡) 𝜀(𝑡) 

𝑡 

𝜎 > 𝜎ხ.ს.ზღ 

𝜎 < 𝜎ხ.ს.ზღ 

𝜎 > 𝜎ხ.ს.ზღ 

𝜎 < 𝜎ხ.ს.ზღ 

0 0 
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აღნიშნული საკითხის გადასაწყვეტად განხილულია ხუთელემენტიანი 
მოდელების ორი ტიპი (იხ. სურ. 2.8.2), რომელთაგანაც ა) აღწერს დრეკადი 
ჯგუფის პლასტიკების დეფორმაციის ხასიათს, ხოლო ბ) პლასტიკური ჯგუფის 
პლასტიკების მახასიათებლებს. ორივე მოდელში ხახუნის ელემენტის არსებობა 
გამოწვეულია ზღვრული დატვირთვის 𝜎ხ.ს.ზღ, არსებობით. როცა დატვირთვა 
𝜎 < 𝜎ხ.ს.ზღ,, მაშინ აღნიშნული ელემენტი უძრავია და ორივე მოდელში 
დეფორმაციას აღწერს მხოლოდ მარჯვენა მხარეში მყოფი სამელემენტიანი 
კომბინაცია [9] (იხ. სურ. 2.8.1-ზე გამოსახული ქვედა გრაფიკები), ხოლო როცა 
𝜎 > 𝜎ხ.ს.ზღ ხახუნის ელემენტი ამოძრავდება და სისტემაში ჩაერთვება მარცხენა 
დრეკადი ან ბლანტი ელემენტი. დეფორმაციის სურათი გახდება სურ. 2.8.1-ზე 
გამოსახული ზედა გრაფიკების შესაბამისი. 

 

სურ. 2.8.2 ხუთელემენტიანი მოდელების ორი ვარიანტი: ა) დრეკადი 
ჯგუფის პლასტიკებისთვის, ბ) პლასტიკური ჯგუფის პლასტიკებისთვის 

მასალის დეფორმაციის რეოლოგიური სურათი მარტივ შემთხვევაში, 
როცა დატვირთვა მუდმივი სიდიდეა (ცოცვადობის პროცესი), 𝜎 > 𝜎ხ.ს.ზღ 
პირობის დროს, შეიძლება აღიწეროს ფორმით: 

დრეკადი ჯგუფის პლასტიკებისთვის: 

 𝜀(𝑡) = 𝐴 + 𝐵(1 − 𝑒ି஼∙௧)    (2.8.1) 

პლასტიკური ჯგუფის ჯგუფის პლასტიკებისთვის: 

𝜀(𝑡) = 𝐴 + 𝐵 ∙ 𝑒ି஼∙௧ + 𝐷 ∙ 𝑡    (2.8.2) 

(2.8.1) და (2.8.2) გამოსახულებები მიღებულია მასალის სწორხაზოვანი 
დეფორმაციის აღწერის დროს, თუმცა ის შეიძლება განზოგადდეს 
დეფორმაციის სხვა სახეობებისთვისაც, მაგალითად როგორიცაა ღუნვითი და 
გრეხითი დეფორმაცია. 

𝜎ხ.ს.ზღ. 

𝜎 

𝜎ხ.ს.ზღ. 

𝜎 
ა) ბ) 
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თავი 3. მოდელების თეორიის გამოყენებით სხვადასხვა 
პრაქტიკული ამოცანის გადაწყვეტა 

3.1 სუფთა ღუნვის ამოცანა კომპოზიტური ღეროს შემთხვევაში, 
ოთხელემენტიანი მოდელის საფუძველზე 

წარმოდგენილი ამოცანა განხილულია 2.6 თავში მოცემული სურ. 2.6.1-
ზე გამოსახული ოთხელემენტიანი 1) კლასიფიკაციის განზოგადებული 
მოდელის საფუძველზე (შეიცავს შემკვრელ დრეკად ელემენტს) [18]. 

კომპოზიტური ღეროს სუფთა ღუნვის ამოცანა დაიყვანება თითოეული 
შრისთვის წრფივი დეფორმაციის ამოცანაზე. სურ. 3.1.1-ზე წარმოდგენილია 
მართკუთხა განიკვეთის მქონე ღეროს ღუნვის სქემა. სადაც 𝑚𝑛 ნეიტრალური 
შრეა, ხოლო 𝑘𝑝 მისგან რაიმე 𝑧 მანძილით დაცილებული შრე [8].  

 

სურ. 3.1.1 მართკუთხა ღეროს ღუნვის სქემა 

სუფთა ღუნვის შემთხვევაში, ღეროს განიკვეთში განივი ძალები 0-ის 
ტოლია, არსებობს მხოლოდ მღუნავი მომენტები 𝑀. ასეთ დროს, ღეროს 
გეომეტრიულ მახასიათებლებს, განიკვეთის წერტილების დეფორმაციებსა და 
ძაბვებს შორის არსებობს შემდეგი დამოკიდებულებები: 

              𝜀 = 𝜘𝑧,         

          𝜘 =
ெ

ுூ೤
=

ெ

ுூ
     (3.1.1) 

𝜎 = 𝐻𝜀 = 𝐻𝜘𝑧 = 𝐻
ெ

ுூ
𝑧 =

ெ

ூ
𝑧      

სადაც  𝜘 =
ଵ

ఘ
  არის სიმრუდე, ხოლო 𝜌 − სიმრუდის რადიუსი. 𝐼௬ = 𝐼 არის 

კვეთის ინერციის მომენტი 𝑦 ნეიტრალური ღერძის მიმართ [8]. 
თუ ჩაითვლება, რომ მღუნავი მომენტი 𝑀 = 𝑀௖ = 𝑐𝑜𝑛𝑠𝑡 და კონკრეტული 

ფიქსირებული 𝑧 სიდიდისთვის, (3.1.1)-ით განსაზღვრულ დეფორმაციის და 
ძაბვის მნიშვნელობებს ჩავსვამთ (2.6.3) რეოლოგიურ განტოლებაში 

𝑧 𝑦 

𝑥 
ℎ 

𝑧 

𝑥 
𝑙 

𝑚 𝑛 

𝑘 𝑝 

𝐴 𝐷 

𝑀 

𝑧 

𝑚ଵ 𝑛ଵ 
𝑘ଵ 𝑝ଵ 

𝐵 𝐶 

𝐴ଵ 

𝐵ଵ 

𝐷ଵ 

𝑑𝜗 

𝑑𝜗 

𝐶ଵ 
𝑦 

𝑀 
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ௗమఌ

ௗ௧మ =
ଵ

ఎ

ௗఙ

ௗ௧
−

ு

ఎ

ௗఌ

ௗ௧
+

ଵ

ఎ௡
𝜎 −

ா

ఎ௡
𝜀   (2.6.3) 

მიიღება შემდეგი გამოსახულება: 

𝜘̈ +
ு

ఎ
𝜘̇ +

ா

ఎ௡
𝜘 =

ெ೎

ఎ௡ூ
        (3.1.2) 

(3.1.2) განტოლების ამონახსნი, შემდეგი საწყისი პირობებით: როცა 𝑡 =

0, 𝜘(0) =
ெ೎

ுூ
 და 𝜘̇(0) = 𝜈଴, მოიცემა სახით: 

𝜘(𝑡) = 𝐶ଵ𝑒௞భ௧ + 𝐶ଶ𝑒௞మ௧ +
ெ೎

ாூ
         (3.1.3) 

სადაც 𝑘ଵ =
ିுାඥுమିସாఎ/௡

ଶఎ
< 0 და 𝑘ଶ =

ିுିඥுమିସாఎ/௡

ଶఎ
< 0 არის (3.1.2) 

გამოსახულების შესაბამისი მახასიათებელი განტოლების ამონახსნები, ხოლო 
𝐶ଵ და 𝐶ଶ კოეფიციენტები საწყისი პირობების შესაბამისად მიიღებს სახეს:  

𝐶ଵ =
ఔబூାெ೎௞మቀ

భ

ಶ
ି

భ

ಹ
ቁ

ூ(௞భି௞మ)
  და 𝐶ଶ = −

ఔబூାெ೎௞భቀ
భ

ಶ
ି

భ

ಹ
ቁ

ூ(௞భି௞మ)
        (3.1.4) 

(3.1.3) დამოკიდებულების შესაბამისი ტიპური გრაფიკული 
გამოსახულება მოცემულია სურ. 3.1.2-ზე: 

 

სურ. 3.1.2 𝜘(𝑡) სიმრუდის დროზე დამოკიდებულების ტიპური მრუდი 

რელაქსაციის პროცესის განხილვისას, რაც გულიდხმობს, 
ფიქსირებული დეფორმაციის პირობებში ღეროს განიკვეთში ძაბვების 
სიდიდეების დროზე დამოკიდებულების შეფასებას, გვაქვს 𝜀 = 𝜀௖ = 𝜘଴𝑧 =

𝑐𝑜𝑛𝑠𝑡, როცა 𝑧 ფიქსირებულია. ამ გამოსახულების (2.6.3) განტოლებაში ჩასმით 
მიიღება: 

𝜘 

𝑡 0 

𝑀௖

𝐸𝐼
 

𝑀௖

𝐻𝐼
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𝜎̇ +
ଵ

௡
𝜎 =

ா௭

௡
𝜘଴     (3.1.5) 

(3.1.5) განტოლების ზოგადი ამონახსნი მოიცემა ფორმით: 

𝜎(𝑡) = 𝐶𝑒ି
೟

೙ + 𝐸𝜘଴𝑧     (3.1.6) 

გასათვალისწინებელია, რომ რელაქსაციის პროცესის ათვლა იწყება 
დეფორმაციის დაწყებიდან ხანგრძლივი დროის შემდეგ, შესაბამისად, ამ დროს, 

(3.1.3)-ის მიხედვით, სიმრუდე 𝜘଴ = 𝜘(𝑡 → +∞) =
ெ೎

ாூ
. (3.1.1) განტოლებიდან 

გამომდინარე რელაქსაციის პროცესის დაწყების მომენტში, როცა 𝑡 = 0, 𝜎଴ =

𝜎(0) =
ெ೎௭

ூ
 საწყისი პირობების გათვალისწინებით მიიღება, რომ (3.1.6) 

გამოსახულებაში 𝐶 = 0, საბოლოოდ დარჩება: 

𝜎(𝑡) = 𝐸𝜘଴𝑧 =
ெ೎

ூ
𝑧               (3.1.7) 

როგორც (3.1.7) გამოსახულებიდან ჩანს, რელაქსაციის პროცესის დროს, 
ღეროს განიკვეთის წერტილებში აღძრული ძაბვა არ არის დამოკიდებული 
დროზე, დამოკიდებულია მხოლოდ მათ მდებარეობაზე, კერძოდ, ძაბვა არის 
ნეიტრალური ღერძიდან დაცილების პროპორციული, ხოლო უშუალოდ 
ნეიტრალურ შრეში ის 0-ის ტოლია. 

კომპოზიტური სხეულის შემთხვევაში მოიაზრება რომ, ისევე როგორც 
მღუნავი მომენტი 𝑀, ასევე ჩაღუნვა 𝑦 წარმოადგენს 𝑡 დროისა და კვეთის ღეროს 
სიგრძეზე მდებარეობის 𝑥 ფუნქციას. ე.ი. 𝑀 = 𝑀(𝑥, 𝑡) და 𝑦 = 𝑦(𝑥, 𝑡). არსებობს 
ცნობილი დამოკიდებულება, თუ როგორ გამოისახება 𝜘 ღეროს სიმრუდე 𝑦 
ჩაღუნვის პირველი და მეორე რიგის წარმოებულებით [8]: 

𝜘 =
௬"

ඥ(ଵା௬ᇱమ)య
     (3.1.8) 

იმ დაშვებით, რომ დროის რაიმე კონკრეტული მნიშვნელობისათვის 𝜘 
არის ფიქსირებული სიდიდე, მაშინ ხერხდება (3.1.8) დიფერენციალური 
განტოლების ამოხსნა და ჩაღუნვის, როგორც 𝜘 პარამეტრზე დამოკიდებული 𝑥 
კოორდინატის ფუნქციის პოვნა. მას აქვს სახე: 

𝑦 = −
ଵ

త
ඥ1 − 𝜘ଶ(𝑥 + 𝐴ଵ)ଶ + 𝐴ଶ   (3.1.9) 

სუფთა ღუნვის შემთხვევაში, დამაგრებული 𝑙 სიგრძის ღეროს 
ბოლოების ჩაღუნვა 0-ის ტოლია, ხოლო სიმეტრიის გამო, ღეროს შუაში 
მობრუნების კუთხე ასევე 0-ის ტოლია. (3.1.9) გამოსახულებაში 𝐴ଵ და 𝐴ଶ 
მუდმივების საპოვნელად გამოვიყენოთ შემდეგი პირობები: 
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როცა 𝑥 = 0, 𝑦(0) = 0 და როცა 𝑥 =
௟

ଶ
, 𝑦′ ቀ

௟

ଶ
ቁ = 0   (3.1.10) 

(3.1.10) პირობების გათვალისწინებით განუსაზღვრელი 

მუდმივებისთვის მიიღება: 𝐴ଵ = −
௟

ଶ
 და 𝐴ଶ =

ଵ

త
ට1 −

తమ௟మ

ସ
. თუ 

გავითვალისწინებთ, რომ 𝜘 პარამეტრი მხოლოდ დროზეა დამოკიდებული და 
მას აქვს (3.1.3) ფორმა, მაშინ (3.1.9) საბოლოოდ მიიღებს სახეს: 

𝑦(𝑥, 𝑡) = −
ଵ

త(௧)
ට1 − 𝜘ଶ(𝑡) ቀ𝑥 −

௟

ଶ
ቁ

ଶ
+

ଵ

త(௧)
ට1 −

తమ(௧)௟మ

ସ
  (3.1.11) 

ღეროს კვეთის მობრუნების კუთხე მარტივად განისაზღვრება (3.1.11) 
გამოსახულებიდან: 

𝜗(𝑥, 𝑡) =
డ௬(௫,௧)

డ௫
=

త(௧)ቀ௫ି
೗

మ
ቁ

ටଵିతమ(௧)ቀ௫ି
೗

మ
ቁ

మ
   (3.1.12) 

განხილული ამოცანა ასახავს კომპოზიტური მასალისგან 
დამზადებული მართკუთხა ღეროს სუფთა ღუნვის შესაბამის დაძაბულ-
დეფორმირებულ მდგომარეობას. მეტალებისგან განსხვავებით, ამოცანის 
სიმარტივის მიუხედავად, ამ შემთხვევაში მიიღება რთული სურათი, 
დეფორმაცია და ძაბვები კვეთის წერტილების კოორდინატებთან ერთად 
დროზეც არის დამოკიდებული. ზოგადად მოდელების და ამ შემთხვევაში 
ოთხელემენტიანი მოდელის გამოყენება, საშუალებას იძლევა ამონახსნები 
ჩაიწეროს ანალიზური ფორმით, რაც ძალიან მნიშვნელოვანია. 

მოცემული ამოცანა დაიყვანება წრფივი დეფორმაციის შემთხვევაზე, 
რაც სხვადასხვა მოდელებისთვის დეტალურად ზემოთ არის აღწერილი. 
განხილული მოდელი მიეკუთვნება იმ კატეგორიას, რომელსაც აქვს შემკვრელი 
დრეკადი ელემენტი და შედეგად ცოცვადობის პროცესის აღწერისას 
დეფორმაცია გადის რაღაც მუდმივ სიდიდეზე.  

სიმრუდის გამომსახველი (3.1.3) დამოკიდებულება შეიცავს ორი 
ექსპონენციალური შესაკრების კომბინაციას და დამოუკიდებელი 
პარამეტრების რიცხვიც დიდია, რაც საშუალებას იძლევა მოხდეს თეორიული 
და ექსპერიენტული მონაცემების უკეთ შეთავსება. რელაქსაციის პროცესი კი 
შედარებით მარტივად აღიწერება. ხერხდება ასევე ღეროს ჩაღუნვის და კვეთის 
მობრუნების კუთხის გამომსახველი სიდიდეების ზუსტი ანალიზური ფორმით 
ჩაწერა, როგორც კოორდინატზე და დროზე დამოკიდებული ფუნქციების. ეს 
გარემოება შემდგომი კვლევებისთვის, მონაცემების მოცემის სხვა ფორმებისგან 
განსხვავებით (ცხრილი ან გრაფიკული ფორმა), არსებითად უპირატესია. 
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3.2. დროის მიხედვით წრფივი დატვირთვის და დეფორმაციის 
შესაბამისი დინამიკური ამოცანა სამელემენტიანი განზოგადებული 
მოდელისთვის 

განვიხილოთ სურ. 2.4.1-ზე გამოსახული სამ ელემენტიანი მოდელის 
შემთხვევა, როცა მასზე მოდებულია დროზე დამოკიდებული დატვირთვა [18]. 
ვნახოთ როგორი იქნება მექანიკური მახასიათებლების ხასიათი ამ 
შემთხვევაში. ამ დროს სისტემის მახასიათებელ რეოლოგიურ განტოლებას აქვს 
ფორმა: 

 ௗ
మఌ

ௗ௧మ =
ଵ

௡ு

ௗఙ

ௗ௧
−

ଵ

௡

ௗఌ

ௗ௧
+

ଵ

௡ఎ
𝜎    (2.4.6) 

ზემოთ აღინიშნა, რომ (2.4.6) ტიპის განტოლებას ექნება ცხადი სახის 
ამონახსნები, თუ მასში შემავალი ძაბვა ან დეფორმაცია წინასწარ იქნება 
განსაზღვრული მაგალითად ხარისხოვანი მწკრივის სახით (მაკლორანის 
მწკრივი).  

1) განვიხილოთ მარტივი შემთხვევა, როცა ძაბვა არის დროის 
წრფივი ფუნქცია: 

𝜎(𝑡) = 𝑎 + 𝑏𝑡     (3.2.1) 

სადაც 𝑎 და 𝑏 რაიმე მუდმივი კოეფიციენტებია. ძაბვის ამ 
გამოსახულების (2.4.6)-ში ჩასმის შემდეგ მიიღება: 

 ௗ
మఌ

ௗ௧మ +
ଵ

௡

ௗఌ

ௗ௧
=

ଵ

௡
ቀ

௔

ఎ
+

௕

ு
ቁ +

௕

௡ఎ
𝑡    (3.2.2) 

მისი ამონახსნი მოიცემა ერთგვაროვანი განტოლების ზოგადი და 
არაერთგვაროვანი განტოლების კერძო ამონახსნის ჯამის სახით. 
გასათვალისწინებელია ასევე მახასიათებელი განტოლების 0-ის ტოლი ფესვის 
არსებობა. მოცემულ შემთხვევაში გვექნება: 

𝜀(𝑡) = 𝐶ଵ + 𝐶ଶ𝑒ି
೟

೙ + ቀ
௔

ఎ
+

௕

ு
−

௕௡

ఎ
ቁ 𝑡 +

௕

ଶఎ
𝑡ଶ         (3.2.3) 

საწყის პირობებს ექნება სახე: 

როცა 𝑡 = 0, 𝜀 = 𝜀଴ და 𝜀̇(0) = 𝜈଴   (3.2.4)  

განუსაზღვრელი 𝐶ଵ და 𝐶ଶ კოეფიციენტების გამოთვლის შემდეგ, (3.2.3) 
ჩაიწერება სახით: 
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𝜀 = ቀ𝜀଴ + 𝑛𝜈଴ +
௕௡మ

ఎ
−

௔௡

ఎ
−

௕௡

ு
ቁ + ቀ

௔௡

ఎ
+

௕௡

ு
− 𝑛𝜈଴ −

௕௡మ

ఎ
ቁ 𝑒ି

೟

೙ +   

+ ቀ
௔

ఎ
+

௕

ு
−

௕௡

ఎ
ቁ 𝑡 + +

௕

ଶఎ
𝑡ଶ         (3.2.5) 

რაც შეეხება განტვირთვის პროცესს, ამ შემთხვევაშიც დატვირთვის 
მოხსნისას მოხდება საწყისი დეფორმაციის და მისი სიჩქარის ახლებური 
ფორმირება და გახდება რაღაც 𝜀଴

ᇱ  და 𝜈଴
ᇱ . ამავე დროს, დეფორმაციის საწყისი 

სიჩქარე შეიცვლის თავის ნიშანს  (𝑠𝑖𝑔𝑛(𝜈଴
ᇱ ) = −𝑠𝑖𝑔𝑛(𝜈଴)). რისი 

გათვალისწინებითაც (3.2.3) ჩაიწერება სახით: 

𝜀 = 𝜀଴
ᇱ + 𝑛𝜈଴

ᇱ ቀ1 − 𝑒ି
೟

೙ቁ       (3.2.6) 

ერთ გრაფიკზე გამოვსახოთ (3.2.5) და (3.2.6) დამოკიდებულებები 
(სურ. 3.2.1), გვექნება: 

 

სურ. 3.2.1 დატვირთვისა და განტვირთვის მრუდები 

2) თუ განვიხილავთ ისეთ შემთხვევას, როცა ხდება მოდელის წინასწარ 
განსაზღვრული დეფორმაცია და მას აქვს დროზე დამოკიდებულების წრფივი 
ფორმა 

𝜀(𝑡) = 𝑎 + 𝑏𝑡,     (3.2.7) 

შევაფასოთ როგორი იქნება ამ შემთხვევაში დროის მიხედვით ძაბვების 
ქცევა. 

თუ (3.2.7)-ს ჩავსვამთ (2.4.6)-ში მიიღება: 

𝜀 

𝑡 

𝜀଴
ᇱ  

𝜀଴ + 𝑛𝜈଴ +
𝑏𝑛ଶ

𝜂
−

𝑎𝑛

𝜂
−

𝑏𝑛

𝐻
 

0 

𝜀଴ 
𝜀଴

ᇱ + 𝑛𝜈଴
ᇱ  

განტვირთვა 
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ௗఙ

ௗ௧
+

ு

ఎ
𝜎 = 𝑏𝐻     (3.2.8) 

(3.2.8) წარმოადგენს პირველი რიგის წრფივ დიფერენციალურ 
განტოლებას, რომლის ზოგადი ამონახსნი მოიცემა სახით: 

𝜎 = С𝑒
ି

ಹ

ആ
௧

+ 𝜂𝑏.       (3.2.9) 

საწყისი პირობებიდან 

როცა 𝑡 = 0, 𝜎 = 𝜎଴     (3.2.10) 

განისაზღვრება უცნობი С კოეფიციენტი და (3.2.9) მიიღებს სახეს: 

𝜎 = (𝜎଴ − 𝜂𝑏)𝑒
ି

ಹ

ആ
௧

+ 𝜂𝑏.    (3.2.11) 

იმის მიხედვით, თუ როგორი ნიშანი აქვს (𝜎଴ − 𝜂𝑏) გამოსახულებას, 
(3.2.11)-ის შესაბამისი გრაფიკის ფორმა იქნება განსხვავებული. სურ. 3.2.2 და 
სურ. 3.2.3-ზე გამოსახულია ამ გრაფიკების სახეები: 

 

სურ. 3.2.2 ძაბვის ცვლილების პირველი შემთხვევა 

 

სურ. 3.2.3 ძაბვის ცვლილების მეორე შემთხვევა 

𝜂𝑏 

𝜎 

𝑡 0 

𝜎଴ 

𝜎଴ − 𝜂𝑏 > 0 

𝜎 

𝜎଴ 

𝜂𝑏 

0 𝑡 

𝜎଴ − 𝜂𝑏 < 0 
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შესაძლებელია შეირჩეს ისეთი საწყისი პირობები, რომ შესრულდეს 
პირობა 𝜎଴ − 𝜂𝑏 = 0, ასეთ შემთხვევაში ძაბვა გახდება მუდმივი სიდიდე 𝜎 = 𝜂𝑏, 
ანუ დეფორმაცია დროის მიხედვით წრფივად გაიზრდება, ხოლო ძაბვა 
უცვლელი დარჩება. 

განხილულიდან გამომდინარე, გამოიკვეთა ტენდენცია იმისა, რომ 
კლასიფიკაციის 2) ხაზის მოდელებისთვის, დეფორმაციის ხასიათი 
დატვირთვის მოდებიდან დიდი დროის შემდეგ (𝑡 → ∞) ხდება ერთი რიგით 
უფრო მაღალი, ვიდრე თვითონ დატვირთვის რიგი იყო. მაგალითად თუ ძაბვა 
მუდმივი სიდიდეა, ასიმპტოტიკაში დეფორმაცია წრფივად მიმდინარეობს, თუ 
ძაბვა თავიდანვე დროის მიხედვით წრფივია, მაშინ ასიმპტოტიკაში 
დეფორმაცია გახდება კვადრატული ფორმის და ა.შ. ეს გამოწვეულია იმით, 
რომ დეფორმაციის განმსაზღვრელ დიფერენციალური განტოლებების 
მახასიათებელ განტოლებებს გააჩნია ერთი ცალი 0-ის ტოლი ფესვი, რაც 
განაპირობებს არაერთგვაროვანი განტოლების ე.წ. რეზონანსული ამონახსნის 
არსებობას [18]. 

ცხადია, კომპოზიტების შემცველ საფრენი აპარატების 
კონსტრუქციებზე ხანგრძლივად არ მოედება  დროის პროპორციულად 
ზრდადი დატვირთვები, წინააღმდეგ შემთხვევაში მოხდებოდა აუცილებელი 
რღვევა, თუმცა მცირე დროით მოქმედებაც იწვევს დიდ დეფორმაციებს. აქვე 
აღსანიშნავია, რომ თუ მასალა აქ წარმოდგენილი მოდელის მიხედვით 
დეფორმირდება, მაშინ დატვირთვების მოხსნის შემდეგ მასში აუცილებლად 
დარჩება ნარჩენი დეფორმაციები, რომლის პრევენციაც შესაძლებელია 
კონსტრუქციული დეტალის კვეთის სისქის გაზრდით, რაც მასალის უფრო მეტ 
ხარჯთს ნიშნავს. ეს კი კონსტრუქციის მასის გაზრდას გამოიწვევს. 

კონკრეტულად რომელი მოდელი აღწერს უფრო კარგად 
კომპოზიციური მასალის თვისებებს, ამის გასარკვევად რთული კომპლექსური 
მუშაობის ჩატარებაა საჭირო, რაც მოიცავს სხვადასხვა პირობებში მასალის 
ხანგრძლივ გამოცდებს, მიღებული შედეგების თეორიულ მონაცემებთან 
შედარება-შეთავსებას, კონკრეტული მოდელის და მისი პარამეტრების 
განსაზღვრას და ა.შ. უნდა აღინიშნოს, აქ აღწერილი ბოლო შემთხვევა 
წარმოადგენს კარგ ინდიკატორს იმისა რომ სწრაფად გაირკვეს ამ ტიპის 
მოდელები გამოდგება თუ არა მოცემული კომპოზიტური მასალის აღსაწერად. 
კერძოდ, თუ ნიმუშს მოვდებთ დროში წრფივად ზრდად დატვირთვას, მალევე 
მოხდება მისი რღვევა და ექსპერიმენტის მონაცემების საფუძველზე აგებული 
დეფორმაციის დროზე დამოკიდებულების გრაფიკის ფორმა გვიკარნახებს 
გვაქვს თუ არა კლასიფიკაციის 2)  ხაზის მოდელებთან საქმე [18]. მოცემულ 
შემთხვევაში ასიმპტოტიკაში გრაფიკის ფორმა უნდა იყოს პარაბოლური.  
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ასევე ინდიკატორად გამოდგება ნიმუშის გამოცდის დროს ისეთი 
მომენტის დაჭერა, როცა დეფორმაცია დროის მიხედვით წრფივად იზრდება, 
ხოლო ამ დროს ძაბვა არ იცვლება. 

 

 

3.3. ოთხელემენტიანი განზოგადებული მოდელით აღწერილი 
კომპოზიტური სხეულის დინამიკური დატვირთვის ამოცანა 

წარმოდგენილ შემთხვევაშიც განხილულია 2.6 თავში მოცემული 
ოთხელემენტიანი 1) გვარის მოდელი, რომელიც გამოსახულია სურ. 2.6.1-ზე 
[18]. მისი შესაბამისი რეოლოგიური განტოლება მოიცემა (2.6.3) 
გამოსახულებით. 

ௗమఌ

ௗ௧మ =
ଵ

ఎ

ௗఙ

ௗ௧
−

ு

ఎ

ௗఌ

ௗ௧
+

ଵ

ఎ௡
𝜎 −

ா

ఎ௡
𝜀        (2.6.3) 

საავიაციო ტექნიკის ექსპლუატაციის დროს, მის ელემენტებზე ხშირად 
მოედება გარე ვიბრაციული დატვირთვები, რომლებიც დროის მიხედვით 
ქრება. თუ ეს დატვირთვა მოედება კომპოზიტისგან დამზადებულ 
კონსტრუქციულ ელემენტს, მაშინ მასში აღიძვრება ძაბვა, რომელიც შეიძლება 
წარმოდგეს შემდეგი გამარტივებული ფორმით: 

𝜎(𝑡) = 𝜎଴𝑒ିఈ௧ sin 𝜔𝑡     (3.3.1) 

თუ ამ გამოსახულებას შევიტანთ (2.6.3)-ში, მიიღება: 

ௗమఌ

ௗ௧మ +
ு

ఎ

ௗఌ

ௗ௧
+

ா

ఎ௡
𝜀 =

ఙబ

ఎ
𝑒ିఈ௧ ൬ቀ

ଵ

௡
− 𝛼ቁ sin 𝜔𝑡 + 𝜔 cos 𝜔𝑡൰  (3.3.2) 

(3.3.2) წარმოდაგენს მეორე რიგის მუდმივ კოეფიციენტებიან 
არაერთგვაროვან დიფერენციალურ განტოლებას. მისი ამონახსნი მოიცემა 
ერთგვაროვანი განტოლების ზოგადი ამონახსნისა და არაერთგვაროვანი 
განტოლების კერძო ამონახსნის ჯამის სახით 𝜀(𝑡) = 𝜀(̅𝑡) + 𝜀(̿𝑡). ერთგვაროვანი 
განტოლების ზოგად ამონახსნს აქვს ფორმა: 

𝜀(̅𝑡) = 𝐶ଵ𝑒௞భ௧ + 𝐶ଶ𝑒௞మ௧    (3.3.3) 
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სადაც 𝑘ଵ =
ିுାඥுమିସாఎ/௡

ଶఎ
 და 𝑘ଶ =

ିுିඥுమିସாఎ/௡

ଶఎ
 არის (3.3.2) გამოსახულების 

შესაბამისი მახასიათებელი განტოლების ამონახსნები. თუ 𝑘ଵ = 𝑘ଶ = −
ு

ଶఎ
 

ჯერადი ფესვია, მაშინ ზოგადი ამონახსნი მიიღებს სახეს: 

𝜀(̅𝑡) = (𝐶ଵ + 𝐶ଶ𝑡)𝑒
ି

ಹ

మആ
௧    (3.3.4) 

(3.3.4) არის ერთგვარი რეზონანსული ამონახსნი, თუმცა 
ექსპონენციალური მამრავლის არსებობის გამო მისი მნიშვნელობა სწრაფად 
მცირდება, მსგავს შემთხვევაზე ქვემოთ იქნება საუბარი. 

არაერთგვაროვანი განტოლების კერძო ამონახსნი უნდა მოიძებნოს 
ფორმით: 

𝜀(̿𝑡) = (𝐴 sin 𝜔𝑡 + 𝐵 cos 𝜔𝑡)𝑒ିఈ௧    (3.3.5) 

𝐴 და 𝐵 მუდმივები ცალსახად განისაზღვრება თუ (3.3.5) 
გამოსახულებას ჩავსვამთ (3.3.2)-ში და მოვახდენთ კოეფიციენტების 
შედარებას. ზემოთ განხილულ შემთხვევებში ითვლება რომ 𝑘ଵ და 𝑘ଶ ნამდვილი 
რიცხვებია. მასალის სტატიკური გამოცდის შედეგებზე დაყრდნობით 
განსაზღვრული მოდელის პარამეტრები შეიძლება აღმოჩნდეს ისეთი, რომ 𝑘ଵ =

ିுା௜ඥସாఎ/௡ିுమ

ଶఎ
 და 𝑘ଶ =

ିுି௜ඥସாఎ/௡ିுమ

ଶఎ
 გახდეს კომპლექსური, ასეთ შემთხვევაში 

ერთგვაროვანი განტოლების ზოგადი ამონახნი იქნება შემდეგი სახის: 

𝜀(̅𝑡) = ൬𝐶ଵsin
ඥସாఎ/௡ିுమ

ଶఎ
𝑡 + 𝐶ଶ cos

ඥସாఎ/௡ିுమ

ଶఎ
𝑡൰ 𝑒

ି
ಹ

మആ
௧   (3.3.6) 

ხოლო, თუ აღმოჩნდა რომ 𝛼 =
ு

ଶఎ
 და 𝜔 =

ඥସாఎ/௡ିுమ

ଶఎ
, ანუ მოხდა გარე 

დატვირთვის შესაბამის კოეფიციენტებთან ამდაგვარი თანხვედრა, მაშინ 
ადგილი ექნება რეზონანსულ შემთხვევას, არაერთგვაროვანი განტოლების 
კერძო ამონახსნის სახით, რომელსაც ექნება ფორმა: 

𝜀(̿𝑡) = (𝐴 sin 𝜔𝑡 + 𝐵 cos 𝜔𝑡)𝑡𝑒ିఈ     (3.3.7) 

განუსაზღვრელი 𝐶ଵ და 𝐶ଶ კოეფიციენტები შეიძლება დადგინდეს  
საწყისი პირობების მიხედვით: როცა 𝑡 = 0, 𝜀 = 𝜀଴ და 𝜀̇(0) = 𝜈଴. 

(3.3.2) გამოსახულების მახასიათებელი განტოლების ფესვების 
ნამდვილობის ან კომპლექსურობის საკითხი მარტივად მოწმდება ფესვქვეშა 
გამოსახულების 𝐻ଶ − 4𝐸𝜂/𝑛-ის 0-თან შედარებით. თუ გავითვალისწინებთ 
(2.6.2) აღნიშვნებს, 𝑘ଵ და 𝑘ଶ ის კომპლექსურობის პირობას ექნება სახე: 
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ாమ

ாభ
<

ଶට
ആభ
ആమ

ିଵ

ആభ
ആమ

ାଵ
     (3.3.8) 

(3.3.8)-ში უტოლობის ნაცვლად ტოლობის შემთხვევაში მიიღება 

მახასიათებელი განტოლების ჯერადი ამონახსნით 𝑘ଵ = 𝑘ଶ = −
ு

ଶఎ
, ხოლო 

უტოლობის საპირისპირო ნიშნის დროს იქნება ნამდვილი რიცხვები. 
თუ დეფორმაციისთვის (3.3.2) განტოლების ამონახსნი წარმოადგენს 

(3.3.3) და (3.3.5) ან (3.3.6) და (3.3.5) გამოსახულებების ჯამს, მაშინ მიიღება 
სწრაფად ჩაქრობადი რხევითი პროცესი, რეზონანსის გარეშე. ხოლო თუ გვაქვს 
(3.3.4) და (3.3.5) ან (3.3.6) და (3.3.7) გამოსახულებების ჯამი, მაშინ ადგილი 
ექნება ლოკალურ რეზონანსულ შემთხვევას, როცა რხევის ამპლიტუდა 
მნიშვნელოვნად გაიზრდება დროის რაღაც მომენტამდე, ხოლო ხანგრძლივი 
დროის შემდეგ კვლავ 0-მდე დაეცემა. ამ შემთხვევის თვისობრივი გრაფიკული 
გამოსახულება მოცემულია სურ. 3.3.1-ზე: 

 

სურ. 3.3.1 ლოკალური რეზონანსის ამსახველი თვისობრივი მრუდი 

 

𝜀(𝑡) 

0 

𝑡 
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განხილული შემთხვევა სრულად მოიცავს მოცემული ოთხელემენტიანი 
მოდელისთვის დროში ქრობადი ვიბრაციული დატვირთვით გამოწვეულ 
შესაძლო შედეგებს. განისაზღვება დეფორმაციის სახე მოდელის პარამეტრების 
ყველა შესაძლო კომბინაციისთვის. ვლინდება მოვლენათა განვითარების ორი 
ძირითადი მიმართულება: 1) არარეზონანსული შემთხვევა, როცა აღძრული 
ვიბრაციული რხევა სწრაფადვე ჩაეხშობა და 2) ლოკალური რეზონანსული 
შემთხვევა, როცა დროის გარკვეულ მომენტამდე რხევის ამპლიტუდა 
მნიშვნელოვნად იზრდება, შემდგომ კი ისევ ჩაეხშობა. 

როცა კომპოზიტური მასალის მექანიკურ მახასიათებლები აღიწერება 
მოცემული ოთხელემენტიანი მოდელით, მისი პარამეტრები უნდა 
განისაზღვროს ნიმუშის სტატიკური გამოცდის შედეგად (ცოცვადობასა და 
რელაქსაციაზე). შედეგად, ცალსახად განისაზღვრება ამ პარამეტრების 
თანაფარდობაც. თუ (3.3.8)-ით განსაზღვრული პირობა სრულდება (ტოლობის 
შემთხვევაშიც) და მოხდა გარე დატვირთვების შესაბამისი  კოეფიციენტების 
თანხვედრა, ადგილი ექნება ლოკალურ რეზონანსულ შემთხვევას, რაც 
კონკრეტული კონსტრუქციისთვის არასასურველი და სახიფათოა. შესაბამისად 
კონსტრუქტორმა პროექტირებისას ეს მომენტი სათანადოდ უნდა 
გაითვალისწინოს. ან სხვა სახის მასალა უნდა იქნას შერჩეული, ან 
კონსტრუქციულ ელემენტს უნდა მიეცეს სხვა გეომეტრიული ფორმა რათა 
ძაბვების ამდაგვარ განაწილებას ადგილი არ ჰქონდეს. უკიდურეს შემხვევაში 
უნდა მოხდეს კონსტრუქციული ელემენტის შესაბამისი კვეთის სისქის 
გაზრდა.  
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3.4. ექსპერიმენტული მონაცემების საფუძველზე სამელემენტიანი 
მოდელების პარამეტრების განსაზღვრის მეთოდიკა და ანალიზი  

ამ ქვეთავში განხილულია სამელემენტიანი მოდელის ორი 
განსხვავებული შემთხვევის პარამეტრების განსაზღვის მეთოდიკა და მათ 
შედარებით ანალიზი. ეს მოდელები გამოსახულია სურ. 3.4.1-ზე, ხოლო მათი 
დეტალური განხილვა მოცემულია ზემოთ. ვსარგებლოთ მხოლოდ მიღებული 
შედეგებით. 

ა)       ბ) 

სურ. 3.4.1 ა) სამელემენტიანი მოდელი ორი დრეკადი და ერთი ბლანტი 
ელემენტით, ბ) სამელემენტიანი მოდელი ერთი დრეკადი და ორი ბლანტი 

ელემენტით 

ორივე მოდელის დეფორმაციის სურათი დეტალურად აღწერილია 2.3 
და 2.4 თავებში და ცოცვადობის შესაბამისი ამონახსნები გამოისახება, 
შესაბამისად, (2.3.6) და (2.4.11) ფორმულებით. 

𝜀(𝑡) = −𝜎௖ ቀ
ଵ

ா
−

ଵ

ு
ቁ 𝑒ି

ಶ

೙ಹ
௧ +

ఙ೎

ா
     (2.3.6) 

 

𝜀(𝑡) = ቂ𝜎௖ ቀ
ଵ

ு
−

௡

ఎ
ቁ + 𝑛𝜈଴ቃ + ቂ

௡ఙ೎

ఎ
− 𝑛𝜈଴ቃ 𝑒ି

೟

೙ +
ఙ೎

ఎ
𝑡.     (2.4.11) 
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თუ გვსურს ეს მოდელები მივუსადაგოდ დრეკად-ბლანტი თვისების 
მქონე რომელიმე კონკრეტულ კომპოზიტურ მასალას, საჭიროა მისი 
ექსპერიმენტული გამოცდის მონაცემების საფუძველზე განისაზღვროს 
მოდელის შესაბამისი პარამეტრები. 

პირველი სახის მოდელი შეიცავს სამ, ხოლო მეორე ოთხ 
დამოუკიდებელ პარამეტრს, (მეოთხე წარმოადგენს დეფორმაციის საწყის 
სიჩქარეს - 𝜈଴). დამოუკიდებელი პარამეტრების მეტი რაოდენობა 
უზრუნველყოფს მოდელის ექსპერიმენტულ მონაცემებთან უკეთ შეთავსებას. 

პრაქტიკა ცხადყოფს, რომ ექსპერიმენტულად შეუძლებელია 
განისაზღვროს დროის საწყის მომენტში დეფორმაცია (𝜀଴) და მისი საწყისი 
სიჩქარე (𝜈଴), მიზეზი გამოსაცდელი დანადგარის ინერციულობა და 
ადამიანური ფაქტორებია. ამის გამო, დროის მიხედვით დეფორმაციის 
ექსპერიმენტული და თეორიული ანათვლები ერთმანეთის მიმართ 
წანაცვლებული იქნება დროის რაღაც მცირე 𝑡଴  ინტერვალით, ანუ  

𝜀ექ(𝑡௜) = 𝜀თ(𝑡௜ + 𝑡଴), (𝑖 = 1, 2, 3, ⋯ ).    (3.4.1) 

დროის 𝑡଴ ინტერვალი იქნება კიდევ ერთი დამატებითი 
დამოუკიდებელი პარამეტრი, რომელიც ექსპერიმენტული მონაცემების 
საფუძველზე უნდა განისაზღვროს ექსტრაპოლაციის გზით [18]. 

მაგალითისთვის, განხილულია  TC-8/3 მინატექსოლიტის ნიმუშის 20℃ 
ტემპერატურაზე [8], გაჭიმვაზე გამოცდის ექსპერიმენტული მონაცემები 
მუდმივი ძაბვის პირობებში 𝜎௖ = 3,3 გპა, რომელიც მოცემულია ცხრ. 3.4.1-ში. 
ზოგადად, მოსახერხებელია ვიხელმძღვანელოდ არა კონკრეტული ძაბვის 
შესაბამისი მონაცემით, არამედ ე.წ. მოქნილობის ექსპერიმენტული 
მნიშვნელობებით (𝐼(𝑡) = 𝜀(𝑡)/𝜎௖). 

ცხრილი 3.4.1 ნიმუშის გაჭიმვაზე გამოცდის ექსპერიმენტული მონაცმები 

დრო 

𝑡ექ (სთ) 
0 0,25 0,5 1 2 3 4 5 22 30 50 

𝜀(𝑡)

× 10ିସ 

(𝜎௖ = 3,3) 

(მპა) 

0,648 1,161 1,32 1,50 1,75 1,89 1,90 1,97 2,29 2,48 2,54 

იმისათვის რომ დადგინდეს კონკრეტული მოდელის პარამეტრები 
საჭიროა (2.3.6) და (2.4.11) განტოლებები ჩაიწეროს (3.4.1) ფორმით  იმდენი 
წერტილისთვის, რამდენ დამოუკიდებელ პარამეტრსაც შეიცავენ ისინი. 
თითოეული მათგანისთვის მივიღებთ ტრანსცენდენტულ განტოლებათა 
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სისტემას, რომელიც უნდა ამოიხსნას რიცხვითი მეთოდებით. ამ შემთხვევაში 
ამოხნა მოხდა კომპიუტერული პრორამის „Maple“-ს საშუალებით. ასევე 
აღსანიშნავია, რომ ექსპერიმენტული დროის დიდი მნიშვნელობებისთვის, 
საწყისი დროის წანაცვლება 𝑡଴ შეიძლება უგულებელვყოთ მისი სიმცირის გამო, 
რაც გამოთვლებს მნიშვნელოვნად გაამარტივებს. ხოლო, 𝑡 = 0-თან სიახლოვეს 
სასურველია მეტი ექსპერიმენტული ანათვლის არსებობა. 

ჩატარებული რიცხვითი ამოხსნის შემდეგ დგინდება უშუალოდ 
მოდელების პარამეტრები და შესაბამისად, მასალის მახასიათებლები. 
შედეგები ასახულია ცხრ. 3.4.2-ში: 

ცხრილი 3.4.2. მოდელების პარამეტრები და მასალის მახასიათებლები 

მოდელების შემადგენელი ელემენტების მახასიათებლები: 
პირველი მოდელი მეორე მოდელი 

𝐸ଵ = 17266.53 გპა; 
𝐸ଶ = 52481,77 გპა; 
𝜂 = 63130,47 გპა ∙ სთ. 

𝐸 = 57928,69 გპა; 
𝜂ଵ = 180639,39 გპა ∙ სთ; 
𝜂ଶ = 1,1016 ∙ 10଻ გპა ∙ სთ. 

მასალის პარამეტრები მოდელების შესაბამისად: 
𝐻 = 52481,77 გპა; 
𝐸 = 12992,12 გპა; 
𝑛 = 0,90512 სთ; 
𝑡଴ = 0.036936 სთ; 
𝜀଴ = 0,000062879. 

𝐻 = 56994,13 გპა; 
𝑛 = 3,118306 სთ; 
𝜂 = 1,1016 ∙ 10଻ გპა ∙ სთ; 
𝑡଴ = 0,121104 სთ; 
𝜀଴ = 0,000057901; 
𝜈଴ = 0,00005838 სთିଵ. 

შედეგად, მასალის პარამეტრებისთვის, მიიღება ახლოს მდგომი 
რეზულტატები, კერძოდ დრეკადობის „მყის“ მოდულებს შორის განსხვავება 
შეადგენს 8,6%-ს, ხოლო მეორე მოდელი, პირველისგან განსხვავებით, არ 
იძლევა დრეკადობის „ხანგრძლივი“ მოდულის მნიშვნელობას. გამოთვლილ 
საწყის დეფორმაციებს შორის განსხვავება ასევე მცირეა 7,7%. ხოლო 
ექსპერიმენტული და თეორიული დროების წანაცვლებები მიიღება საკმაოდ 
დიდი ორივე მოდელის შემთხვევაში, რომლის მიზეზით შეიძლება იყოს 𝑡 = 0-
თან სიახლოეს ექსპერიმენტული ანათვლების რაოდენობის სიმცირე. ასევე 
მიზეზი შეიძლება იყოს განტოლებების რიცხვითი მეთოდებით ამოხნის 
მეთოდის ნაკლები სიზუსტე [18]. 

ექსპერიმენტული მონაცემების საფუძველზე მოდელის პარამეტრების 
განსაზღვრისას (3.4.1) სახის განტოლებების რიცხვითი ამოხსნის შედეგად, 
ორივე მოდელისთვის მიიღება ძირითადი პარამეტრების მნიშვნელობები, 
რომლებიც ერთმანეთისგან არაუმეტეს 10%-ით განსხვავდება, რაც 
დამაკმაყოფილებლად შეიძლება ჩაითვალოს. რაც შეეხება თეორიულ და 
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ექსპერიმენტულ დროის საწყის მნიშვნელობას შორის მნიშვნელოვან 
განსხვავებას, ის გამოწვეულია 𝑡 = 0-თან სიახლოეში ექსპერიმენტული 
ანათვლების და მოდელების დამოუკიდებელი პარამეტრების რაოდენობის 
სიმცირით და რიცხვითი მეთოდების სიზუსტის ნაკლებობით. 

 

3.5 „უმცირეს კვადრატთა მეთოდის“ გამოყენება  

ექსპერიმენტული მონაცემების დასამუშავებლად საჭიროა გარკვეული 
ცნებების, განმარტებების და მეთოდების განხილვა. ექსპერიმენტული 
მონაცემების ამსახველ გრაფიკულ წერტილებზე უნდა გაივლოს  
მააპროქრირებელი მრუდი, რომელიც ანალიზურად შეიძლება წარმოდგეს 
რაიმე 𝑛-ური რიგის პოლინომად, რომელიც ჩაიწერება სახით: 

𝑃௡(𝑥) = 𝑎ଵ𝑥௡ + 𝑎ଶ𝑥௡ିଵ + 𝑎ଷ𝑥௡ିଶ + ⋯ + 𝑎௡𝑥 + 𝑎௡ାଵ  (3.5.1) 

(3.5.1) პოლინომის შესაბამისი კოეფიციენტები უნდა განისაზღვროს 
ისეთნაირად, რომ მიღებული მაპროქსიმირებული მრუდი მაქსიმალურად 
ახლოს გადიოდეს ექსპერიმენტულ წერტილებთან. აღნიშნულის 
განხორციელების ერთ-ერთი ცნობილი მიდგომაა „უმცირეს კვადრატთა 
მეთოდი“ [31]. ამ მეთოდის არსი მდგომარეობს იმაში, რომ თეორიულ 𝑃௡(𝑥) და 
ექსპერიმენტულ (𝑥௜ , 𝑦௜) წერტილებს (წერტილების რაოდენობაა 𝑚) შორის 
განსხვავებების ൫𝜀௜ = 𝑦௜ − 𝑃௡(𝑥௜)൯ კვადრატების ჯამი იყოს მინიმალური  

𝑆 = ∑ 𝜀௜
ଶ௠

௜ୀଵ = ∑ ൫𝑦௜ − 𝑃௡(𝑥௜)൯
ଶ௠

௜ୀଵ → 𝑚𝑖𝑛   (3.5.2) 

ასეთი აპროქსიმაციის სქემატური გრაფიკული გამოსახულება 
მოცემულია სურ. 3.5.1-ზე. 

 

სურ. 3.5.1 თეორიული მრუდის და ექსპერიმენტული წერტილების 
გამომსახველი ტიპური მრუდი 
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(3.5.2) გამოსახულების მინიმიზაცია მიიღწევა თუ მოვახდენთ 𝑆 
ფუნქციის გაწარმოებას 𝑎௜ პარამეტრებით (კერძო წარმოებულები) და მიღებულ 
გამოსახულებებს გავუტოლებთ 0-ს. მიღებული განტოლებათა სისტემის 
(3.5.3) ამოხსნის შემდეგ განისაზღვრება საჭირო უცნობი 𝑎௜ პარამეტრები. 

⎩
⎪
⎨

⎪
⎧

డௌ

డ௔భ
= 0;  

డௌ

డ௔మ
= 0;  

⋯ ⋯ ⋯  
డௌ

డ௔೙శభ
= 0.

    (3.5.3) 

დეტალურად განვიხილოთ, შედარებით მარტივი, წრფეზე 
აპროქსიმირების შემთხვევა. საძიებელი ფუნქცია ამ შემთხვევაში იქნება 𝑃ଵ(𝑥) =

𝑎𝑥 + 𝑏. ხოლო (3.5.2) გამოსახულება მიიღებს სახეს: 

𝑆 = ∑ ൫𝑦௜ − (𝑎𝑥௜ + 𝑏)൯
ଶ௠

௜ୀଵ    (3.5.4) 

(3.5.4) გამოსახულების კერძო წარმოებულები 𝑎 და 𝑏 პარამეტრებით 
მიიღებს სახეს: 

 డௌ

డ௔
= 2 ∑ ൫𝑦௜ − (𝑎𝑥௜ + 𝑏)൯(−𝑥௜)

௠
௜ୀଵ = 2 ∑ ൫𝑎𝑥௜

ଶ + 𝑏𝑥௜ − 𝑥௜𝑦௜൯௠
௜ୀଵ   (3.5.5) 

და  

డௌ

డ௕
= 2 ∑ ൫𝑦௜ − (𝑎𝑥௜ + 𝑏)൯(−1) = 2 ∑ (𝑎𝑥௜ + 𝑏 − 𝑦௜)௠

௜ୀଵ
௠
௜ୀଵ         (3.5.6)  

მიღებული გამოსახულებების საშუალებით (3.5.3) ჩაიწერება ასე: 

ቐ

డௌ

డ௔
= 2 ∑ ൫𝑎𝑥௜

ଶ + 𝑏𝑥௜ −  𝑥௜𝑦௜൯
௠
௜ୀଵ = 0

డௌ

డ௕
= 2 ∑ (𝑎𝑥௜ + 𝑏 − 𝑦௜)௠

௜ୀଵ = 0          
→ ቊ

𝑎 ∑ 𝑥௜
ଶ௠

௜ୀଵ + 𝑏 ∑ 𝑥௜
௠
௜ୀଵ = ∑ 𝑥௜𝑦௜

௠
௜ୀଵ

𝑎 ∑ 𝑥௜
௠
௜ୀଵ + 𝑏𝑚 = ∑ 𝑦௜

௠
௜ୀଵ                 

 (3.5.7) 

შემოვიტანოთ აღნიშვნები: 

𝑆௫௫ = ∑ 𝑥௜
ଶ௠

௜ୀଵ , 𝑆௫௬ = ∑ 𝑥௜𝑦௜
௠
௜ୀଵ , 𝑆௫ = ∑ 𝑥௜

௠
௜ୀଵ  და 𝑆௬ = ∑ 𝑦௜

௠
௜ୀଵ ,  (3.5.8) 

შედეგად (3.5.7) მიიღებს სახეს: 

൜
𝑎𝑆௫௫ + 𝑏𝑆௫ = 𝑆௫௬

𝑎𝑆௫ + 𝑏𝑚 = 𝑆௬    
    (3.5.9) 

მივიღეთ მარტივი წრფივ განტოლებათა სისტემა, რომლის ამონახსნი 
წარმოდგება სახით: 

𝑎 =
ௌೣ೤∙௠ିௌೣ∙ௌ೤

ௌೣೣ∙௠ିௌೣ∙ௌೣ
 და 𝑏 =

ௌೣೣ∙ௌ೤ିௌೣ∙ௌೣ೤

ௌೣೣ∙௠ିௌೣ∙ௌೣ
    (3.5.10) 
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განვიხილოთ შემდეგი მაგალითი: ვთქვათ რაიმე დამოკიდებულება 
მოცემულია ცხრილის სახით (ცხრ. 3.5.1), ხოლო მისი ამსახველი გრაფიკი 
გამოსახულია სურ. 3.5.2-ზე. მოვახდინოთ ამ მონაცემების აპროქსიმაცია 
წრფეზე უმცირეს კვადრატთა მეთოდის გამოყენებით. 

ცხრ. 3.5.1 ექსპერიმენტული მონაცემები 
𝑥 1,2 2,9 4,1 5,5 6,7 7,8 9,2 10,3 
𝑦 7,4 9,5 11,1 12,9 14,6 17,3 18,2 20,7 

 
სურ. 3.5.2 ექსპერიმენტული წერტილების გამომსახველი გრაფიკი 

დავთვალოთ საჭირო ჯამების მნიშვნელობები, გვექნება: 

𝑆௫௫ = 1,2ଶ + 2,9ଶ + 4,1ଶ + ⋯ + 10,3ଶ = 353,37; 
𝑆௫௬ = 1,2 ∙ 7,4 + 2,9 ∙ 9,5 + 4,1 ∙ 11,1 + ⋯ + 10,3 ∙ 20,7 = 766,3; 
𝑆௫ = 1,2 + 2,9 + 4,1 + ⋯ + 10,3 = 47,7; 
𝑆௬ = 7,4 + 9,5 + 11,1 + ⋯ + 20,7 = 111,7. 
 
თუ აპროქსიმაციას ვახდენთ 𝑓 = 𝑎𝑥 + 𝑏 წრფით და გათვალისწინებული 

იქნება, რომ გვაქვს 𝑚 = 8 წერტილი, მაშინ (3.5.9) ფორმულების გამოყენებით 
მიიღება: 

𝑎 =
ௌೣ೤∙௠ିௌೣ∙ௌ೤

ௌೣೣ∙௠ିௌೣ∙ௌೣ
=

଻଺଺,ଷ∙଼ିସ଻,଻∙ଵଵଵ,଻

ଷହଷ,ଷ଻∙଼ିସ଻,଻∙ସ଻,଻
= 1,4543; 

𝑏 =
ௌೣೣ∙ௌ೤ିௌೣ∙ௌೣ೤

ௌೣೣ∙௠ିௌೣ∙ௌೣ
=

ଷହଷ,ଷ଻∙ଵଵଵ,଻ିସ଻,଻∙଻଺଺,ଷ

ଷହଷ,ଷ଻∙଼ିସ଻,଻∙ସ଻,଻
= 5,2911. 

ანუ მააპროქსიმებელი წრფე იქნება სახის 𝑓 = 1,4543𝑥 + 5,2911. 
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3.6 ექსპერიმენტული მონაცემების საფუძველზე ხუთელემენტიანი 
მოდელების პარამეტრების განსაზღვრის მეთოდიკა  

2.8 პარაგრაფში განხილულია ხახუნის ელემენტის შემცველი 
ხუთელემენტიანი მოდელები, რომლეთა საშუალებითაც აღიწერება დრეკადი 
და პლასტიკური ჯგუფის კონსტრუქციული პლასტიკების რეოლოგიური 
ქცევა. უკანასკნელ შემთხვევაში გამოიყენება ხუთელემენტიანი მოდელი (ორი 
ბლანტი ელემენტით). როცა დამტვირთავი ძაბვა აჭარბებს ხანგრძლივი 
სიმტკიცის ქვედა ზღვარს 𝜎 ≥ 𝜎ხ.ს.ზღ., მაშინ ცოცვადობის პროცესი ხასიათდება 
განტოლებით: 

𝜀(𝑡) = 𝐴 + 𝐵 ∙ 𝑒ି஼∙௧ + 𝐷 ∙ 𝑡     (2.8.2) 

სადაც 𝐴, 𝐵, 𝐶 და 𝐷 - მუდმივებია, რომლებიც უნდა განისაზღვროს 
ექსპერიმენტული მონაცემების საშუალებით. მოცემული გამოსახულებიდან 𝐵 
კოეფიციეტნის განსაზღვრა მარტივად შეიძლება, როცა განიხილება  𝑡 = 0 
შემთხვევა 

 𝜀(𝑡 = 0) = 𝐴 + 𝐵 ∙ 𝑒ି஼∙଴ + 𝐷 ∙ 0 → 𝐵 = 𝜀଴ − 𝐴   (3.6.1) 

(2.8.2) გამოსახულებით აღვწეროთ მინატექსტოლიტ 𝑇ଵ-ის 
დეფორმაციის რეოლოგიური ხასიათი [9], რომლის ცოცვადობის დეფორმაციის 
დროში განვითარების ექსპერიმენტული მონაცემები წაროდგენილია ცხრ. 3.6.1-
ში: 

ცხრ. 3.6.1 მინატექსტოლიტ 𝑇ଵ-ის ცოცვადობის დეფორმაციის აღმწერი 
ექსპერიმენტული მონაცემები   

𝜎, 
კგ/მმ2 

𝜀(𝑡) × 10ଷ                                        𝑇 = 20℃ 
0 

სთ 
5 

სთ 

10 
სთ 

20 
სთ 

40 
სთ 

60 
სთ 

80 
სთ 

100 
სთ 

200 
სთ 

300 
სთ 

27 13,17 13,38 13,45 13,53 13,62 13,70 13,74 13,77 13,92 14,07 
 
მინატექსტოლიტ 𝑇ଵ-ის არაჩამდგარი ცოცვადობის (ანუ დეფორმაციის 

სიჩქარის მკვეთრი ცვალებადობის) უბნის ხანგრძლივობა, როცა 𝜎 = 0,6𝜎დრ. =

27 კგ/მმ2, არის 𝑡ა.ჩ. = 100 საათი, რომლის შემდეგაც დეფორმაციის სურათი 
ფაქტიურად წრფივი გახდება. 𝐴, 𝐵 და 𝐷 მუდმივების განსაზღვრისთვის უნდა 
გამოვიყენოთ 𝑡 = 100 სთ და 𝑡 = 300 სთ დროის მომენტების შესაბამისი 
წერტილები. გამომდინარე საძიებელი წრფის ფორმიდან 𝜀(𝑡 ≥  𝑡ა.ჩ.) ≈ 𝐴 + 𝐷 ∙ 𝑡, 
უნდა შედგეს განტოლებათა შემდეგი სისტემა: 

ቄ
𝐴 + 100 ∙ 𝐷 = 0,01377
𝐴 + 300 ∙ 𝐷 = 0,01407

    (3.6.2) 

სისტემის ამოხსნით მიიღება: 

 𝐴 = 0,1362; 𝐷 = 0,0000015;      
𝐵 = 𝜀଴ − 𝐴 = 0,01317 − 0,01362 = −0,00045   (3.6.3) 



75 
 

𝐶 მუდმივის განსაზღვრისთვის გამოვიყენოთ დროის საწყის მომენტთან 
უახლოესი მონაცემები, ანუ როცა 𝑡 = 5 სთ, მივიღებთ: 

0,01362 − 0,00045𝑒ିହ஼ + 0,0000075 = 0,01338 → 𝑒ିହ஼ = 0,55 →  
𝐶 = −ln(0,55)/5 = 0,11967    (3.6.4) 

შედეგად მიიღება ცოცვადობის დეფორმაციის განვითარების შემდეგი 
კანონი: 

𝜀(𝑡) = 0,01362 − 0,00045𝑒ି଴,ଵଵଽ଺଻∙௧ + 0,0000015 ∙ 𝑡   (3.6.5) 

მაქსიმალური ფარდობითი ცდომილება მიღებული ცოცვადობის 
დეფორმაციის განვითარების კანონსა და ექსპერიმენტულ მონაცემებს შორის 
არ აღემატება 0,583 %-ს. 

უფრო ეფექტური დათვლის თვალსაზრისით მოვახდინოთ ჩამდგარი 
ცოცვადობის რეჟიმის შესაბამისი ექსპერიმენტული მონაცებების 
(წერტილების) აპროქსიმაქსია წრფეზე „უმცირეს კვადრატთა მეთოდის“ 
გამოყენებით. როცა 𝑡 ≥  𝑡ა.ჩ. გვაქვს ასეთი სამი წერტილი 𝑡 = 100 სთ, 𝑡 = 200 სთ 
და 𝑡 = 300 სთ. საძიებელი წრფე ამ შემთხვევაშიც იქნება 𝜀(𝑡 ≥  𝑡ა.ჩ.) ≈ 𝐴 + 𝐷 ∙ 𝑡. 
შევადგინოთ (3.5.8) ფორმულებში შემავალი ჯამები, გვექნება: 

𝑆௫௫ = 100ଶ + 200ଶ + 300ଶ = 140000; 
𝑆௫௬ = 100 ∙ 0,01377 + 200 ∙ 0,01392 + 300 ∙ 0,01407 = 8,382; 
𝑆௫ = 100 + 200 + 300 = 600; 
𝑆௬ = 0,01377 + 0,01392 + 0,01407 = 0,04176; 
𝑚 = 3. 

(3.5.9) ფორმულების მიხედვით გვექნება: 

𝐷 =
ௌೣ೤∙௠ିௌೣ∙ௌ೤

ௌೣೣ∙௠ିௌೣ∙ௌೣ
=

଼,ଷ଼ଶ∙ଷି଺଴଴∙଴,଴ସଵ଻଺

ଵସ଴଴଴଴∙ଷି଺଴଴∙଺଴଴
= 0.0000015; 

𝐴 =
ௌೣೣ∙ௌ೤ିௌೣ∙ௌೣ೤

ௌೣೣ∙௠ିௌೣ∙ௌೣ
=

ଵସ଴଴଴଴∙଴,଴ସଵ଻଺ି଺଴଴∙଼,ଷ଼ଶ

ଵସ଴଴଴଴∙ଷି଺଴଴∙଺଴଴
= 0,01362. 

როგორც ვხედავთ ამ შემთხვევაში მივიღეთ ზუსტად იგივე შედეგი რაც 
ზედა შემთხვევაში, რაც გამოწვეულია იმით რომ 𝑡 = 200 სთ შესაბამისი 
წერტილი ზუსტად ძევს მის მეზობელ 𝑡 = 100 სთ და 𝑡 = 300 სთ შესაბამის 
წერტილებზე გამავალ წრფეზე. დანარჩენი ორი კოეფიციენტისთვის გვაქვს 𝐵 =

𝜀଴ − 𝐴 = −0,00045, ხოლო 𝐶 კოეციციენტი ამ შემთხვევშიც უნდა 
განვსაზღვროთ 𝑡 = 0 სთ-თან ახლოს მყოფი 𝑡 = 5 სთ წერტილისთვის, გვექნება 
𝐶 = 0,11967. შედეგად მიიღება  (3.6.5)-ის იდენტური გამოსახულება 𝜀(𝑡) =

0,01362 − 0,00045𝑒ି଴,ଵଵଽ଺଻∙௧ + 0,0000015 ∙ 𝑡. თუმცა ეს არ ნიშნავს, რომ 
ყოველთვის დადგება მსგავსი რეზულტატი. თუ ექსპერიმენტული 
წერტილების რაოდენობა გაიზრდება, დათვლის მარტივი (ორ წერტილზე 
გამავალი წრფე) და შედარებით რთული ფორმა („უმცირეს კვადრატთა 
მეთოდით“ აგებული წრფე)  განსხვავებულ შედეგებს მოგვცემს. 

ძაბვათა გარკვეულ დიაპაზონში კონსტრუციული პლასტიკების 
ცოცვადობის დეფორმაციის განვითარების ექსპერიმენტული მონაცემების 



76 
 

გამომსახველი განტოლება შეიძლება ჩაიწეროს  (3.6.6) ფორმით (საუბარია ორი 
ბლანტი ელემენტის შემცველ ხუთ ელემენტიანი მოდელზე, დეტალურად 
იხილეთ შესაბამის ლიტერატურაში) [9]. 

𝜀(𝑡, 𝜎) = 𝐴 ∙ 𝜎 − 𝐵 ∙ 𝑒ି஼∙௧ + 𝐷 ∙ ൫𝜎 − 𝜎ხ.ს.ზღ.൯ ∙ (𝑡 − 𝑡ა.ჩ.) (3.6.6) 

სადაც 𝐴, 𝐵, 𝐶 და 𝐷 - მუდმივებია, რომლებიც განისაზღვრება მასალათა 
ცოცვადობის ექსპერიმენტული მონაცემების საშუალებით. (3.6.6) 
გამოსახულიდებიდან, როცა 𝑡 = 0, გვექნება: 

 𝐵 = 𝐴 ∙ 𝜎 − 𝜀(0, 𝜎) − 𝐷 ∙ ൫𝜎 − 𝜎ხ.ს.ზღ.൯ ∙ 𝑡ა.ჩ.   (3.6.7) 

ცხრ. 3.6.2-ში წარმოდგენილია მინატექსტოლიტ ЭТФ-ВМ-78 არმირების 
მთავარი მიმართულებიდან 45°-ით კუმშვისას ცოცვადობის დეფორმაციის 
დროში განვითარება [9]. 

ცხრ. 3.6.2 მინატექსტოლიტ ЭТФ-ВМ-78-ის კუმშვისას ცოცვადობის 
დეფორმაციის აღმწერი ექსპერიმენტული მონაცემები   

𝜎, 
კგ/მმ2 

𝜀(𝑡) × 10ଷ                                        𝑇 = 20℃ 
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მინატექსტოლიტ ЭТФ-ВМ-78-ის არმირების მთავარი მიმართულებიდან 

45°-ით კუმშვისას ხანგრძლივი სიმტკიცის ქვედა ზღვარი 𝜎ხ.ს.ზღ. = 6 კგ/მმ2, 
ხოლო არაჩამდგარი ცოცვადობის ხანგრძლივობა ძაბვათა დიაპაზონში 𝜎 = 8 −

10 კგ/მმ2 არის 𝑡ა.ჩ. = 20 სთ. 
𝐴, 𝐵 და 𝐷 - მუდმივების დასადგენად გამოვიყენოთ ე.წ. გასაშუალების 

მეთოდი. ამ შემთხვევაშიც ითვლება, რომ დროის შუალედში 𝑡 = 20 სთ-დან 𝑡 =

100 სთ-მდე, დეფორმაცია მიმდინარეობს წრფივად 

 𝜀(𝑡 ≥  𝑡ა.ჩ.) ≈ 𝐴 ∙ 𝜎 + 𝐷 ∙ ൫𝜎 − 𝜎ხ.ს.ზღ.൯ ∙ (𝑡 − 𝑡ა.ჩ.)   (3.6.8) 
 

მასალის ცოცვადობის პროცესის ამსახველი გრაფიკული 
გამოსახულებები მოცემულია სურ. 3.6.1-ზე. 
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სურ. 3.6.1 მინატექსტოლიტ ЭТФ-ВМ-78-ის არმირების მთავარი 

მიმართულებიდან 45°-ით კუმშვის სრული დეფორმაციის დროში 
განვითარების მრუდები [9] 

ცხრ. 3.6.2-დან, (3.6.8) გამოსახულების მიხედვით, 𝑡 = 20 სთ და 𝑡 = 100 
სთ შესაბამისი წერტილებისთვის მიიღება შემდეგი განტოლებათა სისტემა: 

⎩
⎪
⎨

⎪
⎧

8 ∙ 𝐴 = 0,0044                       
10 ∙ 𝐴 = 0,00548                   

და
8 ∙ 𝐴 + 160 ∙ 𝐷 = 0,00485  
10 ∙ 𝐴 + 320 ∙ 𝐷 = 0,00607

⇒ ቄ
18 ∙ 𝐴 = 0,00988                   
18 ∙ 𝐴 + 480 ∙ 𝐷 = 0,01092

   (3.6.9) 

გასაშუალოების მეთოდით მიღებული (3.6.9) განტოლებათა სისტემის 
ამოხსნის შემდეგ მიიღება: 

𝐴 = 0,000548888; 𝐷 = 0,000002166    (3.6.10) 

𝐵 მუდმივა განისაზღვრება (3.6.7) გამოსახულებით, რომელიც უნდა 
გამოვიყენოთ 𝜎 = 8 კგ/მმ2 და 𝜎 = 10 კგ/მმ2 ძაბვებისთვის, შესაბამისად 
გვექნება: 

 𝐵 = 0,000904464 (𝜎 = 8 კგ/მმ2-თვის) და       
 𝐵 = 0,0011156 (𝜎 = 8 კგ/მმ2-თვის)                (3.6.11) 

𝐶 მუდმივის განსაზღვრისთვის გამოვიყენოთ უკვე განსაზღვრული 
კოეფიციენტები და ჩავსვათ (3.6.6)-ში, ხოლო დრო ავიღოთ 𝑡 = 1 სთ, როგორც 
საწყის მომენტთან უახლოესი მონაცემი, მიიღება: 

0,004391104 − 0,000904464 ∙ 𝑒ି஼ − 0,000082308 = 0,00386 და 
0,0054889 − 0,0011156 ∙ 𝑒ି஼ − 0,000164616 = 0,00463                  (3.6.12) 

ამ განტოლებების წევრ-წევრად შეკრებით და მიღებული განტოლების 
ამოხსნით, განისაზღვრება: 
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𝐶 = 0,569420317    (3.6.13) 

საბოლოოდ, ძაბვათა დიაპაზონისთვის 𝜎 = 8 − 10 კგ/მმ2 მიიღება 
მასალის ცოცვადობის დეფორმაციის განვითარების შემდეგი კანონი: 

𝜀(𝑡, 𝜎) = 5,4889 ∙ 10ିସ ∙ 𝜎 − (5,4889 ∙ 10ିସ ∙ 𝜎 − 𝜀(0, 𝜎) − 2,166 ∙ 10ି଺ ∙ (𝜎 − 6) ∙ 20) × 

× 𝑒ି଴,ହ଺ଽସଶ଴ଷଵ଻∙௧ + 2,166 ∙ 10ି଺ ∙ (𝜎 − 6) ∙ (𝑡 − 20)    (3.6.14) 

მიღებული კანონით გამოთვლილი მასალის ცოცვადობის 
დეფორმაციების მნიშვნელობები და ექსპერიმენტული მონაცემების მიმართ, 
მათი მაქსიმალური ფარდობითი ცდომილებები (∆௠௔௫) წარმოდგენილია ცხრ. 
3.6.3-ში [9]. 

ცხრ. 3.6.3 მასალის ცოცვადობის დეფორმაციების თეორიული 
მნიშვნელობები და ფარდობითი ცდომილებები (∆௠௔௫) 

𝜎, 
კგ/მმ2 

𝜀(𝑡, 𝜎) × 10ଷ 
0 

სთ 
∆௠௔௫ 

% 
1 

სთ 
∆௠௔௫ 

% 
2 

სთ 
∆௠௔௫ 

% 
6 

სთ 
∆௠௔௫ 

% 
20 
სთ 

∆௠௔௫ 
% 

8 
10 

3,4 
4,2 

0 
0 

3,787 
4,693 

1,66 
1,36 

4,024 
4,975 

0,59 
0,52 

4,30 
5,33 

1,90 
2,72 

4,391 
5,489 

0,20 
0,164 

𝜎, 
კგ/მმ2 

𝜀(𝑡, 𝜎) × 10ଷ 
40 
სთ 

∆௠௔௫ 
% 

50 
სთ 

∆௠௔௫ 
% 

70 
სთ 

∆௠௔௫ 
% 

80 
სთ 

∆௠௔௫ 
% 

100 
სთ 

∆௠௔௫ 

8 
10 

4,478 
5,662 

2,73 
1,73 

4,52 
5,75 

2,85 
1,76 

4,608 
5,922 

2,0 
1,65 

4,651 
6,009 

3,20 
0,69 

4,738 
6,182 

2,37 
1,85 

 
როგორც ვხედავთ განხილული შემთხვევა საკმაოდ ზუსტად აღწერს 

ცოცვადობის ექსპერიმენტულ მონაცემებს ძაბვებისას, რომლებიც აღემატება 
მასალის ხანგრძლივი სიმტკიცის ზღვარს, ანუ დეფორმაციას პლასტიკური 
ცოცვადობის არეში. 
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3.7 ძაბვების რელაქსაციის პროცესის ექსპერიმენტული კვლევა: 

კომპოზიტურ პლასტიკებში ძაბვების რელაქსაციის პროცესის 
აღწერისთვის გამოვიყენოთ ხუთელემენტიანი მოდელის მაგალითი, 
რომელსაც აქვს დამატებითი დრეკადი ელემენტი (იხ. სურ. 2.8.2 ა)). ამ დროს 
ძაბვების რელაქსაციის პროცესი აღიწერება შემდეგი დამოკიდებულებით: 

𝜎(𝑡) = (𝜎଴ − 𝐸) ∙ 𝑒ି
೟

೙ + 𝐸    (3.7.1) 

სადაც 𝜎଴, 𝐸 და 𝑛 სიდიდეები უნდა განისაზღვროს ექსპერიმენტული 
მონაცემების საფუძველზე. მაგალითისთვის ავიღოთ შემდეგი მონაცემები, 
რომელიც მოცემულია ცხრ. 3.7.1-ში [8]: 

ცხრ. 3.7.1 კომპოზიტური პლასტიკის ძაბვების რელაქსაციაზე 
გამოცდის ექსპერიმენტული მონაცემები 

𝑡 
წთ 0 2 4 6 8 20 30 60 90 180 

𝜎(𝑡) 
კგძ/მმ2 0,048 0,0479 0,0474 0,0474 0,0474 0,0469 0,0463 0,0457 0,0454 0,0454 

 
როგორც ექსპერიმენტული მონაცემებიდან ჩანს, ძაბვის ცვლილების 

დინამიკა ნელია. გრაფიკულად პროცესი გამოსახულია სურ. 3.7.1-ზე. 

 
სურ. 3.7.1 ძაბვების რელაქსაციის მრუდი 

როცა 𝑡 = 0, მაშინ  

𝜎(0) = (𝜎଴ − 𝐸) ∙ 𝑒ି
బ

೙ + 𝐸 = 𝜎଴ − 𝐸 + 𝐸 = 𝜎଴  (3.7.2) 

და მისი მნიშვნელობა უშუალოდ ცხრილიდან აიღება, გვექნება 

 𝜎଴ = 0,048 კგძ/მმ2     (3.7.2) 

როცა 𝑡 → ∞, მაშინ 

 𝜎(𝑡 → ∞) = (𝜎଴ − 𝐸) ∙ 𝑒ି
ಮ

೙ + 𝐸 = 𝐸    (3.7.3)  

𝜎 
𝜎଴ 

𝐸 

0 𝑡 
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ასეთ დროს უნდა ავიღოთ მონაცემი, რომელიც ათვლილია 
ექსპერიმენტის დაწყებიდან ყველაზე დიდი დროის შემდეგ, გვექნება: 

 𝐸 ≈ 𝜎(𝑡 = 180) = 0,0454 კგძ/მმ2    (3.7.4) 

რაც შეეხება 𝑛-ს, ის უნდა დაითვალოს 𝑡 = 0-თან ყველაზე ახლოს მყოფი 
წერტილისთვის, წარმოდგენილ შემთხვევაში 𝑡 = 2 წთ, გვექნება: 

𝜎(2) = (𝜎଴ − 𝐸) ∙ 𝑒ି
మ

೙ + 𝐸 → 𝑒ି
మ

೙ =
ఙ(ଶ)ିா

ఙబିா
=

଴,଴ସ଻ଽି଴,଴ସହସ

଴,଴ସ଼ି଴,଴ସହସ
=    

=
଴,଴଴ଶଶ

଴,଴଴ଶ଺
= 0,84615    (3.7.5) 

ხოლო 

 − ଶ

௡
= 𝑙𝑛0,84615 ⇒ 𝑛 =

ିଶ

௟௡଴,଼ସ଺ଵହ
=

ିଶ

ି଴,ଵ଺଻଴଺
= 11,9717 წთ  (3.7.6) 

შედეგად, რელაქსაციის აღმწერი განტოლება მიიღებს სახეს: 

𝜎(𝑡) = (0,048 − 0,0454) ∙ 𝑒
ି 

௧
ଵଵ,ଽ଻ଵ଻ + 0,0454 = 

= 0,0026 ∙ 𝑒
ି 

೟

భభ,వళభళ + 0,0454    (3.7.6) 

მიღებულ შედეგში მარტივი ექსპონენციალური დამოკიდებულებაა, 
თუკი სურ. 2.8.2 ა)-ზე წარმოდგენილი მოდელის მარჯვენა მხარეს ა. იშლინსკის 
ტიპური სხეულის [8] ნაცვლად გამოყენებული იქნებოდა უფრო რთული, 
მაგალითად ორი ბლანტი ელემენტის შემცველი რომელიმე ოთხელემენტიანი 
მოდელი, მაშინ ძაბვების რელაქსაციის პროცესის აღწერისას მიიღებოდა ორი 
ექსპონენტის შემცველი შესაკრების კომბინაცია, გაჩნდებოდა დამატებითი 
განუსაზღვრელი მუდმივა, რაც საბოლოო ჯამში თეორიული და 
ექსპერიმენტული მონაცემების უკეთ შეთავსების შესაძლებლობას მოგვცემდა. 

 როგორც უკვე აღინიშნა, მოდელებში ელემენტების ზრდა ართულებს 
ამოხსნის სირთულეს, თუმცა ძაბვის, დეფორმაციის ან სხვა რაიმე სიდიდის 
წარმოდგენისას 2.2 ქვეთავში მოცემული (I), (II) ან (III) ფორმით, მოდელი 
ყოველთვის ანალიზურად ამოხსნადი იქნება. 
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3.8 პოლიმერული კომპოზიტური მასალის გრეხითი დეფორმაციის 
აღწერა ხუთელემენტიანი მოდელების გამოყენებით 

დრეკად-პლასტიკური მასალებისთვის ცოცვადობის თვისება 
ვლინდება მათი გრეხითი დეფორმაციის დროსაც. თუ განვიხილავთ 
ცილინდრული მილის ფორმის სხეულს, (პარამეტრები: გარე დიამეტრი - 𝐷, 
შიდა დიამეტრი - 𝑑 და სიმაღლე - 𝑙), რომელიც ერთი ფუძით არის 
დამაგრებული, ხოლო მეორე ფუძეზე მოდებულია 𝑀௭ მგრეხი მომენტი (იხ. 
სურ. 3.8.1), მაშინ ცოცვადობის პროცესის გათვალისწინებით, თავისუფალი 
ბოლოს მობრუნების კუთხე იქნება დროის რაიმე 𝜑(𝑡) ფუნქცია, ხოლო 
გრეხითი დეფორმაციის აღმწერი პარამეტრები და გამოსახულებები 
გარეგნული ფორმით იგივე სახის დარჩება, რაც იზოტროპული სხეულების 
შემთხვევაშია, კერძოდ ფარდობითი ძვრა 

 𝛾(𝑡) = 𝑅
ఝ(௧)

௟
= 𝑅 ∙ 𝜃(𝑡)   (3.8.1) 

სადაც  

𝜃(𝑡) =
ௗఝ(௧)

ௗ௭
=

ఝ(௧)

௟
           (3.8.2) 

გრეხის კუთხის ინტენსიობაა.  

 

 

სურ. 3.8.1 ცილინდრული მილის ფორმის საკვლევი ნიმუშის 
გრეხის სქემა 

რაც შეეხება კავშირს მგრეხ მომენტს, ძაბვას და გრეხის კუთხეს შორის, 
სტანდარტული მიდგომის ანალოგიურად [8], გვაქვს: 

𝜏(𝑡) = 𝐺 ∙ 𝛾(𝑡) = 𝐺 ∙ 𝜌 ∙ 𝜃(𝑡)   (3.8.3) 

სადაც 𝐺 მასალის ძვრის მოდულია, ხოლო მგრეხი მომენტი 

𝑀௭(𝑡) = ∫ 𝜏(𝑡)𝜌𝑑𝐹 = 𝐺𝜃(𝑡) ∫ 𝜌ଶ𝑑𝐹 = 𝐺𝜃(𝑡)𝐼௉   (3.8.4) 
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სადაც 𝐼௉ = ∫ 𝜌ଶ𝑑𝐹 მასალის კვეთის პოლარული ინერციის მომენტია. 
წარმოდგენილი ამოცანა შესწავლილია კომპოზიტური პლასტიკების 

რეოლოგიური თვისებების აღმწერი ხუთელემენტიანი მოდელების 
საფუძველზე (იხ. სურ. 2.8.2).  

საკვლევ კომპოზიტურ მასალად აღებულია PVP (Polyvinylpyrrolidone), 
რომელიც გამოიცადა გრეხისას ცოცვადობის დეფორმაციის ექსპერიმენტულად 
შესწავლის მიზნით. ნიმუში დაიტვირთა მუდმივი სიდიდის მგრეხი 
მომენტით.  გამოცდებისთვის შერჩეული იყო მასალის სამი სხვადასხვა 
ასაკობრივი ნიმუში: 𝜏 = 1 თვის, 𝜏 = 1 წლის და 𝜏 = 10 წლის. მიღებული 
მონაცემების საფუძველზე [8], ხუთელემენტიანი მოდელების დეფორმაციის 
ამსახველი ფორმების გამოყენებით განისაზღვრა საჭირო პარამეტრების 
მნიშვნელობები. მასალის ექსპერიმენტული გამოცდის შედეგები 
წარმოდგენილია ცხრ. 3.8.1-ში. ხოლო ცოცვადობის მრუდების ვიზუალური 
გრაფიკები სურ. 3.8.2-ზე. 

განხილულია PVP მასალისგან დამზადებული ნიმუში (ცილინდრული 
მილი), პარამეტრებით: 

𝐷 = 40 მმ; 

𝑑 = 34 მმ; 

𝑙 = 180 მმ (მუშა ნაწილის სიგრძე); 

𝑀გრ = 550 კგძ ∙ სმ (მუდმივი დატვირთვა); 

კვეთის პოლარული ინერციის მომენტი 𝐼௉ =
గ஽ర

ଷଶ
൬1 − ቀ

ௗ

஽
ቁ

ସ
൰. 

ცხრ. 3.8.1 გრეხაზე ცოცვადობის დეფორმაციები  
(PVP. 𝑇 = 20℃, 𝑊 = 70%) 

𝑡 
სთ 

𝑀௭ = 0.1𝑀გრ, კგძ ∙ სმ 𝑀௭ = 0.2𝑀გრ, კგძ ∙ სმ 
𝜏
= 10 წლის 

𝜏
= 1 წლის 

𝜏
= 1 თვის 

𝜏
= 10 წლის 

𝜏
= 1 წლის 

𝜏
= 1 თვის 

0 
5 

10 
20 
50 

100 
150 

0.0020 
0.0055 
0.0061 
0.0067 
0.0073 
0.0074 
0.0075 

0.0024 
0.0072 
0.0083 
0.0090 
0.0094 
0.0096 
0.0096 

0.0033 
0.0092 
0.0104 
0.0115 
0.0118 
0.0120 
0.0120 

0.0033 
0.0127 
0.0144 
0.0162 
0.0171 
0.0177 
0.0179 

0.0044 
0.0150 
0.0170 
0.0194 
0.0208 
0.0217 
0.0219 

0.0055 
0.0188 
0.0211 
0.0240 
0.0250 
0.0269 
0.0271 

𝑀௭ = 0.3𝑀გრ, კგძ ∙ სმ 𝑀௭ = 0.4𝑀გრ, კგძ ∙ სმ 
0 
5 

10 
50 
80 

100 
150 

0.0065 
0.0243 
0.0277 
0.0330 
0.0340 
0.0343 
0.0349 

0.0025 
0.0277 
0.0315 
0.0343 
0.0396 
0.0405 
0.0410 

0.0100 
0.0330 
0.0366 
0.0446 
0.0459 
0.0460 
0.0465 

0.0100 
0.0398 
0.0430 
0.0570 
0.0598 
0.0609 
0.0614 

0.0130 
0.0476 
0.0520 
0.0660 
0.0700 
0.0720 
0.0740 

0.0160 
0.0600 
0.0680 
0.0830 
0.0860 
0.0860 
0.0870 
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სურ. 3.8.2 გრეხის კუთხის ცვლილების დროზე დამოკიდებულება 

(ცოცვადობის მრუდები) 

 წარმოდგენილი გრაფიკების ანალიზი აჩვენებს, რომ გამოიყოფა 
სამეულები, რომელიც ასახავს, დამზადების მიხედვით, სამი სხვადასხვა 
წლოვანების მასალის  გამოცდის შედეგებს ერთი და იგივე მნიშვნელობის 
მგრეხი დატვირთვის დროს. თითოეული ასეთი სამეული ერთმანეთის 
მსგავსია, რაც ნიშნავს, რომ თუ ცნობილი იქნება ერთი მათგანის ანალიზური 
ფორმა (საბაზო მრუდი), დანარჩენები მიიღება საბაზო მრუდის მსგავსების 
კოეფიციენტზე გამრავლებით. სხვადასხვა დატვირთვების შესაბამისი 
მრუდები მნიშვნელოვნად არიან განსხვავებული და მათ მსგავსებაზე საუბარი 
არ იქნება მართებული. ასევე აღსანიშნავია, რომ 𝑀௭ > 0.4𝑀გრ დატვირთვის 
დროს მასალა მალევე კარგავს მდგრადობას, რაც აუცილებლად უნდა იქნას 
გათვალისწინებული, შემდგომში, ამ მასალისგან საკონსტრუქციო დეტალების 
დამზადების პროცესში, სიმტკიცის და მდგრადობის მახასიათებლების 
განსაზღვრისას. 

მასალის გრეხითი ცოცვადობის ამსახველი მრუდების ანალიზური 
ფორმის დასადგენად საჭიროა თითოეული სამეულისთვის შეირჩეს საბაზო 
მრუდი და დადგინდეს მისი ანალიზური ფუნქციის სახე. 

წარმოდგენილ კვლევაში მხოლოდ ორი შემთხვევაა განხილული, 
რომელიც გარეგნული მსგავსების თვალსაზრისით მიესადაგება სურ. 2.8.2-ზე 
გამოსახულ ორივე ტიპის მოდელს. კერძოდ 𝑀௭ = 0.3𝑀გრ დატვირთვას 
შეესაბამება ბ) შემთხვევა, ხოლო 𝑀௭ = 0.4𝑀გრ დატვირთვას აშკარად იკვეთება 
ა) შემთხვევის ამსახველი ფორმა. უნდა აღინიშნოს, რომ საუბარია ერთი და 
იგივე მასალაზე, რომელიც განსხვავებულ თვისებებს ავლენს დატვირთვების 
სიდიდის შესაბამისად.  
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} 
} 
} 
} 𝑀𝑧 = 0.1𝑀გრ 

} 

𝑀𝑧 = 0.2𝑀გრ 

𝑀𝑧 = 0.3𝑀გრ 

𝑀𝑧 = 0.4𝑀გრ 

𝑀𝑧 = 0.5𝑀გრ 
𝜑 (რად) 

𝜏 = 10 წელი 

𝜏 = 1 წელი 

𝜏 = 1 თვე 

𝑡 (სთ) 
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ორივე შემთხვევაში, საბაზო მრუდებად არჩეულია 𝜏 = 10 წლის 
მასალის გრეხითი დეფორმაციის მრუდები. მიზანს წარმოადგენს 
განისაზღვროს გრეხის კუთხის ინტენსიობის დროზე დამოკიდებულების 
ანალიზური ფორმა. (3.8.2) ფორმულიდან გამომდინარე, ეს სიდიდე 
განისაზღვრება ფორმით 𝜃(𝑡) =

ఝ(௧)

௟
, რის საფუძველზეც განსახილველი 

შემთხვევებისთვის ექსპერიმენტული მონაცემები მიიღებს ცხრ. 3.8.2-ში 
წარმოდგენილ სახეს: 

ცხრ. 3.8.2 PVP მასალის გრეხით ცოცვადობაზე გამოცდის
 ექსპერიმენტული შედეგები 

დრო 
𝑡 

(სთ) 

𝑀௭ = 0.3𝑀გრ 
𝜏 = 10 წელი 

𝑀௭ = 0.4𝑀გრ 
𝜏 = 10 წელი 

𝜑௘௫௣(𝑡) 
𝜃௘௫௣(𝑡)

=
𝜑௘௫௣(𝑡)

𝑙
 

𝜑௘௫௣(𝑡) 𝜃௘௫௣(𝑡) =
𝜑௘௫௣(𝑡)

𝑙
 

0 
5 

10 
50 
80 

100 
150 

0,0065 
0,0243 
0,0277 
0,0330 
0,0340 
0,0343 
0,0349 

0,0361 
0,1350 
0,1539 
0,1833 
0,1889 
0,1906 
0,1939 

0,0100 
0,0398 
0,0430 
0,0570 
0,0598 
0,0609 
0,0614 

0,0556 
0,2211 
0,2389 
0,3167 
0,3322 
0,3383 
0,3411 

გრეხის კუთხის ინტენსივობის ანალიზური ფორმის დასადგენად 
(საჭირო კოეფიციენტების განსაზღვრისთვის) უცნობი კოეფიციენტების 
განსაზღვრა ხდება შემდეგი თანმიმდევრობით:  

ა) დრეკადი ჯგუფის პლასტიკების თვისებების ამსახველ შემთხვევაში, 
(2.8.1) ფორმულის ანალოგიურად, გრეხის კუთხის ინტენსივობის ანალიზური 
გამოსახულების ზოგად ფორმას ექნება სახე: 

𝜃(𝑡) = 𝐴 + 𝐵(1 − 𝑒ି஼∙௧)    (3.8.5) 

საჭირო მონაცემები აღებულია ცხრ. 3.8.2-დან, 𝑀௭ = 0.4𝑀გრ 
დატვირთვის შესაბამისი სვეტიდან. როცა 𝑡 = 0, მაშინ (3.8.5) მიიღებს ფორმას 
𝜃(0) = 𝐴 =0.0556; როცა 𝑡 = 150 სთ, მაშინ ექსპონენციალური შესაკრები 
სიმცირის გამო შეიძლება უგულებელიყოს, შედეგად 𝜃(150) = 𝐴 + 𝐵 =

0.3411 ⇒ 𝐵 = 0.3411 − 𝐴 = 0.3411 − 0.0556 = 0.2855, ხოლო 𝐶 სიდიდის 
განსაზღვრისთვის, შესაბამისი გრაფიკის მაქსიმალური სიმრუდის 
მოსაზღებიდან გამომდინარე, საჭიროა აღებული იქნას 𝑡 = 0-თან ახლოს მყოფი 
წერტილი - 𝑡 = 5 სთ. შედეგად მიიღება: 𝜃(5) = 𝐴 + 𝐵(1 − 𝑒ି஼∙ହ) = 0.2211 ⇒ 𝐶 =

−
ଵ

ହ
ln

஺ା஻ି଴.ଶଶଵଵ

஻
= 0.1734, შედეგად (3.8.5) მიიღებს სახეს: 

𝜃(𝑡) = 0.0556 + 0.2855(1 − 𝑒ି଴.ଵ଻ଷସ∙௧)   (3.8.6) 
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ბ) პლასტიკური ჯგუფის პლასტიკების თვისებების ამსახველ 
შემთხვევაში, (2.8.2) ფორმულის ანალოგიურად, გრეხის კუთხის 
ინტენსივობის ანალიზური გამოსახულების ზოგად ფორმას ექნება სახე: 

𝜃(𝑡) = 𝐴 + 𝐵 ∙ 𝑒ି஼∙௧ + 𝐷 ∙ 𝑡    (3.8.7) 

საჭირო მონაცემები აღებულია ცხრ. 3.8.2-დან, 𝑀௭ = 0.3𝑀გრ 
დატვირთვის შესაბამისი სვეტიდან. ამ შემთხვევაში გამოიკვეთება ჩამდგარი 
ცოცვადობის არე. შესაბამისი გრაფიკიდან ჩანს, რომ ასეთი არე მკვეთრად 
იწყება 𝑡 = 50 სთ-ის შემდეგ. შიძლება მიჩნეული იქნას, რომ დროის ამ 
მომენტის შემდეგ ფუნქციას აქვს თითქმის წრფივი ფორმა. აქედან 
გამომდინარე, როცა 𝑡 ≥ 50 სთ (3.8.7) მიიღებს სახეს: 𝜃(𝑡 ≥ 50) = 𝐴 + 𝐷 ∙ 𝑡. 
უცნობი 𝐴 და 𝐷 კოეფიციენტების განსაზღვრისთვის საჭიროა ორი წერტილის 
შესაბამისი მონაცემების ცოდნა, 𝜃(50) = 𝐴 + 𝐷 ∙ 50 = 0.1833 და 𝜃(150) = 𝐴 +

𝐷 ∙ 150 = 0.1939. შესაბამისი წრფივ განტოლებათა სისტემის ამოხსნის შემდეგ 
მიიღება: 𝐴 = 0.1780 და 𝐷 = 0.0001. როცა 𝑡 = 0, მაშინ 𝜃(0) = 𝐴 + 𝐵 = 0.0361 ⇒

𝐵 = 0.0361 − 𝐴 = 0.0361 − 0.1780 = −0.1419, ხოლო 𝐶 კოეფიციენტის 
განსაზღვრა ხდება წინა შემთხვევის ანალოგიურად 𝑡 = 5 სთ შესაბამისი 
მონაცემების გამოყენებით: 𝜃(5) = 𝐴 + 𝐵 ∙ 𝑒ି஼∙ହ + 𝐷 ∙ 5 = 0.1350 ⇒ 𝐶 =

−
ଵ

ହ
ln

଴.ଵଷହ଴ି஺ିହ஽

஻
= 0.2365, შედეგად (3.8.7) მიიღებს სახეს: 

𝜃(𝑡) = 0.1780 − 0.1419𝑒ି଴.ଶଷ଺ହ∙௧ + 0.0001 ∙ 𝑡      (3.8.8) 

როგორც აღინიშნა, მუდმივი დატვირთვის შესაბამისი მრუდები, 
სხვადასხვა ასაკის მასალისთვის, ერთმანეთის მსგავსია. საბაზო მრუდად კი 
ორივე შემთხვევისთვის აღებულია 𝜏 = 10 წლის მასალის შესაბამისი გრეხითი 
ცოცვადობის მრუდი. დანარჩენი ორისთვის გრეხითი დეფორმაციის ხასიათი 
(3.8.6) და (3.8.8) ფორმულების გათვალისწინებით შეიძლება აღიწეროს 
შემდეგნაირად: 

𝜃ఛୀଵ თვე(𝑡) = 𝜆ଵ ∙ 𝜃ఛୀଵ଴ წელი(𝑡) და 𝜃ఛୀଵ წელი(𝑡) = 𝜆ଶ ∙ 𝜃ఛୀଵ଴ წელი(𝑡)     (3.8.9) 

სადაც 𝜆ଵ და 𝜆ଶ მსგავსების კოეფიციენტებია, რომელთა საშუალო 
მნიშვნელობა უნდა განისაზღვროს უშუალოდ გრეხითი ცოცვადობის 
შესაბამისი მრუდების წერტილების კოორდინატების თანაფარდობიდან 
(აღსანიშნავია, რომ მსგავსების კოეფიციენტების დათვლისთვის 𝑡 = 0 
მომენტის მნიშვნელობები შეიძლება არ იყოს სანდო). ცხრ. 3.8.1-ში 
წარმოდგენილი მონაცემების საფუძველზე აღნიშნული მსგავსების 
კოეფიციენტებისთვის გვექნება: 
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ცხრ. 3.8.3 PVP მასალის გრეხით ცოცვადობაზე გამოცდის
 მრუდების მსგავსების კოეფიციენტები 

დრო 
𝑡 (სთ) 

𝑀௭ = 0.2𝑀გრ 𝑀௭ = 0.2𝑀გრ 

𝜆ଵ =
𝜃ఛୀଵთვე(𝑡)

𝜃ఛୀଵწელი(𝑡)
 𝜆ଵსაშ 𝜆ଶ =

𝜃ఛୀଵ଴წელი(𝑡)

𝜃ఛୀଵწელი(𝑡)
 𝜆ଶსაშ 

5 
10 
20 
50 
100 
150 

1,2533 
1,2412 
1,2371 
1,2019 
1,2396 
1,2374 

1,2351 

0,8467 
0,8471 
0,8351 
0,8221 
0,8157 
0,8174 

0,8307 

განხილული მეთოდიკით შეიძლება მოხდეს ანალოგიური დათვლები 
𝑀௭ მგრეხი დატვირთვის სხვა მნიშვნელობის შესაბამისი მონაცემების 
საფუძველზე (ცხრ. 3.8.1), რაც გულისხმობს: მოდელის ტიპის განსაზღვრას, 
საბაზო მრუდის შერჩევას, საჭირო კოეფიციენტების განსაზღვრას და 
მსგავსების კოეფიციენტების გამოთვლას. ეს მიდგომა ცდომილების გარკვეულ 
ფარგლებში სამართლიანი იქნება კომპოზიტური პლასტიკების დეფორმაციის 
სხვა ტიპების (მაგალითად ღუნვა, ან რთული კომბინირებული დატვირთვა) 
განხილვის დროსაც, თუმცა მათი გამოყენების საზღვრები შეზღუდულია. 
არაწრფივი დეფორმაციების განხილვის დროს შედარებით უფრო ზუსტ 
მეთოდს წარმოადგენს ე.წ. მემკვიდრეობის თეორია [6, 8, 18]. შეიძლება 
გამოყენებული იქნას სხვა ემპირიული ან ნახევრადემპირიული მიდგომები [9]. 
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შეჯამება 

წარმოდგენილი მონოგრაფია ეძღვნება კომპოზიტური მასალების 
რეოლოგიური თვისებების სიღრმისეულ შესწავლას მოდელების თეორიის 
ფარგლებში. თანამედროვე ინჟინერიასა და ტექნოლოგიაში კომპოზიტური 
მასალების ფართო გამოყენება განაპირობებს მათი მექანიკური და დროისადმი 
დამოკიდებული თვისებების ზუსტ განსაზღვრას, რაც განსაკუთრებით 
მნიშვნელოვანია დატვირთვის პირობებში მათი სანდოობისა და 
საექსპლუატაციო გამძლეობის უზრუნველსაყოფად. ამ თვალსაზრისით, 
რეოლოგიური პარამეტრების სწორი იდენტიფიკაცია წარმოადგენს როგორც 
თეორიულ, ისე პრაქტიკულ ამოცანას. 

მონოგრაფიაში განხილულია კომპოზიტური მასალების 
დეფორმაციული ქცევის ფუნდამენტური კანონზომიერებები, 
განსაკუთრებული ყურადღება ეთმობა ცოცვადობისა და რელაქსაციის 
პროცესებს. ნაჩვენებია, რომ კომპოზიტური მასალების რეოლოგიური ქცევა, 
მათი სტრუქტურული არაერთგვაროვნების გამო, მნიშვნელოვნად 
განსხვავდება ჰომოგენური მასალების ქცევისგან და საჭიროებს 
სპეციალიზებულ მიდგომებს. ამ კონტექსტში ფართოდ არის გამოყენებული 
კლასიკური და განზოგადებული რეოლოგიური მოდელები, როგორიცაა 
დრეკადი და ბლანტი ელემენტების კომბინაციები. 

მონოგრაფიის მნიშვნელოვანი ნაწილი ეთმობა მათემატიკური 
მოდელირების საკითხებს. წარმოდგენილია დიფერენციალური განტოლებების 
სისტემები, რომლებიც აღწერს მასალის დაძაბულ-დეფორმაციულ 
მდგომარეობას დროის ფაქტორის გათვალისწინებით. განხილულია 
მოდელების იდენტიფიკაციის პრობლემა, ანუ თეორიული 
დამოკიდებულებების შესაბამისი პარამეტრების განსაზღვრა ექსპერიმენტული 
მონაცემების საფუძველზე. ნაჩვენებია, რომ აღნიშნული ამოცანის ეფექტურად 
გადასაჭრელად ზოგჯერ საჭიროა რიცხვითი მეთოდების გამოყენება. 

ექსპერიმენტული მონაცემების დამუშავების პროცესში 
განსაკუთრებული ადგილი უკავია „უმცირეს კვადრატთა მეთოდს“, როგორც 
უნივერსალურ და ფართოდ აპრობირებულ მიდგომას. მონოგრაფიაში 
დეტალურად არის განხილული ამ მეთოდის თეორიული საფუძვლები, 
მათემატიკური ფორმულირება და პრაქტიკული გამოყენება. წარმოდგენილია 
როგორც ზოგადი პოლინომური აპროქსიმაციის შემთხვევა, ისე უფრო 
მარტივი, წრფივი აპროქსიმაციის მაგალითები, რაც მკითხველს საშუალებას 
აძლევს ეტაპობრივად გაეცნოს მეთოდის არსს და მის გამოყენების სპეციფიკას. 

მნიშვნელოვანია ის ფაქტი, რომ მონოგრაფიაში თეორიული ანალიზი 
შერწყმულია პრაქტიკულ და საინჟინრო მაგალითებთან. ეს მიდგომა ზრდის 
ნაშრომის გამოყენებით ღირებულებას და მას მნიშვნელოვან რესურსად აქცევს 
როგორც მკვლევრებისთვის, ისე მაგისტრანტებისა და დოქტორანტებისთვის, 
რომლებიც მუშაობენ მასალათმცოდნეობის, მექანიკისა და საინჟინრო ფიზიკის 
სფეროში. წარმოდგენილი მეთოდები შეიძლება გამოყენებულ იქნეს როგორც 
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ლაბორატორიული ექსპერიმენტების შედეგების ინტერპრეტაციისთვის, ისე 
კომპოზიტური კონსტრუქციების გამოთვლით მოდელირებაში. 

მონოგრაფიის ერთ-ერთი მნიშვნელოვანი შედეგია ის, რომ ნაჩვენებია 
რეოლოგიური პარამეტრების განსაზღვრის გაუმჯობესებული მიდგომების 
გამოყენების შესაძლებლობა, რაც ზრდის მოდელების ადეკვატურობას 
რეალური ფიზიკური პროცესების მიმართ. ეს განსაკუთრებით აქტუალურია 
თანამედროვე საინჟინრო ამოცანებში, სადაც მაღალი სიზუსტის მოთხოვნები 
და მასალების რესურსის ოპტიმიზაცია გადამწყვეტ როლს ასრულებს. 

შეჯამების სახით შეიძლება ითქვას, რომ წარმოდგენილი მონოგრაფია 
არის თეორიულად გამართული და პრაქტიკულად ორიენტირებული კვლევა, 
მოდელების საშუალებით, კომპოზიტური მასალების რეოლოგიური 
თვისებების შესწავლის სფეროში. ნაშრომი გამოირჩევა თემის სისტემური 
განხილვით, მათემატიკური აპარატის კორექტული გამოყენებითა და 
ექსპერიმენტული მონაცემების დამუშავების თანამედროვე მეთოდების 
ინტეგრაციით. აღნიშნული მონოგრაფია მნიშვნელოვან წვლილს შეიტანს 
კომპოზიტური მასალების მექანიკის განვითარებაში და შეიძლება 
გამოყენებულ იქნეს როგორც სამეცნიერო, ისე სასწავლო მიზნებისთვის. 
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